
Senior secondary students cover numerical integration techniques in their
mathematics courses. In particular, students would be familiar with the

midpoint rule, the elementary trapezoidal rule and Simpson’s rule. The following
paper derives these techniques by methods which secondary students may not
be familiar with and an approach that undergraduate students should be
familiar with. Secondary students will also find interesting the two-point Gauss
rule, which is an extension of the trapezoidal rule. There are many applica-
tions of integral calculus and developing a deeper understanding of some of
the numerical methods will increase understanding of the techniques. The
methods chosen in this paper have been investigated as secondary students
will be familiar with their applications. However, secondary text books and
teachers may not use the techniques covered in this paper, and this alternate
approach may increase the understanding of the importance and applica-
tions of the techniques, as well as increase an appreciation of the beauty of
mathematics in general. The paper also provides a detailed summary of the
techniques that will be beneficial for undergraduate students.

Numerical integration enables approximations to be found for  

where the integral for f(x) cannot be written in terms of elementary func-
tions. A use of the definite integral is to determine the area between a curve
and the horizontal axis (see Figure 1).

In this article the midpoint rule, the elementary trapezoidal rule, the two-
point Gauss rule and Simpson’s elementary rule will be developed.

The general form of a numerical integration rule — also known as the
quadrature rule — is

In this form, N is a natural number, wi are called the weights or coefficients and
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the values of f(x) are called the ordinates. The quadrature rule is not exact for
every f(x). However, the rule can be exact for some simple functions such as
1, x, x 2. Say we wish to integrate 

by choosing an appropriate w1 and f(x1) and N = 1, i.e.:

If we consider f(x) = 1, then f(x1) = 1.

Now,

So, w1.f(x1) = w1.1 = w1

By equating and w1.f(x1), then w1 = 1.

Say we now consider f(x) = x, then f(x1) = x1.

Now,

So, w1.f(x1) = w1.x1.

By equating and w1.f(x1), then: w1.x1 = . But since w1 = 1, then x1 = .

Therefore which is the midpoint rule on [0, 1].

Now, consider the midpoint rule on [a, b].

Say,
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Figure 1



If f(x) = 1, then .

Also, w1.f(x1) = w1.1 = w1

Therefore, w1 = b – a.

Consider f(x) = x, then 

Now, w1.f(x1) = w1.x1; but, w1 = b – a, so, 

Therefore, 

which is the midpoint rule on [a,b]. Note that the midpoint rule will integrate
linear functions exactly. 

In using the endpoints of the interval when using the simple quadrature rule,

we can commence with x1 = 0, x2 = 1 where N = 2; i.e.:

As there are two unknowns, w1 and w2 are chosen such that 1 and x can be
exactly integrated.

Now, when f(x) = 1 then

That is, w1 f(0) + w2 f(1) = w1.1 + w2.1 = w1.w2

as f(0) = f(1)= 1.
So, w1 = w2 = 1.

Letting f(x) = x

Then, w1.f(0) + w2.f(1) = w1.0 + w2.1 = w2

as f(0) = 0 and f(1)= 1.

Therefore, w2 = , which leads to w1 = .
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Thus

Now, consider the interval [a,b] where x1 = a and x2 = b. 

When f(x) = 1,

Also, w1f(a) + w2f(b) = w1 + w2

Therefore, w1 + w2 = b – a.

Now, when f(x) = x,

Also, w1f(a) + w2f(b) = w1a + w2b.

Now, w1 + w2 = b – a …(1)

…(2)

Multiply Equation (1) by a and subtract from Equation (2):

Therefore, the general form of the elementary trapezoidal rule on [a,b] is:

This Rule will integrate linear functions exactly.

The two-point Gauss rule is an extension of the trapezoidal rule. N = 2 is
now considered. This quadrature rule is of the form:

and unlike the trapezoidal rule in which x1 and x2 are fixed at the ends of the
interval, x1 and x2 are not predetermined.

As there are four unknowns, w1, w2, x1 and x2 are chosen such that 1, x, x2

and x3 can be exactly integrated.

When f(x) = 1:
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When f(x) = x:

When f(x) = x2:

When f(x) = x3:

In solving these four equations in four unknowns:

This gives the two-point Gauss rule:

The technique to solve the above system of equations is difficult and
beyond secondary school methods. An appropriate method can be found in
Kelly (1967, p. 57).

When considering the general integral:

the Two-Point Gauss Rule can be derived similarly by considering the follow-
ing integrals:

For f(x) = 1:
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The solutions to the simultaneous equations are:

Hence, 

The technique to solve the above systems of equations is difficult, and an
appropriate method can be found in Kelly (1967, p. 57). 

Simpson’s elementary rule will now be considered, with N = 3. Say on the
interval [0,1] we choose

for

Then

Values need to be chosen for w1, w2 and w3 such that 1, x and x2 can be exactly
integrated.

For f(x) = 1:

For f(x) = x:
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For f(x) = x2:

Solving the three simultaneous equations:

Hence, the elementary Simpson’s rule is given by:

Simpson’s rule integrates quadratics as well as cubics exactly.

If the interval [a,b] is taken it can be shown that the elementary Simpson’s
rule is given by:

A parabola is taken that passes through the following points of the func-
tion in the interval [a,b]: (a,f(a)), (b,f(b)) and (a+b,f(a+b)). The area under
the parabola then estimates the area under the function. Following is a proof.

Let F(x) = Ax2 + Bx + C be the equation of a parabola, then:

To improve the accuracy of applications of the discussed rules, the number
of sample points can be increased by deriving more complicated rules or by
dividing the range into many sub-intervals.
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As can be seen, the numerical integration methods are able to approxi-
mate a value for a definite integral using the values of the function at points
within the interval of the integrand. 
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