
Introduction

The number e is one of those fascinating numbers whose properties are of
special interest to mathematicians. For example, the equation eiπ + 1 = 0

is said to be one of the most beautiful mathematical equations, in that it
connects five of the most fundamental and interesting numerical constants: e,
i, π, 1, and 0 (Devlin, 1997). 

Recently Vahlas and Boukas (2007) provided a simple geometric construc-
tion of e. Certainly our approach is more naive than theirs; however, the ideas
here are highly accessible to a diverse range of learners. This approach can
be adapted to suit students with or without calculus knowledge.

The first two irrational numbers that we meet are, arguably, and π. For
both of these constants, students are often given a way to visualise the size of
them: as the length of the diagonal of a unit square; and, as the length of the
arc of a semicircle of radius 1, respectively. For the irrational number e, no
such measure is usually given.

Our aim is to provide a method of introducing a visual concept of the
number e. These ideas are suitable for secondary school and undergraduate
tertiary students. The main concept involves areas under curves. Indeed, the
number e is sometimes introduced as the base of the natural logarithm func-
tion. We suggest that if one follows the approach given here: to introduce e
first; then the subsequent introduction of the natural logarithm function
[f(x) = lnx or f(x) = logex] is very natural.

The setting

Our goal, in each case, is to find the value a at which the area “under the
curve” for the graph of the function y = f(x) from x = 1 to a = 1, is 1. The
preliminary examples are included to provide a conceptual setting. The cases
listed here are designed in a “built up” way in order to help facilitate and
develop the kind of situated cognitive experience that Brown, Collins and
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Duguid (1989) argue is evidently successful for learning mathematics. 

Case 1: f(x) =1
The graph of y = 1 is shown in Figure 1. The area under the curve from x = 1
to x = a where a >1 is determined by the area of a rectangle of height 1 and
length (a – 1), as illustrated in the figure. It is easy to see that if we require
the area A under the curve to measure 1, then the value of a in this case must
be 2; that is, putting 1 × (a – 1) = 1 yields a = 2. 

Figure 1. The area under the curve y = 1, from x = 1 to x = a, a > 1.

Case 2: f(x) = x
In the next example, we let y = x. The appropriate graph is given in Figure 2.

Figure 2. The area under the curve y = x, from x = 1 to x = a.

In this case we are still readily able to calculate the area under the curve
without needing calculus. The area can be broken into two simple shapes: a
rectangle of length (a – 1) and height 1, and a right-angled triangle of height
and base both (a – 1). So the total area A is given by 
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This simplifies to give 

Of course integrating f(x) = x also yields the same result:

Now, since we want to find the value of a for which A = 1, we solve

and find that a = .

Case 3: f(x) = x2

Our third example involves the function f(x) = x2. Whilst it is easy to graph the
function, finding the area under it without using calculus is not so trivial.
Using integration, it follows easily that

Again, we want the value of a for which A = 1, and so we solve  

for a and get the value

For students without calculus, this case (with f(x) = x2) can be omitted.

The interesting case

In the case with things become more revealing. 

Firstly, since the exponent of x is –1, this function is the exception to the basic
“student rules” of calculus for integrating polynomials. Secondly, the value we
find for a turns out to be an interesting one (see Figure 3).

Remark 
The area under the curve from x = 1 to x = a measures A = 1 when a = e.
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Figure 3. Sketch of the curve , 
for which the area under the curve from x = 1 to x = a measures A = 1 when a = e.

We include a “proof” of our remark here to provide a complete account
only. The proof is entirely straightforward only if lnx is defined. The point of
this remark is that we could use this curve, following the preceding motiva-
tional setting, to definitively introduce the number e, and so in that case a
proof for students would generally be omitted.

Proof
To find the area under the curve 

from x = 1 to x = a, we integrate from x = 1 to x = a. Thus

Since we want A to equal 1, we have lna = 1, yielding a = e, as required.

Figure 4. The area under the curve , from x = 1 to x = a is called lna.
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Further remarks

Remark 1
We make the brief remark that the initial chain of examples (y = x 0; y = x 1;
y = x 2) may highlight to students the need for developing techniques for
finding the area under a curve: a motivation for integration.

Remark 2
If students have been introduced to the number e in the above mentioned
way, then it becomes very easy to introduce the natural logarithm via the usual
approach as a measure of the area under the curve 

Further to this, some students may be interested in a visual idea of the
measure of e 2 is, or perhaps even the measure of eπ. Indeed the number e
raised to any power r is found along the x-axis at the value x = a which yields
an area, under the curve 

from x = 1 to x = a, of the same measure as the power r. As an example, for e 2

we need the area under the curve from x = 1 to x = a to equal 2. In other
words, the area under the curve will equal 2 when we evaluate from x = 1 to x
= e 2. In this way we are able to introduce the neat idea of one irrational
number raised to the power of another irrational number. Indeed, Figure 5
illustrates the measure of e√2 .

Figure 5. The area under the curve , from x = 1 to x = e√2 is √2.

Remark 3
It is important in the teaching of mathematics to guide our students toward
abstraction and generalisation when possible. This better prepares them to
apply their skills to a broader variety of real-world situations (Laurillard,
2002). To this end, we have the opportunity to develop a proposition which
describes the pattern unfolding in the previous cases. This inclusion is
intended only for students with calculus. Before proceeding to the proposi-
tion, it will be useful to gain more evidence of a pattern by first introducing a
further case, f(x) = x3. The details of this case are left to the reader. 
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Proposition
For any monomial of the form f(x) = xn (where n is a natural number) the
value for a which yields an area under the curve of measure 1 from x = 1 to
x = a is given by

Proof
The area A under the curve f(x) = xn from x = 1 to x = a is determined by

Since A = 1, we have

Multiplying the common denominator through and isolating a yields 
a(n+1) = n + 2, from which the result immediately follows.
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