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Abstract 

Regression analyses are frequently employed by health 
educators who conduct empirical research examining a 
variety of health behaviors. Within regression, there are a 
variety of coefficients produced, which are not always easily 
understood andlor articulated by health education 
researchers. It is important to not only understand what 
these coefficients are, but also understand what each 
represents and how each is interpreted. By correctly 
interpreting regression coefficients (pearson r, Pearson r', 
Mnltiple R', a, b, B, rs' r's' partial correlation and semi-partial 
correlation), the informed health behavior researcher can 
better understand the dynamics ofhis/her data. The purpose 
of this manuscript is to describe and explain some of the 
coefficients produced in regression analysis. Specifically, 
the manuscript will describe (a) why and when each 
regression coefficient is important, (b) how each coefficient 
can be calculated and explained, and (c) the uniqueness 
between and among specific coefficients. Adata set originally 
used by Holzinger and Swineford (1939) will be referenced 
throughout the manuscript to tangibly illustrate how 
coefficients should be calculated and interpreted in both 
simple and multiple regression analyses. 

Regression analyses are frequently employed within 
empirical studies examining health behavior to determine 
correlations between variables of interest. Simple regression 
analyses can be used to predict or explain a continuously 
scaled dependent variable by using one continuously scaled 
independent variable. Multiple regression analyses can be 
used to investigate relationships between a single, 
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continuous outcome variable and two or more continuous, 
predictor variables (Thompson, 2006). Within both types of 
regression, there are a variety of coefficients produced, which 
are not always easily understood and articulated by health 
education researchers. The purpose of this manuscript is to 
describe and explain a variety of regression coefficients used 
in regression analysis. Specifically, the manuscript will 
describe (a) why and when each regression coefficient is 
important, (b) how each coefficient can be calculated and 
explained, and (c) the uniqueness between and among 
specific coefficients. A data set originally used by Holzinger 
and Swineford (1939) will be utilized to demonstrate how to 
conduct and interpret both simple and multiple regression 
analyses. This data set reflects scores on 24 psychological 
tests administered to junior high school students to assess 
various acuities. It has been used by researchers to explain 
various analytic techuiques used throughout the history of 
statistics (Hetzel, 1996). 

Pearllonr 

Continuously scaled variables are variables which are 
measured on a scale of equal units. These are the types of 
variables that can be examined using regression analytic 
techniques. When two variables are measured on a 
continuous scale, we can compute the Pearson pToduct­
moment correlation coefficient (r) between the two variables, 
computed as: 

where COY xy is a description of bivariate relationship called 
the covariance and SDx and SDy are the standard deviations 
of both the independent (X) and dependent (Y) variables 
(Thompson, 2006). The covariance is used primarily as an 
intermediate calculation in obtaiuing the Pearson product 
moment correlation, because it does not have a defmitive 
range of possible values (Thompson, 2004). Pearson r 
addresses the question, "In an ordinary least squares 
distribution, how well does the line of best possible fit 
(regression line) capture the data points in a scattergram?" 
When Pearson r is positive, the relationship between two 
variables is positive. This means either (a) as scores on one 
variable become larger, scores on the other variable (on the 
average) tend to also be larger, or (b) as scores on one 
variable become smaller, scores on the other variable (on the 
average) tend to also become smaller. When Pearson r is 
negative, the relationship between two variables is negative . 
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This means either (a) as scores on one variable become larger, 
scores on the other variable (on the average) tend to become 
smaller, or (b) as scores on one variable become smaller, 
scores on other variable (on the average) tend to become 
larger. The Pearson r is a descriptive statistic, quantifying 
the amount of linear relationship between two continuous 
variables. Pearson r statistics themselves, however, are 
ordinally scaled as regards to the variance common to two 
variables (Thompson, 2006); therefore, you cannot quantify 
the relationship between two distinct Pearson r values unless 
each is squared. 

Pearson r' (also known as the coefficient of 
determination or the common variance proportion), unlike 
Pearson r, reflects the percentage of variance common to 
two variables (Thompson, 2006). This statistic is not 
ordinally scaled; rather, it is continuously scaled and thus a 
comparable statistic. It tells us that with knowledge of the 
scores on one predictive or explanatory, independent 
variable, we can explain or predict a given percentage, on 
the average, of the variability or Sum of Squares (SOS) of a 
dependent variable. One minus the Pearson r' yields the 
coefficient of alienation which describes the proportion of 
variance in the dependent variable that we cannot predict 
with knowledge of an independent variable (Thompson, 
2006). 

The SOSIlXPLAlNED' or the proportion of the SOS of the 
dependent variable that is linearly explained by the 
independent variable, divided by the SOSTOTAL' the total 
amount of explained and unexplained (i.e. not explained by 
the independent variable) variability in the dependent 
variable (y), tells us the proportion of the variability of 
individual differences that we can explain with an independent 
variable (X): 

r' YX = SOSEXPLAINED I SOSlOTAL 

In the case of two or more independent variables, the Pearson 
r' computation above becomes referred to as multiple R', to 
account for the multiple independent variables (XI, X2) 
having the opportunity to explain or predict the variance in 
the dependent variable (Y): 

R' YXI.xz •... = SOSEXPLAINED I SOSrour. 

Pearson r' and multiple R' measure the strength of the 
relationship between the independent variable(s) and 
dependent variable. Pearson r' (and multiple R') values have 
also been explained as indices which quantify the degree to 
which predicted scores match up with actoal scores (Huck, 
2004). 

Figure I provides three SPSS (SPSS, Inc., 2006) syntaxes 
and outputs reflecting two simple (Simple #1 and Simple #2) 
and one multiple regression analysis using scores on 
variables t5 (paragraph Comprehension Test), t6 (General 
Information Verbal Test), and t9 (Word Meaning Test). 

In the Simple #1 regression analysis, we are calculating 
the Pearson r' correlation between scores on the Word 
Meaning Test (entered as the independent variable) and 
General Information Verbal Test scores (entered as the 
dependent variable). Notice that the correlation between the 
two variables is r' = .547. In the Simple #2 regression 
analysis, we are calculating the Pearson r' correlation 
between scores on the Paragraph Comprehension Test scores 
(entered as the independent variable) and General 
Information Verbal Test scores (entered as the dependent 
variable). Notice that the correlation between the two variables 
is a bit srnaller, as r' = .432. In the Multiple regression analysis, 
we are calculating the multiple R' correlation to see the effect 
of Word Meaning Test scores (independent variable) and 
Paragraph Comprehension Test scores (indepedendent 
variable) on predicting General Information Verbal Test 
Scores (dependent variable). Notice that the multiple R' (.583) 
entering both predictors simultaneously is slightly larger 
than the r' (.547) between Word Meaning Test scores and 
General Information Verbal Test scores. 

The Regression Equation 

Regression analysis employs two types of weights: an 
additive constant, a, applied to every individual participant, 
and a multiplicative constant, b, applied to the entire 
predictor variable for each individual participant (Thompson, 
2006). The weighting system takes the form of a regression 
equation that serves as the set of weights generated in a 
given analysis: 

The a weight is the point where the regression line (i. e. 
line of best fit) crosses the y-axis when x equals O. This point 
is also called the y-intercept. To compute the a weight, one 
must determine an individual's predicted dependent variable 
score (Y) [see Note below]and their corresponding 
independent variable (X) score. The regression line always 
pivots on the mean of X (M,J and the mean of Y (My); 
therefore, the M" is itself a Y score corresponding to ~, 
given that this predicted dependent variable score (My) is 
always perfectly predicted to correspond with~. With this 
knowledge, the M" score can be input as the Y score in the 
regression equation. 

When working with standardized scores (i. e. scores 
which have been standardized by removing or dividing by 
the standard deviation (SD) units of both the independent 
and dependent variables, the a weight will always be equal 
to zero, because the regression line always pivots on the 
Cartesian Coordinate ~, M,,), which when dealing with 

Note: The statistical symbol that is to be a Latin 
capital letter Y with circumflex (character map: 

U+O 176) is represented as Yin this article. 
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Simple #1 

REGRESSION 
!MISSING LISTWISE 
/STATISTICS COEFF OUTS RANOVA 
/CRITERlA~PIN(.05)POUT(.10) 

INOORIGIN 
IDEPENDENTt5 
IMETHOD=ENTER t9 . 

Model R R Square 
I .739(a) .547 

Predictor: WORD MEANING TEST 

Simple #2 

REGRESSION 
!MISSING LISTWISE 
/STATISTICS COEFF OUTS RANOVA 
/CRITERlA~PIN(.05)POUT(.10) 

INOORIGIN 
IDEPENDENTt5 
IMETHOD=ENTER t6 . 

Model Summary 

Adjusted R Square 
.545 

Model Summary 

Model R R Square Adjusted R Square 
I .657(a) .432 .430 

Predictor: PARAGRAPH COMPREHENSION TEST 

Multiple 

REGRESSION 
!MISSING LISTWISE 
/STATISTICS COEFF OUTS RANOVA 
/CRlTERlA~PIN(.05)POUT(.10) 

INOORIGIN 
IDEPENDENTt5 
IMETHOD=ENTERt6t9 . 

Mode\Summary 

Model R R Square Adjusted R Square 
I .764(a) .583 .581 

Predictors: WORD MEANING TEST, PARAGRAPH COMPREHENSIONTEST 

Figure 1. SPSS syntaxes and outputs for simple and multiple regression(s). 

Std. Error of the Estimate 
8351 

Std. Error of the Estimate 
9347 

Std. Error of the Estimate 
8.017 

standardized scores is (0,0). When the independent 
variable(s) is useless (i.e. does not predict or explain any of 
the variation in the dependent variable), the a weight will 
always equal the My, because, in this instance, the My is the 

best we can do in making the best possible prediction 
(Thompson, 2006). 

14 

The b weight is the slope (Le. change in rise/change in 
run) of the regression line, and is described as the regression 
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weight. The value of b signifies how many predicted units 
change (either up or down) in the dependent variable there 
will be for anyone unit increase in the independent variable. 
In a best case scenario, where the independent variable(s) 
perfectly predicts the outcome variable, the b weight perfectly 
matches the dispersions of the Y, (individual's actual score) 
and y. (individual's predicted score). When the predictor 
variable(s) is useless (i. e. does not predict or explain any of 
the variation in the outcome variable), the b weight will equal 
o to "kill" the useless independent variable and remove its 
influence from the regression equation (Thompson, 2006). If 
the metrics of the variables of interest have been 
standardized, the regression weight is expressed as beta (B). 
A positive B (or b) means that the slope of the regression 
line is positive, tilting from lower left to upper right, whereas 
a negative B ( or b) indicates that the slope of the regression 
in negative, tilting from upper left to lower right (Huck, 2004). 
Thus, the sign of b or B indicates the kind of correlation 
between the variables. 

Consider the SPSS outputs and scatterplots contained 
in Figure 2. These were developed analyzing the Holtzinger 
and Swineford (1939) data set discussed earlier. Notice the 
non-statistically significant results (P = .648) at for the B 
weight (.042) describing the correlation between the Memory 
of Target Numbers test scores and the General Information 
Verbal test scores (Modell). Also, notice the flat regression 
line of best fit, indicating that the relationship between these 
two variables is neither positive nor negative (i. e., the 
relationship is non-existent). Conversely, notice the 
statistically significant (P = .001) B weight (.739) describing 
the positive relationship between the Word Meaning Test 
scores (utilized earlier) and the General Information Verbal 
test scores (Model 2). This relationship is evidenced by the 
line of best fit tilting from lower left to upper right. 

The a and b (or B) weights are constants, in that they do 
not vary from individual score to individual score. Their 
function in the regression equation is primarily two fold. 
First, the b or B attempts to make the spreadoutness of the Y 
scores (predicted dependent variable scores) and Y scores 
(actual dependent variable scores) the same, which only 
happens when a predictor variable perfectly predicts a 
dependent variable. Second, the a weight seeks to make 
My=~ which it always accomplishes perfectly. Essentially, 
the multiplicative weight (b, Jl) begins the process by 
affecting the dispersion (SOSyand central tendency (My) of 
Y, and then the a weight is turned loose to make My = My. 

Interpreting Regression Coefficients with Co"elated 
Predictors 

When independent variables have nonzero Bs which 
do not equal the independent variable's respective Pearson 
r correlation with the dependent variable (y), the independent 
variables are said to be collinearwith one another. Collinearity 
refers to the extent which the independent variables have 
nonzero correlations with each other (Thompson, 2006). If 

two or more independent variables are entered in a multiple 
regression and those variables are correlated with each other 
to a high degree and correlated with the dependent variable, 
then the B weights for the independent variables are arbitrarily 
allocated predictive/explanatory credit among the correlated 
independent variables. The independent variables with 
higher Bs are arbitrarily allocated credit for both uniquely 
and commonly explained area of the dependent variable. This 
allocation of predictive/explanatory credit given to each 
independent variable can happen only one time, since more 
than one independent variable can not be given predictive/ 
explanatory credit for the commonly explained area of the 
dependent variable (Y). Thus, one must determine what is 
uniquely explained by each independent variable and how 
predictive/explanatory credit is allocated among the 
independent variables for the area that is commonly 
explained. The formulas for the iis of two correlated predictnrs 
adjudicates the arbitrary allocation of shared credit 
(Thompson, 2006): 

B, = ryxl-[(rYX2)( rXIX2)] / [1- r' XIX2] 

B, =rYX2-[(rYXI)(rxI~] / [1- r'XIX2] 

To mentally conceptualize how these formulas allocate 
credit between two independent variables operationalized 
in a type ill SOS situation, think of horses feeding in a trough. 
Think of the feed in the trough as the SOSy (SOS of the 
dependent variable) and each horse representing a unique 
independent variable, thus each possessing a unique SOSx 
(assuming the horses are of unequal sizes-i.e. unequal 
SOSs). The rYXI and rYX2 can be thought of as the amount of 
feed that each horse can eat from the trough. The rX1X2 is 
equivalent to the amount offeed that both horses commonly 
(yet individually) ate from the trough. The amount of feed 
that each horse ate from the trough may overlap among both 
horses, so it may be hard to distingnish which horse ate 
which proportion of the feed (given that the feed does not 
stay in a fixed position within the trough). However, as the 
farm handler, you may be asked to arbitrarily distingnish 
which horse ate which proportion of the feed. If you were 
able to view the amount of newly eaten feed present in each 
horse's stomach, then you would be able to see which horse 
ate more individually (describing both rYXI and r

YX2
) and 

thus give unique credit to each horse. You can not see this, 
however, so you must arbitrarily give credit to one (and only 
one) horse for eating a commonly eaten proportion of the 
feed (represented within ryxlX2), 

The structure coefficient (r,) of a predictor variable is 
the correlation between the independent variable and Y 
(Thompson & Borrello, 1985). Recall that the collinearity of 
measured independent variables affects the is of these 
variables; however, collinearity does not effect rs 
computations. Thus, rss are incredibly useful for interpreting 
regression results (Thompson, 2006). Unless a researcher is 
(a) researching a specific set of independent variables which 
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Modell MEMORYOFTARGETNUMBERS B 
.042 

Dependent Variable: GENERAL INFORMATION VERBAL TEST 
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B 
1.193 

Std. Error 
.063 

Dependent Variable: GENERAL INFORMATION VERBAL TEST 
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Figure 2. Sample SPSS outputs looking at beta weights and scatterplots. 
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o 

o 

110 

Beta 
.739 

o 

120 

t 

18.984 

RSq~·O.547 

.. 

t 

.457 

Sig. 
.000 

Sig. 
.648 
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are not even remotely affected by other independent 
variables or (b) researching independent variables which 
are perfectly uncorrelated, then rss should always be 
interpreted along with Jl weights (Courville & Thompson, 
2001). Pedhazur (1982) objected to this necessity and noted 
that rss are simply correlations of independent variables with 
dependent variables divided by multiple R. This 
interpretation is mathematically valid, but neglects the idea 
that the focus of regression analysis is to understand the 
makeup of Y (the proportion of Y that is explained by the 
independent variables), not mathematically divide Pearson 
product moment correlations by multiple R. 

Calculating and Interpreting Structure Coefficients (r ss) 
Using SPSS 

To calculate rss to explore/confrrm the predictive/ 
explanatory value of independent variables, the researcher 
can ask SPSS, Version 14.0 (2006) to compute and report rss 
for each of the independent variables. Before computing rss 
for each independent variable, the user must run a regression 
analysis entering all independent variables together. The 
SPSS output resulting from this initial step will provide 
unstandardized weights (a & b) used to calculate Y. These 
weights are plugged into the equation Y ~ a + b(X,) + b(X,) 
b(X,), to create the synthetic variable Y for each individual 
participant. 

The bivariate correlations between the observed 
variables and synthetic variable Yare computed to interpret 
the structure coefficients for each independent variable. The 
structure coefficients have been circled in Figure 3 to help 
the reader locate the correlations between the independent 
variables and synthetic variable Y (i.e. structure coefficients). 
One way to check whether or not the correlation table has 
been calculated correctly is to compare the multiple R from 
the regression model summary generated from the multiple 
regression to that of the bivariate Pearson r between the 
dependent variable Y and Y. Notice that these numbers are 
the same (.764), and are simply two different ways to express 
the variance proportion of the dependent variable that is 
explained by the independent variables. In the example 
depicted in Figure 3, the structure coefficients confumforus 
that the beta weights are accurately depicting the explanatory 
credit given to each independent variable. It is important to 
remember, however, that when interpreting B weights, 
common predictive and/or explanatory credit can not be given 
to individual independent variables more than once. For this 
reason, certain N s with sufficiently large rss may be denied 
credit for predicting or explaining Y. Because of this, both Jl 
and rs must be interpreted, as a predictor may have a near 
zero Jl, but have the largest rs and just be denied credit due 
to the context specific dynamics of Jl (Thompson, 2006). See 
Figure 4 for an explanation of how to interpret the worth of 
an independent variable by examining Jls and rss. 

Partial Correlation Coefficients 

Partial correlation is the correlation between two 
variables with the influence of a third variable removed from 
both. For example, a researcher could investigate the 
relationship between height and running speed with the 
influence of age removed from the relationship (Hinkle, 
Wiersma, and Jurs, 2003). The formula for the partial 
correlation coefficient (of A and B) controlling for only one 
variable (C) is: 

A partial correlation coefficient accounts for or explains the 
third variable problem. An extra variable may spuriously 
inflate or attenuste a correlation coefficient (Thompson, 2006), 
because the common variance between two variables may 
be radically different after controlling for the influence of a 
third variable. Squared partial regression coefficients can be 
determined in multiple regression between the dependent 
and one of the multiple predictor variables (controlling for 
the influence of other predictor variables) using a procedure 
known as commonality analysis, which is used to decompose 
R' into unique and common explanatory and predictive 
powers of the predictors in all their possible combinations 
(Thompson, 2006). 

The bivariate correlation and partial correlation matrices 
for three of the variables discussed earlier (paragraph 
Comprehension Test scores, General Information Verbal Test 
scores, and Word Meaning Test scores) are presented in 
Figure 5. Notice that the correlation between Paragraph 
Comprehension Test scores and General Information Verbal 
Test scores is rather strong (r ~ .657), as is the correlation 
between Word Meaning Test scores and General Information 
test scores (r ~ .739). However, when the influence of each is 
removed from one another, the correlation between Word 
Meaning test scores and General Information Verbal test 
scores stays relatively strong (r ~ .517); whereas, the 
correlation between Paragraph Comprehension scores and 
General Information Verbal Test scores drops noticeably (r ~ 
.285). From these partial correlations, we can see that, 
although both variables are highly correlated with the General 
Information Verbal test scores, the Word Meaning Test 
scores remain highly correlated when the influence of 
Paragraph Comprehension scores is removed from 
consideration. The same can not be said for Word Meaning 
test scores, as much ofits correlation with General Infimuation 
Verbal test scores is lost when the influence ofWord Meaning 
Test scores is removed. From this analysis of the partial 
correlations, we can vest considerable confidence that the 
correlation between the Word Meaning Test scores and 
General Information Verbal Test scores is far superior to the 
correlation between Paragraph Comprehension scores and 
General Information Verbal Test scores. 

A semi-partial correlation or part correlation is the 
correlation between two variables with the influence of a 
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SPSS Syntax for computing structure coefficients 

COMPUTEyhat~21.205+t9· .886+t6· .965 + tl5' -.034. 
EXECUlE. 
COMPUTE e ~ t5 - yhat. 
EXECUlE. 

list variables ~ t9 t6 tl5 t5 yhat e. 

CORRELATIONS 
NARIABLES~t9t6t15 t5 yhate 
IPRINT~TWOTAILNOSIG 

IMISSING=PAIRWISE. 

R RSquare 

764 .584 

SPSSOutput 

Regression Model Summary 

Adjusted R Square 

.580 

Std. Error of the Estimate 

8.027 

Predictors: MEMORY OF TARGET NUMBERS, WORD MEANING TEST, PARAGRAPH COMPREHENSION TEST; 
Dependent Variable: GENERAL INFORMATION VERBAL TEST 

(Constant) 

WORD MEANING TEST 

PARAGRAPHCOMPTEST 

MEMORYOFNUMBERS 

Beta Weights 

Unstandardized Standardized 
Coefficients Coefficients 

B SE Beta 

21.205 (a) 5.482 

.886 .085 .549 

.965 .187 .272 

-.034 .060 -.021 

Dependent Variable: GENERAL INFORMATION VERBAL TEST 

Structure Coefficients 

PARACOMP MEMOF 

t 

3.868 

10.404 

5.154 

-.559 

WORDMEANING 

TEST TEST NUMBERS 

WMEANTEST I .704" .052 

PC TEST .704" I .069 

MEMOFNUM .052 .069 I 

GIVTEST .739" .657" .026 

yhat C·967** .860** .034 :=> 
"Correlation is significant at the 0.01 level 

Figure 3. Interpreting beta weights and structure coefficients. 
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Sig. 

.000 

.000 

.000 

.577 

GENINFO yhat 

VERBALTEST 

.739" .967" 

.657" .860" 

.026 .034 

I .764" 

.764" I 
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If the predictor variable has a ... 

r, equal to 0 
a equal to 0 

r,not equal to 0 
a equal to 0 

r, equal to 0 
a not equal to 0 

Then ... 

It is a useless predictor. It explains none of the variation in the 
dependent variable. 

The predictor variable explains some of the variation in the 
dependent variable, but other predictor variables are getting 
explanatory credit for what is being explained by the predictor 
variable. 

The predictor variable does not directly explain any of the 
variation in the dependent variable, but its presence does 
increase the explanatory credit assigned to other predictor 
variables. 

Figure 4. Interpreting the as and rss of a predictor variable. 

third variable taken away from only one of the two variables. 
For example, you conld investigate the relationship between 
height and running speed with the influence of age removed 
from only the height variable (Hinkle, Wiersma, and Jurs, 
2003). The formula for the semi-partial or part correlation 
coefficient ofY and Z, removing the effects of X from only Y 
is: 

rZ(Y.X) ~ (ryz - r"",xz / square root of I - r xy)' 

This equation actually reflects the correlation between Z 
and the error ofY (Hinkle, Wiersma, and Jurs, 2003). The 
sample size necessary for adequate semi-partial correlation 
estimation accuracy depends strongly on three factors: (a) 
the population squared multiple correlation coefficient, (b) 
the population increase in coefficient, and (c) the desired 
degree of accuracy. The number of predictors has a small 
effect on the required sample size (AJgina, Moulder, & Moser, 
2002). 

GEN INFO VERBAL TEST Pearson Correlation 

PARA COMP TEST Pearson Correlation 

WORD MEANING TEST Pearson Correlation 

Control Variable 

Correlations 

GENERALINFO 
VERBALTEST 

I 

.657 

.739 

Partial Correlations 

PARAGRAPH 
COMPTEST 

.657 

1 

.704 

PARAGRAPH 
COMPTEST 

WORD MEANING TEST PARACOMPTEST Partial Correlation 1 
GEN INFO VERBAL TEST Partial Correlation .285 

WORD MEANING 
TEST 

.739 

.704 

1 

GENERALINFO 
VERBAL TEST 

.285 
1 

Control Variable GENERALINFO WORD MEANING 
VERBAL TEST TEST 

PARA COMP TEST GENINFO VERBAL TEST Partial Correlation 1 .517 
WORD MEANING TEST Partial Correlation .517 1 

Figure 5. Correlation/partial correlation matrices. 
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Implications for Helllth Education Research 

As noted by Bubi (2005), there is a paucity of articles 
related to statistics or measurement in health education. 
Unlike other fields within the social sciences, health education 
has been conspicuously absent from the dialogue 
surrounding the implementation and interpretation of various 
statistical analyses. While analyses such as regression are 
frequently employed by health education researchers, 
scholars in health education should be able to understand 
and explain the variety of regression coefficients which can 
be analyzed. The lack of scholarly discussion in the field 
(regarding the interpretation of statistical coefficients) 
discourages empirical knowledge generation and encourages 
simply memorizing procedures to produce numerical indices. 

The health education profession must strive to generate, 
report, and interpret various regression coefficients 
accurately and adroitly, so that data explication appropriately 
reflects the reality we wish to purport. There has been 
discussion regarding the interpretation of effect sizes in 
health education research (Bubi, 2005; Merrill, Stoddard, and 
Shields, 2004; Watkins, Rivers, Rowell, Green, & Rivers, 
2006), and it is suggested that similar recommendations stress 
the importance of computing structure coefficients to 
complement traditional beta weight coefficients. Through 
this practice, health educators will be able to more accurately 
distioguish independent variables which are responsible for 
impacting our dependent health behaviors of interest. For 
health education to improve its position as a science, it must 
embrace the practice of these analytic interpretations. 
Mandating the need to accurately report and interpret 
regression coefficients in all realms of health education 
research is essential to advancing result efficacy in the field. 

Conclusion 

There are a variety of coefficients used in simple and 
multiple regression analysis. It is important for health 
education researchers to not only understand what these 
coefficients are, but also understand what each represents 
and how each is computed and interpreted. Interpreting 
coefficients, such as regression coefficients (Pearson f, 

Pearson:r2, R2, a, b, 8, rs,:r2s partial correlation and semi­
partial correlation), allows the informed health education 
researcher to better understand the dynamics ofhis/her data. 
Consultiog these types of coefficients can provide health 
education research with further insight into correlations 
between variables of interest. 
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