Intersection of the exponential and logarithmic curves

Andreas Boukas and Theodoros Valahas

American College of Greece, Athens, Greece <andreasboukas@acgmail.gr> <tmvalahas@acgmail.gr>

A calculus student is likely to think that the graphs of the exponential and logarithmic functions do not intersect. To a large extent, that is because calculus text books (e.g., Larson, Hostetler, & Edwards, 1998) usually show the graph of $y = e^x$ (which lies above the line y = x) and the graph of $y = \ln x$ (which lies below the line y = x) thus giving the impression that, regardless of the base, exponential and logarithmic curves do not meet. For the general exponential and logarithmic functions $y = a^x$ and $y = \log_a x$, where $a \in (0,1) \cup (1,+\infty)$ that is not true (see Couch, 2002) as can be easily demonstrated by having the two functions plotted on the same set of axes for various values of the base *a* using Mathematica, Matlab, Maple, or any other computer algebra package.

Classroom presentation outline

The study of the number of intersection points of $y = a^x$ and $y = \log_a x$ can be an interesting topic to present in a single-variable calculus class. Our presentation involves the basic algebra and the elementary calculus of the exponential and logarithmic functions. The proofs are given either in a "forward" manner or by contradiction. The presentation can be broken down into parts as follows:

- 1. Explain why intersection points (if any) of $y = a^x$ and $y = \log_a x$ lie on the line y = x. That can be done either by working directly with the exponential and logarithmic functions or by using the fact that they are inverse functions.
- 2. Study the monotonicity and concavity of the functions $y = a^x$ and $y = \log_a x$.
- 3. Show that the *x*-axis is a horizontal asymptote of the graph of $y = a^x$ and the *y*-axis is a vertical asymptote of the graph of $y = \log_a x$.
- 4. By the continuity of $y = a^x$ and $y = \log_a x$, conclude that their graphs can meet at zero, one, or two points for a > 1 while they will always meet at exactly one point for 0 < a < 1 (see Figure 1). In particular, in proposi-

tion 2 we give a mathematical proof of the fact that there exists a base a > 1 for which the functions $y = a^x$ and $y = \log_a x$ have at least one common point (x_0, y_0) with $x_0 > 0$.

5. For a > 1 provide a geometric description by noticing that a point (x_0, y_0) of intersection of the graphs of $y = a^x$ and $y = \log_a x$ is a point of intersection of the graph of the natural logarithmic function $y = \ln x$ and the straight line $y = (\ln a)x$ (see Figure 2). In proposition 3 we provide a mathematical proof of the fact that, for a > 1 arbitrarily close to 1, the line $y = (\ln a)x$ intersects the graph of $y = \ln x$ at some point (x_0, y_0) with $x_0 > e$.

Mathematical proofs

In this section we present a detailed discussion and proofs of all parts of Section 2.

Proposition 1

- (i) If (x_0, y_0) is a point of intersection of the curves $y = a^x$ and y = x then (x_0, y_0) is also a point of intersection of $y = \log_a x$ and y = x.
- (ii) If (x_0, y_0) is a point of intersection of the curves $y = \log_a x$ and y = x then (x_0, y_0) is also a point of intersection of $y = a^x$ and y = x.
- (iii) If (x_0, y_0) is a point of intersection of the curves $y = a^x$ and $y = \log_a x$ then $x_0 = y_0$, i.e., (x_0, y_0) lies on the line y = x.

Proof

- (i) Since $y_0 = a^{x_0}$ and $y_0 = x_0$ it follows that $x_0 = a^{y_0}$ and so $y_0 = \log_a x_0$.
- (ii) Since $y_0 = \log_a x_0$ and $y_0 = x_0$ it follows that $x_0 = \log_a y_0$ and so $y_0 = a^{x_0}$.
- Since $(a^x)' = (\ln a)a^x$ and $(a^x)'' = (\ln a)^2a^x$ it follows that the function (iii) $y = a^x$ is increasing and concave up for a > 1 and decreasing and concave up for 0 < a < 1. Moreover, since $\lim_{x \to -\infty} a^x = 0$ for a > 1 and $\lim_{x \to +\infty} a^x$ for 0 < a < 1, the x-axis is a horizontal asymptote of the graph of $y = a^x$. Similarly, since $(\log_a x)' = 1/(x \ln a)$ and $(\log_a x)'' = -1/(x^2 \ln a)$, it follows that the function $y = \log a_x$ is increasing and concave down for a > 1 and decreasing and concave up for 0 < a < 1. Since $\lim_{x\to 0^+} \log_a x = -\infty$ for a > 1 and $\lim_{x\to 0^+} \log_a x = +\infty$ 0 < a < 1, the *y*-axis is a vertical asymptote of the graph of $y = a^x$. Thus (see Figure 1), by the continuity of $y = a^x$ and $y = \log_a x$, their graphs can meet at zero, one, or two points for a > 1while they will always meet at one point for 0 < a < 1. If (x_0, y_0) is a point of intersection of $y = a^x$ and $y = \log_a x$ that is not on the line y = x then, since $y = a^x$ and $y = \log_a x$ are inverse functions, (x_0, y_0) is also a point of intersection of $y = a^x$ and $y = \log_a x$ which lies on the opposite side of the line $y = a^x$ with respect to (x_0, y_0) . By the continuity of $y = a^x$ and $y = \log a_x$ and the symmetry of their graphs with respect to the line y = x, there must be a third point of intersection of the graphs of $y = a^x$ and $y = \log a_x$ on the line y = x. But this is a contradiction to the fact that the maximum number of points of intersection is two. Thus $x_0 = y_0$.

Figure 2

As discussed in the proof of Proposition 1, the graphs of $y = a^x$ and $y = \log_a x$ will always meet at exactly one point if 0 < a < 1. The next proposition shows that the base a > 1 can always be chosen so that the graphs of $y = a^x$ and $y = \log_a x$ will meet at some point.

Proposition 2

There exists a > 1 for which $a^{x_0} = \log_a x_0$ for at least one $x_0 > 0$.

Proof

 $a^{x} = \log_{a} x$ implies $e^{x \ln a} = \ln x / \ln a$ and so $(\ln a) e^{x \ln a} = \ln x$. If, for all a > 1, there is no $x_{0} > 0$ for which $(\ln a) e^{x \ln a} = \ln x_{0}$, then $(\ln a) e^{x \ln a} > \ln x$ for all a > 1 and x > 0 (thus for x > 1 also). But then, taking the limit as $a \rightarrow 1^{+}$, we obtain $0 \ge \ln x$ which is not true for x > 1.

Proposition 3

Let a > 1 be arbitrarily close to 1. Then the line $y = (\ln a)x$ intersects the graph of $y = \ln x$ at some point (x_0, y_0) with $x_0 > e$.

Proof

Suppose that this is not true. Then, for all x > e, the slope of the tangent to the graph of $y_1 = \ln x$ at (x,y_1) is bigger or equal to the slope of $y_2 = (\ln a)x$ at (x,y_2) . Thus $1/x \ge \ln a$ for all x > e. But then, taking the limit as $x \to +\infty$, we obtain $0 \ge \ln a$ which is a contradiction to a > 1.

Geometric description

Let (x_0, y_0) be a point of intersection of $y = a^x$ and $y = \log_a x$. By Proposition 1, (x_0, y_0) lies on the line y = x. Thus $a^{x_0} = x_0 \Rightarrow e^{(\ln a)x_0} = x_0 \Rightarrow (\ln a)x_0 = \ln x_0$. Therefore (x_0, y_0) is a point of intersection of the graph of the natural logarithmic function $y = \ln x$ and the straight line $y = (\ln a)x$. These two curves are tangent at the point (x_0, y_0) where their slopes are equal, i.e., where $\ln a = 1/x_0$. This is true for $x_0 = e$ and $a = e^{1/e}$. If $\ln a > 1/e$ the two graphs do not meet. If $0 < \ln a < 1/e$, in view of Proposition 3, they meet at two points. If $\ln a < 0$ then they meet at exactly one point. The situation is illustrated in Figure 2.

References

Couch, E. (2002). An overlooked calculus question. *The College Mathematics Journal*, *33*(5), 399–400.

Larson, R., Hostetler, R. P. & Edwards, B. (1998). *Calculus with analytic geometry (6th ed)*. Boston: Houghton Mifflin.