
Acalculus student is likely to think that the graphs of the exponential and
logarithmic functions do not intersect. To a large extent, that is because

calculus text books (e.g., Larson, Hostetler, & Edwards, 1998) usually show
the graph of y = ex (which lies above the line y = x) and the graph of y = lnx
(which lies below the line y = x) thus giving the impression that, regardless of
the base, exponential and logarithmic curves do not meet. For the general
exponential and logarithmic functions y = ax and y = logax, where a ∈ (0,1) ∪
(1,+∞) that is not true (see Couch, 2002) as can be easily demonstrated by
having the two functions plotted on the same set of axes for various values of
the base a using Mathematica, Matlab, Maple, or any other computer algebra
package.

Classroom presentation outline

The study of the number of intersection points of y = ax and y = logax can be
an interesting topic to present in a single-variable calculus class. Our presen-
tation involves the basic algebra and the elementary calculus of the
exponential and logarithmic functions. The proofs are given either in a
“forward” manner or by contradiction. The presentation can be broken down
into parts as follows: 
1. Explain why intersection points (if any) of y = ax and y = logax lie on the

line y = x. That can be done either by working directly with the expo-
nential and logarithmic functions or by using the fact that they are
inverse functions.

2. Study the monotonicity and concavity of the functions y = ax and 
y = logax.

3. Show that the x-axis is a horizontal asymptote of the graph of y = ax and
the y-axis is a vertical asymptote of the graph of y = logax. 

4. By the continuity of y = ax and y = logax, conclude that their graphs can
meet at zero, one, or two points for a > 1 while they will always meet at
exactly one point for 0 < a < 1 (see Figure 1). In particular, in proposi-
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tion 2 we give a mathematical proof of the fact that there exists a base
a > 1 for which the functions y = ax and y = logax have at least one
common point (x0,y0) with x0 > 0.

5. For a > 1 provide a geometric description by noticing that a point (x0,y0)
of intersection of the graphs of y = ax and y = logax is a point of inter-
section of the graph of the natural logarithmic function y = lnx and the
straight line y = (lna)x (see Figure 2). In proposition 3 we provide a
mathematical proof of the fact that, for a > 1 arbitrarily close to 1, the
line y = (lna)x intersects the graph of y = lnx at some point (x0,y0) with
x0 > e.

Mathematical proofs

In this section we present a detailed discussion and proofs of all parts of
Section 2.

Proposition 1
(i) If (x0,y0) is a point of intersection of the curves y = ax and y = x then

(x0,y0) is also a point of intersection of y = logax and y = x. 
(ii) If (x0,y0) is a point of intersection of the curves y = logax and y = x then

(x0,y0) is also a point of intersection of y = ax and y = x. 
(iii) If (x0,y0) is a point of intersection of the curves y = ax and y = logax then

x0 = y0, i.e., (x0,y0) lies on the line y = x.

Proof
(i) Since y0 = ax0 and y0 = x0 it follows that x0 = ay0 and so y0 = logax0. 
(ii) Since y0 = logax0 and y0 = x0 it follows that x0 = logay0 and so y0 = ax0. 
(iii) Since (ax)' = (lna)ax and (ax)" = (lna)2ax it follows that the function

y = ax is increasing and concave up for a > 1 and decreasing and concave
up for 0 < a < 1. Moreover, since limx→–∞ax = 0 for a > 1 and limx→+∞ax for
0 < a < 1, the x-axis is a horizontal asymptote of the graph of y = ax.
Similarly, since (logax)' = 1/(xlna) and (logax)" = –1/(x2lna), it follows
that the function y = logax is increasing and concave down for a > 1 and
decreasing and concave up for 0 < a < 1. Since limx→0+ logax = –∞ for
a > 1 and limx→0+ logax = +∞ 0 < a < 1, the y-axis is a vertical asymptote
of the graph of y = ax. Thus (see Figure 1), by the continuity of y = ax

and y = logax, their graphs can meet at zero, one, or two points for a > 1
while they will always meet at one point for 0 < a < 1. If (x0,y0) is a point
of intersection of y = ax and y = logax that is not on the line y = x then,
since y = ax and y = logax are inverse functions, (x0,y0) is also a point of
intersection of y = ax and y = logax which lies on the opposite side of the
line y = ax with respect to (x0,y0). By the continuity of y = ax and y = logax

and the symmetry of their graphs with respect to the line y = x, there
must be a third point of intersection of the graphs of y = ax and y = logax

on the line y = x. But this is a contradiction to the fact that the
maximum number of points of intersection is two. Thus x0 = y0.
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Figure 1

Figure 2



As discussed in the proof of Proposition 1, the graphs of y = ax and y = logax
will always meet at exactly one point if 0 < a < 1. The next proposition shows
that the base a > 1 can always be chosen so that the graphs of y = ax and 
y = logax will meet at some point.

Proposition 2
There exists a > 1 for which ax0 = logax0 for at least one x0 > 0.

Proof
ax = logax implies ex lna = lnx/lna and so (lna)ex lna = lnx. If, for all a > 1, there
is no x0 > 0 for which (lna)ex lna = lnx0, then (lna)ex lna > lnx for all a > 1 and
x > 0 (thus for x > 1 also). But then, taking the limit as a → 1+, we obtain
0 ≥ lnx which is not true for x > 1. 

Proposition 3
Let a > 1 be arbitrarily close to 1. Then the line y = (lna)x intersects the graph
of y = lnx at some point (x0,y0) with x0 > e.

Proof
Suppose that this is not true. Then, for all x > e, the slope of the tangent to
the graph of y1 = lnx at (x,y1) is bigger or equal to the slope of y2 = (lna)x at
(x,y2). Thus 1/x ≥ ln a for all x > e. But then, taking the limit as x → +∞, we
obtain 0 ≥ lna which is a contradiction to a > 1.

Geometric description
Let (x0,y0) be a point of intersection of y = ax and y = logax. By Proposition 1,
(x0,y0) lies on the line y = x. Thus ax0 = x0 ⇒ e(lna)x0 = x0 ⇒ (lna)x0 = lnx0.
Therefore (x0,y0) is a point of intersection of the graph of the natural loga-
rithmic function y = lnx and the straight line y = (lna)x. These two curves are
tangent at the point (x0,y0) where their slopes are equal, i.e., where lna = 1/x0.
This is true for x0 = e and a = e1/e. If lna > 1/e the two graphs do not meet. If
0 < lna < 1/e, in view of Proposition 3, they meet at two points. If lna < 0 then
they meet at exactly one point. The situation is illustrated in Figure 2.
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