
Perhaps a business colleague threw out a challenge. The year: around
1200. The place: Pisa. The challenge: Calculate how many pairs of rabbits

will be produced in a year, beginning with a single pair, if in every month each
pair bears a new pair which becomes productive from the second month on.

The question and its solution found its way into the book Liber abaci by
Leonardo of Pisa (known as Fibonacci), completed in 1202. It gives rise to the
Fibonacci sequence.

More recently, a colleague of mine issued the challenge: Prove that the
sum of the squares of any two consecutive terms of the Fibonacci sequence is
a term of the sequence. 

This fact about the sequence would be well known to Fibonacci aficiona-
dos, but given here is a more general context in which the sum of consecutive
squares property is true, and a surprising connection with Pythagorean
triples.

None of the following is at the cutting edge of modern mathematics but
the challenge issued by my colleague was within my “zone of proximal devel-
opment” (Vygotsky, 1978). It led me to investigate with enthusiasm, questions
that I would not have thought of otherwise. 

On the assumption that students are motivated to learn in much the same
way as are mathematics teachers, the not uncommon experience of learning
through investigating a challenging question appears to validate the practice
of encouraging students to work in a similar research oriented way.

Consider the family of sequences defined recursively by
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where r is a real number. 
The Fibonacci sequence is a member of this family, so what is true of {Sr,n}

is automatically true of {Fn} = {S1,n}. 
For any fixed value of r, set , where Sn and Sn+1 are consecutive

terms of the sequence {Sr,n}. We wish to show that bn ∈ {Sr,n}.

We begin by proving the statement:

When k = 1,

If it is true that Sk+1Sp–k + SkSp–(k+1) = Sp for some arbitrary k ∈ {1,2,…,p–2},
then using the definition to replace Sp–k we have

That is, the statement remains true when k is replaced by k + 1. Hence, by
induction, the statement Sk+1Sp–k + SkSp–(k+1) = Sp is true for all k ∈ {1,2,…,p–2}.

In particular, when p = 2n and k = n, we have Sn+1Sn + SnSn–1 = S2n.

From this we obtain 

(1)

and (2)

Adding (1) and (2),

as required.

Another well-known property of the Fibonacci sequence is that consecu-
tive terms are coprime. This is also true in the more general sequence {Sr,n}. 

Consider a pair of consecutive terms Sk and Sk+1 and assume that there is
an integer a > 1 such that a | Sk and a | Sk+1. Then a also divides Sk+1 – rSk = Sk–1.
Continuing in this way we must arrive at the conclusion that a divides S1 = 1
which is obviously false. So, the assumption that there exists a divisor of both
Sk and Sk+1 must also be false.
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The Pythagoras connection

In an earlier article (Turner, 2006) I showed how the problem of finding
isosceles right-angled triangles with integer sides such that the perpendicular
sides differ by one, gives rise to the sequence {1, 2, 5, 12, 29, 70, …} with
general term an = 2an–1 + an–2. This is a member of the family of sequences
described above, namely {S2,n}.

Recall that Pythagorean triples are formed by choosing positive integers m
and n, m > n, that are coprime with opposite parity, for the triple 
(2mn, m2 − n2, m2 + n2). If m and n are consecutive terms from the above
sequence, then 2mn and m2 – n2 differ by 1. For example:

The suspicion arises that the other members of the family of sequences
{Sr,n} might be related to sequences of Pythagorean triples in a similar way.

Suppose integers a and b are the shorter sides of a right-angled triangle.
The sides are to be related so that qa ± 1 = b where q is a positive integer. If we
choose to make a an even number then b will be odd for all values of q. Hence,
we put a = 2mn and b = m2 – n2 with the same restrictions on m and n as before,
and look for integer solutions for 2qmn ± 1 = m2 – n2.

Treating this as a quadratic in m, we find the general solutions

Observe that n = 1, m = 2q is an integer solution to

and that n = 2q, m = 4q2 + 1 is an integer solution to

In fact, whenever (n0, m0) is an integer solution to , we
can put 
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m n m2 − n2 2mn m2 + n2

2 1 3 4 5

5 2 21 20 29

12 5 119 120 169

29 12 697 696 985

70 29 4059 4060 5741

169 70 23661 23660 33461



which, after a great deal of simplification, reduces to 

So, one integer solution leads to another.

Similarly, if (n0, m0) is an integer solution to , we can put   

and by the same process arrive at the conclusion m1 = 2qm0 + n0, again an
integer.

So, for example, in a right-angled triangle if we want side b to differ by 1
from 5 times side a, we would take consecutive terms from the sequence {Sr,n}
with r = 2 × 5 as follows:

{S10,n}{1, 10, 101, 1020, 10301, …, 10Sn–1 + 10Sn–2, …}

Returning to the relation qa ± 1 = b above, which says that b will be one
away from an integer multiple of a, we may wish instead to explore the possi-
bility of a family of right-angled triangles in which side b is close to a rational
multiple of a. The reasoning above works equally well if q is rational, provided
we are willing to accept triangles with rational rather than integer sides.

So, for example, in a right-angled triangle if we want side b to differ by 1
from 2

3 of side a, we would take consecutive terms from the sequence
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m n m2 – n2 2mn 5 × 2mn

10 1 99 20 100

101 10 10101 2020 10100

1020 101 1030199 206040 1030200

10301 1020 105070201 21014040 105070200

104030 10301 10716130299 2143226060 10716130300

m n m2 – n2 2mn 2
3 × 2mn

4/3 1 7/9 8/3 16/9

25/9 4/3 481/81 200/27 400/81

136/27 25/9 12871/729 6800/243 13600/729

769/81 136/27 64.76101204… 95.64151806… 63.76101204…



In summary, if q is the ratio of side lengths to be approximated, we can use
successive pairs of terms from the sequence {Sr,n} where r = 2q, to substitute for
m and n in the triple (2mn, m2 − n2, m2 + n2). 

Finally, a challenge: The sums of squares do not in general
satisfy the statement bn+1 = b1 + b2 + … + bn–1 + 2bn. Prove that this relation is
true for the Fibonacci sequence. Is there a comparable statement that is true
for other members of the family {Sr,n}?
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