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Introduction

he number ¢is one of those fascinating numbers whose properties are of
Tspecial interest to mathematicians. For example, the equation ¢™ + 1 = 0
is said to be one of the most beautiful mathematical equations, in that it
connects five of the most fundamental and interesting numerical constants: e,
i, 7, 1, and 0 (Devlin, 1997).

Recently Vahlas and Boukas (2007) provided a simple geometric construc-
tion of e. Certainly our approach is more naive than theirs; however, the ideas
here are highly accessible to a diverse range of learners. This approach can
be adapted to suit students with or without calculus knowledge.

The first two irrational numbers that we meet are, arguably, \/5 and m. For
both of these constants, students are often given a way to visualise the size of
them: as the length of the diagonal of a unit square; and, as the length of the
arc of a semicircle of radius 1, respectively. For the irrational number ¢, no
such measure is usually given.

Our aim is to provide a method of introducing a visual concept of the
number e. These ideas are suitable for secondary school and undergraduate
tertiary students. The main concept involves areas under curves. Indeed, the
number ¢is sometimes introduced as the base of the natural logarithm func-
tion. We suggest that if one follows the approach given here: to introduce e
first; then the subsequent introduction of the natural logarithm function
[f(x) = Inx or f(x) = log,] is very natural.

The setting

Our goal, in each case, is to find the value a at which the area “under the
curve” for the graph of the function y = f(x) from x=1to a=1, is 1. The
preliminary examples are included to provide a conceptual setting. The cases
listed here are designed in a “built up” way in order to help facilitate and
develop the kind of situated cognitive experience that Brown, Collins and

(L] £2 |eudnor soiewayiel) Joiuas ueledisny

W
~N



Plant

Australian Senior Mathematics Journal 23 (1)

W
0]

Duguid (1989) argue is evidently successful for learning mathematics.

Case 1: f(x) =1

The graph of y=1 is shown in Figure 1. The area under the curve from x =1
to x = a where a >1 is determined by the area of a rectangle of height 1 and
length (a — 1), as illustrated in the figure. It is easy to see that if we require
the area A under the curve to measure 1, then the value of a in this case must
be 2; that is, putting 1 x (a— 1) =1 yields a = 2.
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Figure 1. The area under the curvey=1, fromx=1tox=a, a> 1.

Case 2: f(x) = x

In the next example, we let y = x. The appropriate graph is given in Figure 2.
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Figure 2. The area under the curve y = x, from x=1 to x = a.

In this case we are still readily able to calculate the area under the curve
without needing calculus. The area can be broken into two simple shapes: a
rectangle of length (a— 1) and height 1, and a right-angled triangle of height
and base both (a-1). So the total area A is given by

A:(a—1)+%(a—1)2



This simplifies to give

Now, since we want to find the value of a for which A = 1, we solve

1= 1

1o 1
2 2
and find that a = 3.

Case 3: f(x) = x°

Our third example involves the function f{x) = *. Whilst it is easy to graph the

function, finding the area under it without using calculus is not so trivial.
Using integration, it follows easily that
“ s |* 3
A= JXQdX= X :a__l
| 3 3 3
1
Again, we want the value of a for which A = 1, and so we solve
1 1

l==a’—=

3 3

for a and get the value

2
a=4/1=23

For students without calculus, this case (with f(x) = x*) can be omitted.

The interesting case
In the case with y= 1 things become more revealing.
x

Firstly, since the exponent of xis —1, this function is the exception to the basic
“student rules” of calculus for integrating polynomials. Secondly, the value we
find for a turns out to be an interesting one (see Figure 3).

Remark

1
The area under the curve y=— from x=1 to x= a measures A= 1 when a=e.
x
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Figure 3. Sketch of the curve y = %,
Jor which the area under the curve from x=1 to x = a measures A =1 when a = e.

We include a “proof” of our remark here to provide a complete account
only. The proof is entirely straightforward only if Inx is defined. The point of
this remark is that we could use this curve, following the preceding motiva-
tional setting, to definitively introduce the number ¢, and so in that case a
proof for students would generally be omitted.

Proof

To find the area under the curve

y=-

X

from x =1 to x = a, we integrate from x =1 to x = a. Thus
a
1
A= _[ —dx
X

=[1nx]:
=Ina—-Inl
=Ina

Since we want A to equal 1, we have Ina = 1, yielding a = ¢, as required.
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Figure 4. The area under the curve y = %, from x=1 to x= a is called In a.



Further remarks

Remark 1

We make the brief remark that the initial chain of examples (y = x; y = x! ;
y=x%) may highlight to students the need for developing techniques for
finding the area under a curve: a motivation for integration.

Remark 2

If students have been introduced to the number ¢ in the above mentioned
way, then it becomes very easy to introduce the natural logarithm via the usual

approach as a measure of the area under the curve

1
y=-—

x

Further to this, some students may be interested in a visual idea of the
measure of ¢° is, or perhaps even the measure of ¢*. Indeed the number e
raised to any power 7 is found along the x-axis at the value x = a which yields
an area, under the curve

y=-—

x
from x=1 to x = a, of the same measure as the power 7. As an example, for ¢
we need the area under the curve from x = 1 to x = a to equal 2. In other
words, the area under the curve will equal 2 when we evaluate from x=1 to x
= ¢°. In this way we are able to introduce the neat idea of one irrational
number raised to the power of another irrational number. Indeed, Figure 5
illustrates the measure of ¢'* .

y
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Figure 5. The area under the curve y = %, Jrom x=1 tox = & isv2,

Remark 3

It is important in the teaching of mathematics to guide our students toward
abstraction and generalisation when possible. This better prepares them to
apply their skills to a broader variety of real-world situations (Laurillard,
2002). To this end, we have the opportunity to develop a proposition which
describes the pattern unfolding in the previous cases. This inclusion is
intended only for students with calculus. Before proceeding to the proposi-
tion, it will be useful to gain more evidence of a pattern by first introducing a
further case, f(x) = x’. The details of this case are left to the reader.
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Proposition
For any monomial of the form f{x) = x" (where n is a natural number) the

value for a which yields an area under the curve of measure 1 from x=1 to
x= ais given by

a= ("+lw)l(n+2)
Proof

The area A under the curve f(x) = x" from x =1 to x = ais determined by
@ (1) [ (n4)

Azjx"dxzx N =4 . 11

" (n+ ) ] (n+ ) (n+ )

Since A =1, we have
(n+l)
a

1

() o)

Multiplying the common denominator through and isolating a yields
a"™" = n + 2, from which the result immediately follows.
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