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Introduction

Suppose you intend to use the two problems shown in Figures 1 and 2
in a lesson on pattern generalisation and need to decide on their

sequencing. On what criteria have you based your decisions? What criteria
have you used to base your decision on? For teachers attempting to do this,
there are some ways to help them approach it and make informed choices.
One way to gauge the complexity of generalising problems is to look at their
features, and this is basically what this article aims to explore and discuss
further. This article sets out with two objectives: (1) to offer teachers a
framework for considering the difficulty level of generalising problems in
terms of task features, and (2) to raise issues for discussion on the possible
influence the task features have on students’ generalisation and reasoning.

Pattern generalising problems

Pattern generalising problems illustrated above are a common feature in
school mathematics in many countries. By and large, such problems can be
classified into two categories: numerical and figural. Numerical generalising
problems list the pattern as a sequence of numbers whereas figural gener-
alising problems set the pattern in a pictorial context. Figures 1 and 2 are
two examples of figural generalising problems, and Figure 3 provides an
example of the numerical type. 

Numerical generalising problems like Figure 3 can sometimes be prob-
lematic due to a lack of further specific assumptions and explicit contexts
that describe how the terms should continue. Without these, the given
terms in the sequence are no longer a sufficient condition for students to
predict the pattern, let alone formulate a rule to represent it! Consequently,
the sequence is open to interpretation. For instance, the sequence in Figure
3 could develop in many ways such as 1, 4, 7, 10, 13, 1, 4, 7, 10, 13, … or
1, 4, 7, 10, 13, 13, 10, 7, 4, 1, 1, 4, 7, 10, 13, … However, we realise that,
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in most cases, many
students are able to make a
tacit assumption of
following a recursive pattern
of adding 3 each time to get
the next term, possibly due
to a didactical contract
(Brousseau, 1997) to which
they are conditioned. On the
other hand, providing a
description of how the
sequence will continue not
only takes away the chal-
lenge of spotting the
pattern, but also makes the
problem a clear giveaway.
Such is a shortcoming of
numerical generalising
problems, of which teachers
ought to be aware. Figural
generalising problems are
not necessarily free of this
shortcoming, however.
Rivera and Becker (2007)
claimed that such problems
can also be interpreted in
other valid ways if the
assumption and context are
not clearly stated. But we
think that these problems
are less ambiguous than
numerical tasks because, at
least, the figures provide
some kind of context about
how the pattern grows, thus
explaining the quantitative
facet of the figural pattern.

The idea behind these
generalising problems is
that students are expected to identify, recognise, extend and articulate the
pattern. These skills play a pivotal role in a successful transition from arith-
metic to algebra. Of crucial importance in this transition are two core
aspects of algebraic thinking: the emphasis on relationships among quan-
tities like the inputs and outputs (Radford, 2008), and the idea of
expressing an explicit rule using letters to represent numerical values of the
outputs (Kaput, 2008). With the potential of helping students develop alge-
braic thinking, it is then not surprising why growth patterns are often taken
as a route to algebra from arithmetic. However, there seems to be a didactic
cut in the transition from arithmetic to algebraic thinking (Filloy & Rojano,
1989). Research has consistently shown that the transition from recog-
nising a pattern to expressing generality is by no means an easy feat. Most
students have no problem recognising a pattern, yet the articulation and
representation of the explicit rule in words or in algebraic notation remains
challenging (English & Warren, 1995).

Ken builds a sequence of shapes with square tiles. He
starts with one tile, and subsequently adds one tile
each to the left, right and top of the preceding
shape.

Can you help Ken find the number of square tiles
needed to build shape N?

Ken surrounds a rectangular flowerbed of dimensions
6 units by 1 unit with a layer of grey square tiles. 

Can you help Ken find a rule for determining the
number of grey square tiles needed to surround a
row of flowerbed of any length?

Figure 1. Inverted-T task.

Figure 2. The flowerbed task.

The first five terms of a sequence are given as
follows:

1,  4,  7,  10,  13,  …

Can you write down a rule for finding the nth term in
this sequence if you were told what n is? Show how
you obtained your answer.

Figure 3. A numerical generalising problem.
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Some recent studies have shed light on the impact certain task features
have on students’ performance in growth patterns, with evidence pointing
mainly to one particular task feature: the way in which the pattern is
displayed. In one of these studies, Lannin, Barker and Townsend (2006)
discovered that students’ selection of strategy was influenced by the visual
cue they saw in the change between consecutive diagrams. A similar finding
was also reported in a study by Becker and Rivera (2006), who pointed out
that two-dimensional diagrams presented in a sequence help students to
visualise the basic core of the pattern that remains invariant and the part
that is constantly growing, thereby allowing them to establish the explicit
rule for the nth term. Contrary to these findings, some students in Warren’s
(2000) study were unable to spatially visualise a sequence of two-dimen-
sional diagrams in a classic matchstick problem involving a row of squares.

In another study by Hoyles and Küchemann (2001) where high-attaining
students were asked to find the number of grey tiles needed to surround a
row of 60 white tiles when given a single diagram and a description of how
it was constructed, 42% of the students correctly answered the question.
What is surprising is that this question does not seem to be difficult, yet,
taking into account the student abilities, the success rate was considered
rather low. It, therefore, appears reasonable to think that the task is not
easy for them. Although the students were allowed to generate their own
sequence of diagrams to help them perceive the underlying structure
inherent in the task, many still appeared to experience difficulties in
handling this task. So, are students’ difficulties attributable to the way the
pattern is shown to them?

Apart from knowing that the way in which students deal with general-
ising problems is due in part to the depiction of pattern in the task, little
else is known about what and how other task features might affect
students’ abilities to express generality. The next section presents the key
features of generalising problems as well as justifications as to why teachers
need to consider these features during task selection.

Features of generalising problems

The task features presented in this section are inferred from a broad range
of generalising problems found in the literature. A striking feature that
distinguishes the three aforementioned problems is what we call the format
of pattern display. In Figure 3, the first few numbers of the pattern are listed
sequentially using numerical symbols whereas the same set of numbers is
disguised as diagrammatic figures in Figure 1, also in a sequential manner.
The format is again different between Figures 1 and 2 in that the latter
presents a single diagram of the flowerbed in contrast to a sequence of
diagrams in the former. This task feature is thus concerned with whether
the pattern is listed as a sequence of numbers, equations or diagrammatic
figures, or simply as a single diagram. Teachers may wish to note that some
tasks may depict the pattern both in diagrams and in numerical symbols.

Another feature that differentiates the three tasks is what we term as the
reference to the generator. In some generalising problems, particularly the
figural type, the independent variable can be connected to a certain compo-
nent of the diagrams. Here, the independent variable will function as a
generator — a term borrowed from Bednarz and Janvier (1996). It enables
students to perceive the structure of the pattern and thereby to derive the
rules. The generator is normally the ordinal number indicating the position
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of the diagram in the pattern. In Figure 1, the number of square tiles in the
vertical arm of each inverted-T corresponds with the shape number: there
are three tiles in the vertical arm of Shape 3, and four tiles in that of Shape
4. When this connection between the generator and the diagram is explicit,
then it is said that the reference to the generator is embedded within the
diagrams. 

Creating an awareness of this relationship is of critical importance to
generalisation. Not only can it help students to understand how the pattern
grows with the generator, it can also draw their attention to the difference
among the components within each diagram. For instance, when the gener-
ator is associated with the number of tiles in the vertical arm, the number
of tiles in each of the two horizontal arms can then be compared with it.
This is where teachers can lead students to notice that each horizontal arm
always has one tile fewer than the vertical arm regardless of the shape
number. Based on this interpretation, students can then be guided to write
down the rule as n + 2(n – 1). 

In the case of Figure 3, the link between the generator and the terms is
rather inconspicuous. For illustration, take the third term of the sequence,
that is, the number 7: the “threeness” of the generator is not manifested
very clearly in the number 7. As a result, the generator-term relationship
appears to be concealed, making it harder for students to recognise the
inherent pattern. When this relationship is not explicit, then the reference
to the generator is said to be external to the diagrams. To summarise, this
task feature looks at whether the link between the independent variable and
the pattern is clearly evident.

Some teachers might think that the
generator in a numerical generalising
problem can never be linked to the terms,
and we hope to dispel this thinking with an
example in Figure 4. This example illus-
trates that a link could be forged between
the line number and the number of consec-
utive odd integers in each equation, as well
as the square number on the right side of
the equation. For instance, the number of
consecutive odd integers in 1 + 3 + 5 + 7 is
4, which is the line number, and this line
number is also the base number of the
square number 16. Clearly, this is a numer-
ical problem with the reference to the
generator embedded within the equation.

We shall continue to introduce three
more task features through two new generalising problems. Both the tasks
in Figures 1 and 5 are known as problem isomorphs. They are technically
identical in the sense that they share the same linear rule conforming to the
type involving one variable. But as the problems show, what distinguishes
the tasks is the choice of visual representation of the given diagrams. In
Figure 1, the diagrams are shown in two dimensions whereas those in
Figure 5 are three-dimensional. With evidence in the literature pointing to
students’ difficulties in conceiving three-dimensional arrays (Battista &
Clements, 1996), teachers ought to realise that the diagrams of cube arrays
in Figure 5 might pose a challenge to students, depending on their spatial
visualisation abilities. Students may end up with a wrong rule if their
failure to understand the arrays impedes the counting of the number of

Study the mathematical statements
below carefully.

Line 1: 1 =  1
Line 2: 1 + 3 =  4
Line 3: 1 + 3 + 5 =  9
Line 4: 1 + 3 + 5 + 7 =  16

Figure 4. Numerical generalising problem
involving identities.
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cubes used to build the
towers.

Figures 5 and 6 differ in
one other task feature, apart
from the visual representa-
tion of diagrams. As
mentioned previously, the
task in Figure 5 involves a
linear function. However,
the function in Figure 6 is
quadratic. In other words,
the distinguishing task
feature is the type of func-
tions involved. Teachers
might wish to take note that
the latter task might be
more complex for students
to deal with because finding
the quadratic rule by the
common recursive method
is not as straightforward as
one expects it to be. When
considering the function
type, teachers ought to look
at the simplified form of the
explicit rule. We like to
stress this point because
students might give a
feasible solution that resem-
bles a function of higher
degree. For instance, the
explicit rule1 for the task in
Figure 5 can be expressed
as: 

number of cubes 
in the Nth tower 
= N2 – (N + 2)(N – 1)2,

which can be easily
mistaken as a cubic func-
tion.

The last task feature to
be discussed herein is the number of independent variables present in the
equation of the function. In Figure 2, the rule for the flowerbed task is a
linear function in one variable:

number of grey tiles = 2l + 6, 
where l is the length of the flowerbed. Imagine if students are then asked to
find the number of 1 unit square tiles needed to surround a flowerbed of
any length and width, instead of just a row of any length. How does the rule
for the modified flowerbed problem compare with the original rule?
Symbolically, the new rule can be expressed as:

number of square units = 2l + 2w + 4, 
where l is the length of the flowerbed and is its width. This rule is a linear
function in two variables. Although both rules share the same function
type, the difference in the number of variables involved can alter the task

Ken builds a sequence of towers with cubes. He
starts with one cube, and subsequently adds one
cube each to the front, side and top of the
preceding tower.

Can you help Ken find a rule for determining the
number of cubes needed to build Tower N? Show
how you obtained your answer.

1. To obtain N2 – (N + 2)(N – 1)2, begin with a (N × N × N) cube. First take away
a (N × (N – 1) × (N – 1)) cuboid, leaving only two perpendicular surfaces of
the original cube. Now taking away a (N – 1)2 cuboid from each of these
surfaces will result in Tower N. So the number of cubes in Tower N is given
by (N × N × N) – (N × (N – 1) × (N – 1)) – 2(N – 1)2 which simplifies to 
N2 – (N + 2)(N – 1)2.

Ken builds a sequence of shapes with tiles.

Can you help Ken find a rule for determining the
number of tiles needed to build shape N. Show how
you obtained your answer.

Figure 5. The tower task.

Figure 6. The expanding crosses task
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difficulty and affect students’ performance. Thus students may find the
modified task elusive, depending on their abilities to represent quantities
with algebraic symbols and to operate on them. It is, therefore, important
for teachers to be aware of the possible difficulties students might experi-
ence when formulating an explicit rule for the modified flowerbed problem.
As is emphasised in the preceding paragraph, we need to consider only the
least possible number of independent variables needed in the explicit rule
given that students may use more than one symbol to represent the same
variable.

In summary, this section draws attention to five key features of general-
ising problems, including justifications for considering them. Table 1 offers
an overview of the task features presented herein.

Features Pattern Generalising Problems

Numerical Figural

Format of
pattern display

• sequence of numbers
• sequence of identities

• sequence of diagrams
• single diagram

Type of function • linear
• non-linear 

(e.g., quadratic)

• linear
• non-linear 

(e.g., quadratic)

Number of
variables
involved

• one
• two or more

• one
• two or more

Reference to
the generator

• external to number
• embedded within

identities

• external to diagram
• embedded within

diagram

Visual
representation
of diagram

• 2D
• 3D

Table 1. Key features of generalising problems.

Concluding remarks

Pattern generalising problems offer a very rich context for exploring rela-
tionships among quantities, expressing generality and representing the
same relationship in different ways. Selecting appropriate tasks for
students to work on in class is by no means a straightforward process, but
there are ways to handle it. To offer support for teachers, the present article
addresses this issue by introducing a framework for considering the tasks’
complexity through an account of task features that might affect the way
students handle pattern generalising problems. We identified and elabo-
rated five task features. Although studies cited above produce evidence of
students’ difficulty in recognising a pattern and representing it symboli-
cally, it is still unclear to what extent task features attribute to this
difficulty. Further research is certainly necessary to look into the role that
task features have on the way students engage in generalising problems.
Some questions that still need to be addressed include the following: Which
task features are instrumental in student success in dealing with general-
ising problems? How do various task features influence students’ use of
strategies? What visual cues do successful students see that unsuccessful
students don’t notice? How do students reason algebraically with various
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task features? What types of thinking processes do students show when
justifying their generalisations for the different task features? The answers
to these questions might hold some important implications for teaching and
curriculum design.

Finally, getting students to do generalising problems correctly is a matter
of utmost importance. What is also equally important is to get them to do
the right generalising problems at the right time in class. This is, in essence,
the message we hope this article has put across and illuminated. We hope
that the framework will enable teachers to know not only which task
features to vary to make the generalising problems more appropriate for
their students’ learning needs, but also which type of tasks is simple and
which is more complicated for students to handle with a view to designing
more effective lessons. Since generalising problems that present diagrams
sequentially help students to recognise the pattern as well as to construct
the correct explicit rule, it seems a good strategy for teachers to use these
kinds of tasks as introductory activities to allow students to figure out the
underlying pattern structure. In contrast, if the pictorial context is found to
complicate students’ perception of the inherent pattern, then teachers need
to provide more guidance to help their students cope with these problems.
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