
This paper discusses some common iterations of complex functions. The
presentation is such that similar processes can easily be implemented

and understood by undergraduate students. The aim is to illustrate some of
the beauty of complex dynamics in an informal setting, while providing a
couple of results that are not otherwise readily available in the literature.

Basic ideas in complex variables 

Definition: A complex number is any number of the form z = x + iy where x and y
are real numbers, and the imaginary number i = . 

The historically minded reader may be interested to note that this represen-
tation on the plane was simultaneously developed by Wengel, Gauss and
Argand (Needham, 1997) around the end of the 18th century. Indeed,
complex numbers had been viewed with skepticism within the scientific
community before the geometric interpretation was displayed. This was
despite work by Cardano (Markus, 1983) and Bombelli (see 
www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Bombelli.html) in
the late 16th century. Bombelli’s work on the solution of cubic equations rein-
forced the practical value of complex numbers, which previously had only
been seen as solutions of quadratic equations. Cauchy and Riemann devel-
oped many of the fundamental results of complex analysis in a short time
span in the middle of the 19th century. A nice exposition of the historical
development of the visual impact of complex numbers is described by
Needham and recent work by Devaney (2004) displays the connections
between elegant mathematics and striking visual images.

It is often useful to express a complex number in polar coordinates in
terms of (r, θ), where r is the distance from the origin, and θ is the angle of
rotation. Using trigonometry (see Figure 1), we find z = r(cosθ + i sinθ) or
using Euler’s formula z = reiθ .
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Figure 1. z = r(cosθ + i sinθ).

A complex function w = w(z) for z = x + iy can be written in the form 
w(z) = u(x,y) + iv(x,y), where u and v are real-valued functions of the real vari-
ables x and y. The roots of a complex function are the solutions to the
equation w(z) = 0. This equation is true if and only if both u(x,y) = 0 and
v(x,y) = 0.

Definition: A function w is analytic at a point z if the derivative of w exists at z
and at all points close to z. A point z is a singular point of w if w is not analytic
at z, but is analytic at some point in every neighbourhood of z (a form of the
definition not found in many of the standard complex analysis texts). If w is
analytic at all points in some neighbourhood of z (except at z itself), then z is
an isolated singular point. Certain isolated singular points, known as poles, are
important in this investigation.

Iteration

Consider a sequence x0, f(x0), f 2(x0), …, f n(x0) where f 2(x0) means f(f(x0))
and f j(x0) represents the jth application of the function f to the x0 value. We
examine the set of iterates 

to determine if the terms of this sequence converge, diverge, or oscillate
between various values. 

Definitions: The initial value x0 is known as the seed and members of the
sequence form the orbit of x0. If f(x) = x then x is said to be a fixed point of f. If
f n(x) = x for some n, then x is a periodic point with period n, defined as the
smallest n for which f n(x) = x. If the orbit of x contains some preliminary
values before settling at either a fixed point (f n+1(x) = f n(x) for some n > 1)
or a periodic orbit (f n+p(x) = f n(x) for some n > 1, where p is the period of the
periodic orbit) then x is said to be eventually fixed or eventually periodic, respec-
tively.

The iterative process is applied in an identical manner when (w(z)) is a
complex-valued function. The seed value z is a complex number. Fixed points,
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periodic points, and eventually fixed or periodic points are defined exactly as
before. 

Definition: The set of all orbits that either converge to a value or diverge
(which can also be considered converging to infinity) is called the Fatou set.
The complement of the Fatou set is the Julia set. 

A Julia set consists of those orbits that hop around or cycle between various
values. The filled Julia set is the Julia set plus all the points whose orbits do
not converge to infinity. The colouring of points in the complex plane based
on the final destination of their orbit produces a range of beautiful fractal
images.

Newton’s method

The following is the general formula for Newton’s method to find the zeroes
of a real or complex function g: 

Successive estimates of the zero are iterated until some convergence criteria
are satisfied. Newton’s method may not converge for every seed value.
Specifically, if g '(x) = 0 or g '(x) is undefined for any x in the orbit, Newton’s
method will fail to converge. Also, the original estimate must be close to the
desired root or Newton’s method may not converge to the desired root. 

Pictures from Newton’s method

Using MAPLE, a simple algorithm was employed to produce the pictures
included in this article. First, a grid was established to determine the seed
values to be examined. Next, the grid was sampled to determine the destina-
tions of the orbits of various seed values in the grid. This allowed the various
roots to be assigned a colour. Finally, the entire grid was examined, and points
coloured according to the destination of orbits. Seed values that did not
converge were coloured purple. 

Consider w(z) = z 2 – 1. The roots of w are z = ±1. Figure 2 shows the picture
generated by this function. Each of the two shaded regions converges to one
of the roots of the function. The line dividing the two regions is the y-axis.
According to Cayley’s Theorem (Cayley, 1879), this line is perpendicular to
the segment connecting the two roots. It can be shown that orbits that have
seed values on this line remain on the line. To do this we first note that
Newton’s iteration for the given function is 
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When the initial value is on the y-axis, then zi = iy and 

which is clearly on the y-axis also. When the initial value is on the x-axis, then
zi = x and 

which can be shown to converge to 1 or –1 depending on whether x is posi-
tive or negative.

Figure 3 shows the picture produced by the iteration of Newton’s Method
for the function, w(z) = z 3 – 1. The roots of the function, 

(also written as for N = 0, 1 and 2)

are located in the centre of the three large, shaded regions. These shaded
regions are separated by regions of chaotic behaviour that lie along rays that
are conjectured to bisect the angles formed by the rays connecting the centre
and the roots. To examine this conjecture, one can note that initial seed
values may be written in the form z0 = Re iθ. A line bisecting the angle between
the two roots makes an angle of π

3 with the x-axis. A seed value z0', which is
symmetrical to z0, with respect to the bisecting line, can then be written in the
form 

(*)

which is a rotation expressed as multiplication by a factor dependent on the
angle measure. Newton’s iteration in this case is given by
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Figure 2. w(z) = z2 – 1.



This involves two transformations. The first, 2zi, is simply magnification by a
factor of two and does not affect symmetry with respect to the π

3 ray. The
second, 

can be written as 

when applied to z0 = Re iθ. In the same manner, the transformation of 

can be written as 

Multiplication of 

by the factor 
as in (*) above, and recalling that

shows that z1' is indeed the image of z1 with respect to the π
3 ray. Since both 2zi and

applied to zi yields a point which is symmetric to zi , then their sum can easily
be shown to yield a symmetric point. This is most clearly seen by using the
parallelogram law of vector addition.

Symmetry about the x-axis is also suggested by the diagram. This can be
formally shown by noting that the Newton iteration for a cubic function
applied to the conjugate –z = x – iy yields a point which is the conjugate of that
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Figure 3. w(z) = z3 – 1.



obtained when the iteration is applied to z. This is a special case of symmetry
with respect to the x axis of any formula which only has real coefficients in all
of its terms.

The symmetry issues are discussed more formally by Drexel, Sobey and
Bracher (1995) and also by Julia (1918) in his original work. Our purpose
here is to present an illustrative approach that is amenable to the reader who
may not yet have encountered all of the relevant theoretical background.

Figure 4 shows the function w(z) = z7 – 1. Again note the relationship
between the roots and the chaotic regions. The darker region in the centre is
a result of the limitations of the computer program. Since z = 0 is a zero of w,
the region around z = 0 represents a neighbourhood of z = 0 where the points
do not converge in the number of iterations in the program. To see why this
is so, we note that the Newton’s method iteration includes a z6th term in the
denominator. When the modulus is small the next iterate is very
large in magnitude and requires a large number of iterations to converge
back towards the appropriate root. Increasing the number of iterations causes
the size of the circle to decrease.

Figure 5 shows the iterations of the function

where the zeroes are

and the poles are

We see that the roots lie inside the large circular regions and the poles lie on
the edge of the large circular regions. Most importantly, the roots and poles
lie along rays extending out from the origin, with each pole lying on the same
ray as a root. The poles lie further out from the origin than the roots. These
positions are explained when we realise that the poles and roots are simply
the cube roots of positive real numbers.

z = x 2 + y 2
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Figure 4. w(z) = z7 – 1.



In the function

once again the roots lie in the large regions (although not in the centre), but
the poles are located at the end of the chaotic rays extending out from the
origin (see Figure 6). This symmetry requires the same analysis as above.
These rays can be shown to be the perpendicular bisectors of the line
segments connecting the roots. This may be performed as an exercise in
elementary geometry. It may also be accomplished by using co-ordinate
geometry since the locations of all roots and poles are easily known. In this
case the poles are roots of a negative real number.
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Figure 5. .



Conclusion

In general, one can investigate the function

where a and b are arbitrary complex numbers. The reader is encouraged to
explore the resulting patterns and those of more complicated functions and
the pictures that result from iterations of Newton’s method. Numerous topics
for teacher workshops or summer research for undergraduates can be based
on the material shown. It is the authors’ hope that this paper will indeed
prove to be a ‘seed’ value for an exciting ‘orbit’ through complex iteration.
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