
24 fall 2009 • vol 32, no 4

T
Developing Student Programming and
Problem-Solving Skills With Visual Basic

Del Siegle, Ph.D.

t e c h n o l o g y

Three decades have passed since computers were first
introduced into American classrooms. Early technophiles
will recognize names such as the Commodore PET 2001,
Tandy’s Radio Shack TRS-80, and the Apple II. During
the genesis of computers in the classroom, educators
were unsure how to teach students with these strange
machines. Farsighted educators knew microcomputers
represented a significant technological advancement
that would revolutionize how people worked, but they
were unsure what role computers would play in everyday
classrooms. Would computers be used as a teaching and
learning tool, or was their importance their future role
in the workplace?
	 Mathematics teachers were among the first to
embrace this new technology. Frustrated with the pau-
city of educational software that was available, they
began teaching students to write computer programs.
Many of the early computer manuals included tutorials
on writing computer code with the BASIC (Beginner’s
All-purpose Symbolic Instruction Code) programming
language. Educators taught programming for two rea-
sons. First, they believed that computer users would also
need to be computer programmers. The “new math”
movement of the 1960s centered on this belief and
included lessons on binary numbers (Base 2), which
were designed to help students better understand com-
puter programming. The second reason for teaching
programming was that programming promoted prob-
lem solving, a topic dear to mathematics (and gifted
program) educators’ hearts. Today, the idea that one
would need to write a computer program in order to
use the computer seems ludicrous. However, the impor-
tance of problem solving has not diminished.
	 Three decades ago, COBOL, FORTRAN, and BASIC
were the computer languages of the day with PASCAL
debuting slightly later. Seymour Papert (1980) at MIT
believed that students at a very young age should be

solving problems and programming computers, rather
than computers programming students. He developed
the LOGO language to introduce very young children to
programming. LOGO provided premathematical chil-
dren with problem-solving and reasoning experiences as
they created shapes with the now familiar “turtle.” All of
this occurred before the advent of Java, C++, and other
computer languages that are popular today.
	 Although most computer users will never need to
write a computer program, many students enjoy the
challenge of creating one. Computer programming
enhances students’ problem solving by forcing students
to break a problem into its component pieces and reas-
semble it in a generic format that can be understood
by a nonsentient entity. It promotes planning and
organization skills, and it requires precision and self-
discipline. Computer programming is one of the three
proposed types of technological giftedness (O’Brien
& Friedman-Nimz, 2006; Siegle, 2008). In addition
to programmers, interfacers (those who excel at using
software) and fixers (those who enjoy working with
technology equipment) often are classified as techno-
logically gifted.
	 For several years, students have been able to program
in Visual Basic through the macro feature that is built into
the Microsoft Office Suite. This has been an awkward,
albeit free, way to teach Visual Basic programming to stu-
dents without having the expense of purchasing the pro-
gramming software. Today, Microsoft offers Visual Basic
2008 Express Edition as a free download from its Web site
at http://www.microsoft.com/express/vb/Default.aspx.
Visual Basic allows students to create actual programs that
can be installed and run using the Windows operating
system. It also has options for Web development.
	 Computer programming is not for everyone, but
those who are attracted to it immensely enjoy it. In
the past, I have successfully taught BASIC to students

gifted child today 25

Developing Skills With Visual Basic

continued on page ??

as young as fourth grade, some of whom actually went on
to careers as computer programmers. The following is a
step-by-step description of how to create a simple program
using Visual Basic. This activity may be just what a talented
student in your classroom is seeking.
	 Once the Visual Basic authoring software is downloaded
and installed, the programming can begin. In this column
we will create a simple drill and practice program for mul-
tiplication (see Figure 1). Although the Visual Basic options
that are featured in this project represent only the tip of
the programming “iceberg,” the activity shows how easily
a simple program can be created and compiled. Those who
are familiar with the earlier BASIC language will find the
logic and some of the syntax familiar.
	 The idea behind the Visual Basic system is that the pro-
grammer creates screens (Forms) that comprise the com-
puter program. A simple program might contain only one
form or multiple forms that appear and disappear as the
program runs. The programmer places controls (from a
toolbox) that serve different purposes on each form. A con-
trol is an object that appears on the computer screen: It
might be text to read, a graphic image to view, a pull-down
menu to use, or a radio button, checkbox, or command
button to click. For example, the Label displays text. The
TextBox allows users to input information by typing. The
Button control might be programmed to make an object
appear or disappear or a mathematical formula to be calcu-
lated when the button is clicked. Visual Basic programming
is known as object-oriented programming because each object
can be set to perform a variety of functions. In other words,
each object has a life of its own within the program. The
simple drill and practice program that we are making can
be created with a single Form and three tools: a Label, a
TextBox, and a Button control.
	 Once the program has been installed, the programmer
selects New Project from the File menu (see Figure 2) and

Windows Forms Application from the dialog box that
appears (see Figure 3). A blank form will appear (see Figure
4). The form can be resized by clicking on it and dragging
the corners. Each object used in a Visual Basic program has
a name. By default, this blank form is called Form1. Each
object also has a set of Properties that can be changed.
The Properties list for an object appears on the right of the
screen when the mouse is clicked once on an object. When
we click on the Form1 object, its Properties list appears
on the right. In the example shown in Figure 5, we have
clicked on the Background property and a palette of avail-
able colors for the form background is shown. In addition
to the background color, a number of the form’s properties
can be changed. For this project, we will not change any of
the Form1 properties, although users can easily change the
background color as shown in Figure 5.

Figure 1. A simple program to test
user’s multiplication facts.

Figure 2. Start a project by selecting
New Project from the File menu.

Figure 3. Visual Basic can create a number
of different products. For this project,
select Windows Forms Application.

26 fall 2009 • vol 32, no 4

Developing Skills With Visual Basic

	 It is now time to add some objects to the form. These
objects will display information for the user and will change
as the user runs our program. We click on the word Toolbox
at the top left of the screen to see a list of possible objects
(see Figure 6). First, we will select the Label command by
selecting the word Label (seventh on the list of tools). We
move the mouse to the form and draw a box where we
wish to place the label. For this project, we will use seven
labels, so we click and draw seven different label boxes. We

also need one TextBox (19th on the list of tools) and two
Buttons (2nd on the list of tools). A form displaying where
these objects should be placed is shown in Figure 7.
	 We have two tasks. First, we simply need to set the start-
ing properties for each object (how the objects will appear
when the program opens). Second, we need to write code
for the two buttons, which will have our users request
multiplication problems and examine their answers. To
do this, we will need to set the Font properties for Label1,
Label2, Label3, and Label4. We click once on Label1; its
Properties window appears on the right. To change the
size of the font, we double click on the word Font in the
Properties window (see Figure 8). The Font options will

Figure 7. Form1 with seven Labels,
one TextBox, and two Buttons.

Figure 6. The Toolbox contains different
possible Objects on a form and is displayed

by clicking on the Toolbox icon located
near the top left areas of the screen.

Figure 4. A blank form is displayed in the
center. The Properties window appears on the

lower right and the Toolbox icon to display
tool options appears in the upper left.

Figure 5. A form's background color can be
easily changed by clicking on BackColor in the
form Properties and selecting a Custom color.

gifted child today 27

Developing Skills With Visual Basic

continued on page ??

show, and we can change the font Size to whatever we
wish. For our example, we will change the font size from
8.25 to 72. We also want to change the Text property for
Label1 to a question mark by moving down the properties
list to Text and replacing the word Label1 with ?. Next
we click on Label2 and change the Font Size property to
72 and the Text property to X. We will change Label3’s
font to 72 points and its text to ?. We also will change the
Font Size of Label4 to 72 and the Text to =. Finally, we
will click once on TextBox1 and change the Font Size in
its Property window to 72. Our first row of labels should
now resemble Figure 9. The labels can be moved to match
the spacing shown in Figure 9.
	 We now need to change the Text property of Label5.
We click once on Label5 and change the Text from Label5
to Your answer of. We do this the same way as we did to
change the Text property of the Label1–4. We also will
change the Text of Label6 and Label7 to hyphens by simply
entering a - in the Text property for those two labels. In

the sample shown in Figure 9, we see that the font size for
Label5–7 has been changed to 14 and the label displays the
change we made in the Text property. Although we have
changed the Text property of these objects, they still retain
their names (e.g., Label1).
	 Once the initial property values of our objects have been
set, we are ready to write code for Button1 that will present
a multiplication problem and code for Button2 that will
check the user’s answer to the problem. To program (write
code for) an object (such as Button1), we simply double
click on Button1 on our form. If we had accidentally double
clicked (instead of single clicked) when we were setting the
Properties, we could have left the Code Editor and returned
to the Form view by closing the Code Editor (click on the
X on the top right of the Code Editor). For now, we want
to be in the Code Editor. We want to instruct our program
to randomly create numbers from 0 to 9 and display them as
Text for Label1 and Label3. To do this, we program Button1
to change the Text of Label1 and Label2 to a random number
from 0 to 9. The code to make this happen is:

 Label1.Text = Int(Rnd() * 10)
 Label3.Text = Int(Rnd() * 10)

We type the above code in the Code Editor at the location
of the cursor (see Figure 10).
	 Computer random number generators produce numbers
between 0 and 1 that contain several digits. Because we wish
to have our multiplication drill and practice present numbers
from 0 to 9, we need to devise a way to have the random
number created by the computer with Rnd() changed to a
larger whole number. We do this by multiplying the random
number by 10. This converts a random number such as
.453960 to 4.53960. Because we only want whole numbers,
we use the Int command (which stands for Integer) to take
the integer (whole number) value of that number. In other

Figure 9. Font Size and Text changed
for Labels1–7 and TextBox1.

Figure 8. By clicking once on Label1, Label1’s
Property window is displaced. Double clicking
on Font within the Property window displays

the options for changing Label1’s font.

Figure 10. The Code Editor after double
clicking on Button1 and before entering

programming code. By default, the code is set
to react to a mouse click. The action can be
changed by selecting other mouse options

under the Click menu at the top right.

28 fall 2009 • vol 32, no 4

Developing Skills With Visual Basic

words, the command will drop the digits after the decimal,
which leaves us with 4. If we wanted to restrict the numbers
to 0 to 5, we would have multiplied by 6 instead of 10. Using
this system, the lowest number is 0 and the number we
multiply the random number by is the number of different
numbers from 0 up that we will produce.
	 We can check whether our code works by clicking on the
green arrow shown in Figure 11. Once the program starts,
we click on Button1. Label1 and Label2 should display
random numbers (instead of the question mark we set in the
Properties window). This occurs because our code instructs
each label to set its text to the integer value of a random
number. To return to writing code, simply close the window
in which the sample program is running. This is achieved
by clicking on the X in the top right of the sample program
window. To return to the form, close the Code Editor in a
similar fashion.
	 Now we need to write code for our second button. We
will create code to have Label6 display the answer that our
user will be entering in TextBox1 and have Label7 display
whether that value is the correct product for the multipli-
cation of the two numbers we randomly generated. On
the form, we will double click on Button2 and type the
following in the Code Editor:

Label6.Text = TextBox1.Text
If Label6.Text = Label1.Text * Label3.Text Then
Label7.Text = “is correct.”
Else
Label7.Text = “is incorrect.”
End If

The first line has Label6 display the Text that the user entered
into TextBox1. The next five lines are an IF-THEN-ELSE
statement. When the statement following the IF code is
correct, the program executes the code that follows THEN.
When the statement following the IF code is not correct,
the program executes the code that follows the ELSE. In

this case, the IF statement checks whether the user’s answer
(as displayed as Text in Label7) equals the value of the Text
displayed in Label1 multiplied (computers use * to denote
multiply and / to denote divide) by the Text in Label3. If
they are equal, the Text of Label7 displays is correct. If
they are not equal, the Text of Label7 displays is incorrect.
	 We can test our program by clicking on the small green
arrow near the top of the screen. Once our program starts,
we press Button1 for a multiplication problem. We enter an
answer in TextBox1 and press Button2 to judge whether the
answer is correct. We should have a functioning program
(provided we did not type something incorrectly).
	 Assuming everything went well up to this point (we typed
everything correctly in the right places), we need to modify
our program to be more user-friendly. We stop our sample
program and return to the form and Code Editor. First, we
should change the Text property of Button1 to Press for a
multiplication problem so our user knows to click on it
to receive his or her multiplication problem. To do this, we
click once on Button1 to display the Property window (if
we are in the Code Editor, we will close it to return to our
form). We scroll down to the Text property and enter Press
for a multiplication problem. Second, we should change
the Text of Button2 to be Enter your answer in the box
above and press here to check it. We make this change
by clicking on Button2 to display the Properties window
and entering the above message in the Text property. If the
buttons are too small to display the text, they can be resized
larger by clicking on them and expanding the corners. At
this point, Form1 should resemble Figure 12.
	 By now, we have demonstrated that the properties of an
object can be set for the start of a program, but can change
as the program runs. For example, we set the Text of Label7
to be a hyphen and then changed it to display whether
the answer was correct or incorrect once our user pressed
Button2. As our program now runs, there are a couple of
problems. Our user can see Button2 (Check answer) before
he or she presses Button1 (Press for problem). We should
make Button2 invisible until the problem is presented and
we should make Button1 invisible after the problem is pre-
sented so the user cannot receive another problem until he
or she has correctly answered the current problem. These
are simple additions to our program.
	 Click on Button2 (Check answer) and change the Visible
property to False. This causes it not to appear when the
program starts.
	 Double click on Button1 (Present Problem) and add the
following lines of code: Button1.Visible = False (this stops
the user from requesting a new problem before answer-
ing the current one by making the button invisible) and

Figure 11. Code can be tested by clicking on
the green arrow near the top of the screen.

gifted child today 29

Developing Skills With Visual Basic

continued on page ??

Button2.Visible = True (this makes Button2 visible so the
user can check his or her answer). Close the Code Editor.
	 Double click on Button2 and add the following lines of
code just above Else: Button1.Visible = True (when the
answer is correct this will make the Press for problem button
visible so a new problem can be requested) and Button2.
Visible = False (this will make the Check answer option
invisible until the next problem is presented).
	 Type the following after the Else: Button1.Visible =
False (when the answer is wrong, this will keep the user
from asking for another problem without getting this one
correct). Close the Code Editor.

The final code should be as follows:

Public Class Form1
Private Sub Label2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Label2.Click
End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click
Button1.Visible = False
Button2.Visible = True
Label1.Text = Int(Rnd() * 10)
Label3.Text = Int(Rnd() * 10)
End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click
Label6.Text = TextBox1.Text
If Label6.Text = Label1.Text * Label3.Text Then
Label7.Text = “is correct”
Button1.Visible = True
Button2.Visible = False
Else
Button1.Visible = False
Label7.Text = “is incorrect”
End If
End Sub
End Class

	 This simple program can be modified further to keep track
of how many problems were answered correctly the first time
or to display attractive graphics when the correct answer is
given. Although a course in programming is beyond the scope
of this column, Microsoft offers free tutorials and videos at
http://msdn.microsoft.com/en-us/vbasic/default.aspx. The
instructional videos are well worth viewing and range from
beginner topics to more advanced topics.

	 As with any technology project, the work should be
saved frequently. In the case of Visual Basic, the entire
project needs to be saved. This is accomplished with Save
All from the File menu. Once the program is finished and
running correctly, it needs to be exported as a program.
Select Publish from the Build menu to achieve this. There
will be options for where to publish it. Because this is a
Windows program that needs to be installed, the program-
mer has the option to place it on the Web for download
and installation or on a disk for disk installation.
	 As stated earlier, writing computer code is not for every-
one, but those who enjoy it often find it addictive. Time
stands still and hours can pass for someone who enjoys the
process—whereas for others it can be frustrating because
a single incorrect character can keep a program from run-
ning correctly. With patience, these instructions should
provide an introduction to the exciting world of computer
programming.
	 The skills necessary for writing computer code closely
match common characteristics associated with gifted students.
Computer programming can be a valuable tool in gifted and
talented educators’ arsenal of learning activities. GCT

References

O’Brien, B., & Friedman-Nimz, R. (2006, November). Timing is
everything: The emergence of technology talent. Paper presented
at the annual meeting of the National Association for Gifted
Children, Charlotte, NC.

Papert, S. (1980). Mindstorms: Children, computers, and powerful
ideas. New York: Basic Books.

Siegle, D. (2008). Identifying and developing technological gift-
edness: Exploring another way to be gifted in the 21st century.
In M. W. Gosfield (Ed.), Expert approaches to support gifted
learners: Professional perspectives, best practices, and positive solu-
tions (pp. 141–150). Minneapolis, MN: Free Spirit.

Figure 12. Final view of completed Form1.

