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Introduction. We define a collection of metrics for describing and comparing sets of terms in 
controlled and uncontrolled indexing languages and then show how these metrics can be used 
to characterize a set of languages spanning folksonomies, ontologies and thesauri. 
Method. Metrics for term set characterization and comparison were identified and programs for 
their computation implemented. These programs were then used to identify descriptive features 
of term sets from twenty-two different indexing languages and to measure the direct overlap 
between the terms.  
Analysis. The computed data were analysed using manual and automated techniques including 
visualization, clustering and factor analysis. Distinct subsets of the metrics were sought that 
could be used to distinguish between the uncontrolled languages produced by social tagging 
systems (folksonomies) and the controlled languages produced using professional labour.  
Results. The metrics proved sufficient to differentiate between instances of different languages 
and to enable the identification of term-set patterns associated with indexing languages 
produced by different kinds of information system. In particular, distinct groups of term-set 
features appear to distinguish folksonomies from the other languages.  
Conclusions. The metrics organized here and embodied in freely available programs provide 
an empirical lens useful in beginning to understand the relationships that hold between 
different, controlled and uncontrolled indexing languages.  
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We are in an era of a rapidly expanding number and diversity of systems for organizing information. Wikis, 
collaborative tagging systems and semantic Web applications represent broad categories of just a few emerging 
frameworks for storing, creating, and accessing information. As each new kind of information system appears, it is 
important to understand how it relates to other kinds of system. This understanding allows us to answer a variety of 
important questions, which will shape the way future systems are designed. Does the new system represent a less 
expensive way to achieve the same functionality as another? Might it be fruitfully combined with another approach? 
How similar is it to an exemplar in its domain? 

In addition to deriving theoretical answers to questions at the level of the kind of system, such as, How does social 
tagging relate to professional indexing? (Feinberg 2006; Tennis 2006) or, How do the ontologies of computer science 
relate to the classifications of library and information science?, as addressed by Soergel (1999), it is also now of 
practical importance to find answers to specific instance-level questions. For example, Al-Khalifa and Davis (2007) 
attempt to answer the question, How do the tags provided by Delicious users relate to the terms extracted by the 
Yahoo indexing algorithm over the same documents? and Morrison (2008) asks, How do the results of searches 
performed on social tagging systems compare to those performed on full Web search engines? Answers to such 
questions provide vital knowledge to system designers, because, in the age of the Web, information systems do not 
operate in isolation from one another. It is both possible and beneficial to integrate components of different systems 
to create symbiotic aggregates that meet the needs of specific user groups better than any single system could, and 
doing so depends upon the knowledge of how the different systems relate. Would Yahoo automatic indexing be 
improved through incorporation of indexes provided by Delicious users? Comparative analyses of the components of 
the two systems can help tell us. 

Both comparative studies of information systems in the abstract and efforts to design specific instances of new 
integrative systems can benefit from mechanisms that help to identify the specific similarities and differences that 
obtain between different systems. One facet of this is empirical, reproducible, quantitative methods of investigation. 
To inform both kinds of enquiry, empirical protocols that allow for reproducible, quantitative comparison would be 
beneficial. However, the term information system covers a vast and ill-defined set of things, each of which is 
composed of many complex components operating together in many different contexts to achieve a variety of 
different purposes. To conduct useful empirical comparisons of such systems, 1) hypotheses must be evaluated in 
light of the many contributing qualitative factors, and 2) reproducible metrics must be devised that can be used to 
test assumptions. While qualitative interpretations of the differences that hold between different kinds of information 
system continue to advance, there are few practical, reproducible metrics defined for use in empirical comparisons of 
system components.  

Our broad goal in this work is to define a set of measurements, which can be taken of information systems, that are 
meaningful, widely applicable, and reproducible. The specific set of metrics introduced here do not intend nor pretend 
to be exhaustive nor definitive, in fact, we suggest that is not an attainable goal given the complexity of the systems 
under scrutiny. Rather, we advance them as an early set of candidates in what we expect will be a broad pool of 
metrics, which will continue to expand and be refined indefinitely. In light of these goals, the metrics defined here are 
meant for the characterization of one key component common to the vast majority of information systems in current 
operation, the language used to index the resources of interest within the system. 

Zhang (2006:121) defines an indexing language as ‘the set of terms used in an index to represent topics or features 
of documents and the rules for combining or using those terms’. As the emphasis here is on empirical observation 
and many of the information systems under consideration offer little or no rules for the application nor of the 
construction of the terms, we will operate under the broader definition of indexing languages as sets of terms used in 
an index to represent topics or features. Notice that this definition spans both controlled languages, such as 
institutionally maintained thesauri, and uncontrolled languages, such as the sets of keywords generated by social 
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tagging systems. Examples of indexing languages, as defined here, thus include the Medical Subject Headings 
(MeSH) thesaurus, the Gene Ontology as described by Ashburner et al. (2000), and the Connotea folksonomy as 
described by Lund et al. (2005). Each of these languages, though varying in relational structure, purpose, and 
application, is composed of a set of terms that represent aspects of the resources within the information systems that 
utilize them. Through comparisons of the features of these indexing languages, we hope to start work that will 
eventually allow us insight that will enable us to gain a better understanding not just of the relations between the 
languages, but, through them, of the relations between the systems that generate and use them. 

In this work, we advance an approach to the automated, quantitative characterization of indexing languages through 
metrics based simply on the sets of terms used to represent their concepts. These metrics are divided into two 
groups, intra-set and inter-set. The intra-set metrics provide views on the shape of the sets of terms in aggregate. 
The inter-set metrics provide a coherent approach to the direct comparison of the overlaps between different term 
sets. The paper is divided into two main sections. The first section describes each of the metrics in detail and the 
second presents the results from a quantitative comparison of twenty-two different indexing languages. Results are 
provided for each language individually, using the intra-set metrics, and for each language pair, using the inter-set 
metrics. In addition to the broad all-against-all comparison, we present a more detailed exploration of the similarities 
and differences, revealed using the proposed metrics, that hold between controlled and uncontrolled indexing 
languages.  

Metrics for comparing term sets 

In this work we focus on the set of terms used to represent the concepts that compose indexing languages. 
Relationships between the terms or the concepts that they represent are not analysed at this stage because some 
languages, such as many folksonomies, do not display the explicitly defined relationship structures present in other 
forms, such as thesauri and ontologies. This view allows us to produce metrics that are applicable to a broad array of 
different indexing languages and can serve as the foundation for future efforts that expand the comparative 
methodology. In the following section, we identify a group of specific, measurable characteristics of term sets. From 
these we can measure similarities and differences between indexing languages based on quantifiable characteristics 
that they all share.  

Intra-term set measures 

Measurements taken at the level of the set define what might be termed the shape of the term set. Such features of 
a term set include its size, descriptive statistics regarding the lengths of its terms, and the degree of apparent 
modularity present in the set. Measures of modularity expose the structure of the term set based on the proportions 
of multi-word terms and the degrees of sub-term re-use. These measures of modularity include two main categories, 
Observed Linguistic Precoordination and Compositionality.  

Observed Linguistic Precoordination indicates whether a term appears to be a union of multiple terms based on 
syntactic separators. For example, the MeSH term Fibroblast Growth Factor would be observed to be a linguistic 
precoordination of the terms Fibroblast, Growth and Factor based on the presence of spaces between the terms. 
As explained in Tables 1 and 2, we categorize terms as uniterms (one term), duplets (combinations of two terms), 
triplets (combinations of three terms) or quadruplets or higher (combinations of four or more terms). Using these 
categorizations, we also record the flexibility of a term set as the fraction of sub-terms (the terms that are used to 
compose duplets, triplets, and quadplus terms) that also appear as uniterms. 

Terms Observed Linguistic Precoordination  Naming convention
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The Observed Linguistic Precoordination measurements described here were adapted from term-set characteristics, 
originally identified by Van Slype (1976), for gauging the quantifiable features of a thesaurus. Van Slype developed 
and used these metrics in the process of suggesting revisions to the ISO standard based on comparisons of the 
attributes of a sample of thesauri to the prescriptions of the standard. Our intent in using these, and related, metrics 
is to make it possible to explore the consequences of adding a similar, empirical aspect to studies of modern indexing 
languages.  

The Observed Linguistic Precoordination measures were extended with related measures of compositionality as 
introduced by Ogren et al. (2004). Compositionality measures include a) the number of terms that contain another 
complete term as a proper substring, b) the number of terms that are contained by another term as a proper 
substring, c) the number of different complements used in these compositions, and d) the number of different 

Sub-term Number

ontology 1 uniterm

ontology evaluation 2 duplet

Fibroblast Growth Factor 3 triplet 

United States of America 4 quadruplet or higher 

Type 5 Fibroblast Growth Factor 5 quadruplet or higher 

 
Table 1: Examples of Observed Linguistic Precoordination term classifications 

 

Terms Uniterms Sub-terms
Consolidated 

sub-terms
Both consolidated 

and uniterms

Semantic Web    Semantic Semantic    

      Web Web Web 

Web Web          

Social Web    Social Social    

      Web       

Planet Planet          

Do Re Mi    Do Do    

      Re Re    

      Mi Mi    

Star Star          

   6 1 

 
Table 2: Explanation of the Observed Linguistic Precoordination flexibility measure  

(The flexibility for the term set listed in the first columns is equal to 0.17 (1 divided by 6) because there is one sub-term 
Web, which is also a uniterm out of a total of six sub-terms.)  
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compositions created with each contained term. A complement is a sub-term that is not itself an independent 
member of the set of terms. For example, the term set containing the two terms {macrophage, derived from 
macrophage} contains one complement, derived from. A composition is a combination of one term from the term set 
with another set of terms (forming the suffix and/or the prefix to this term) to form another term in the set. For 
example, in the Academic Computing Machinery subject listing, the term software program verification contains three 
sub-terms that are also independent terms (software, program, and verification). According to our definition, this 
term would be counted as three compositions: software+suffix, prefix+program+suffix, prefix+verification. As 
another example, the term denotational semantics would only result in one composition because semantics is an 
independent term while denotational is not (and thus is a complement as defined above). 

Modularity is indicative of the factors that go into the semantics of a term set, and shape its use. Here we are guided 
by Soergel's rubric from concept description and semantic factoring. He tells us, 

...we may note that often conceptual structure is reflected in linguistic structure; often multi-word 
terms do designate a compound concept, and the single terms designate or very nearly designate the 
semantic factors. Example: Steel pipes = steel:pipes [demonstrating the factoring] (Soergel 1974:75).  

The relative presence or absence of modular structure within a term set thus provides some weak indication of its 
conceptual structure. For example, even though an indexing language may not explicitly declare relationships 
between its terms, semantic relationships may sometimes be inferred between terms that share, for example, 
common sub-terms (Ogren et al. 2004). The potential to detect re-usable semantic factors that may be indicators of 
semantic structure within a term set makes modularity metrics important axes for the comparison of different term 
sets.  

Together, these measurements combine to begin to form a descriptive picture of the shape of the many diverse term 
sets used in indexing languages. Table 3 lists and provides brief definitions for all of the term set measurements 
taken. 

Measure Definition

Number distinct 
terms

The number of syntactically unique terms 
in the set.

Term length The length of the terms in the set. We 
report the mean, minimum, maximum, 
median, standard deviation, skewness, 
and coefficient of variation for the term 
lengths in a term set.

Observed Linguistic 
Precoordination 

uniterms, duplets, 
triplets, quadplus

We report both the total number and the 
fraction of each of these categories in the 
whole term set.

Observed Linguistic 
Precoordination 

flexibility

The fraction of Observed Linguistic 
Precoordination sub-terms (the 
independent terms that are used to 
compose precoordinated terms) that also 
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appear as uniterms.

Observed Linguistic 
Precoordination 

number sub-terms 
per term

The number of sub-terms per term is 
zero for a uniterm (gene), two for a 
duplet (gene ontology), three for a triplet 
(cell biology class), and so on. We report 
the mean, maximum, minimum, and 
median number of sub-terms per term in 
a term set.

Contains another The terms that contain another term 
from the same set. Both the total and 
the proportion of terms that contain 
another are reported.

Contained by another The terms that are contained by another 
term from the same set. Both the total 
and the proportion of terms that are 
contained by another are reported

Complements A complement is a sub-term that is not 
itself an independent member of the set 
of terms. The total number of distinct 
complements is reported.

Compositions A composition is a combination of one 
term from the term set with another set 
of terms (forming the suffix and/or the 
prefix to this term) to form another term 
in the set. The total number of 
compositions is reported.

 
Table 3: Parameters of term sets 

Inter-term set measures 

The descriptions of term set shape described above are useful in that they can be applied to any set of terms 
independently and because they provide detailed descriptions of the term sets, but, from the perspective of 
comparison, more direct methods are also applicable. To provide a more exact comparison of the compositions of 
sets of terms used in different languages, we suggest several simple measures of set similarity. Each of the measures 
is a view on the relation between the size of the intersection of the two term sets and the relative sizes of each set. 
The members of the intersection are determined through exact string matches applied to the term sets (after a series 
of syntactic normalization operations). As depicted in Figure 1 and explained below, these intersections are used to 
produce measures of precision, Recall, and Overlap (the F-measure).  

Context considerations in inter-set comparisons 

The equivalence function used when conducting direct set comparisons of the components of different indexing 
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languages is important. In this preliminary work, we rely on the simplistic notion that a term in one indexing 
language is equivalent to a term in another language if and only if, after syntactic normalization, the terms are 
identical. Synonymy, hyponymy and polysemy are not considered and, thus, the measured overlaps are purely 
syntactic. When considering indexing languages used in similar contexts; for example, as might be indicated when 
two different languages are used to index the same set of documents by similar groups of people, this function 
provides useful information because the same words are likely to be used for similar purposes. However, the greater 
the difference in context of application between the indexing languages being compared, the greater the danger that 
this simple function will not yield relevant data. Logical extensions of this work would thus be to make use of 
semantic relations, for example of synonymy, present within the indexing languages, as well as natural language 
processing techniques, to develop additional equivalence functions that operate on a more semantic level. That being 
said, with or without such extensions, any empirical comparison should always be interpreted in light of the contexts 
within which the different indexing languages operate. 

Quantifying set similarity 

Once methods for assessing the equivalence relationship are established (here post-normalization string matching), it 
is possible to quantify the relations between the resultant sets in several different ways. For example, Al-Khalifa and 
Davis (2007) find what they term percentage overlap by dividing the size of the intersection of the two sets by the 
size of the union of the sets and multiplying by 100. They use this measure to quantify the similarity of the sets of 
terms used to index the same documents produced by different indexing systems. For example, to find the 
percentage overlap between the set F {A,B,C} and the set K{A,G,K,L} , the size of the intersection {A} is 1, the size 
of their union {A,B,C,G,K,L} is 6 and thus the percentage overlap is 100(1/6)= 17%. 

While a useful measurement, this equation misses key information regarding the relative sizes of the two sets. For 
example, if one set contained one item, the other set contained 100 items and the single item had a match in the 
large set, the percentage overlap would be 100%, just as it would be if the sizes of the sets were both 100 and all of 
the items were identical. To capture the size discrepancies and the asymmetry of the relationship, we employ 
additional metrics typically used to evaluate class prediction algorithms.  

Binary class prediction algorithms are often evaluated on the basis of relations between sets of true and false positive 
and negative predictions (Witten & Frank 2000). These relations are quantified with measures of Accuracy, precision 
and Recall. Accuracy is the number of correct predictions divided by the number of false predictions. precision is the 
number of true positives divided by the number of predicted positives. Recall is the number of true positives divided 
by the number of both true and false positives. precision and Recall are often summarized with the F-measure, which 
equates to their harmonic mean.  

Hripcsak and Rothschild (2005) showed that, by arbitrarily assigning one set as the true positives and the other as 
the predicted positives, the F-measure can be used to measure the degree of agreement between any two sets. 
Because it is commutative, the choice of which set to assign as true makes no difference to the outcome. Figure 1 
illustrates the idea of using precision, Recall, and the F-measure as generic set comparison operators. The logic goes 
as follows, if set A is conceptualized as an attempt to predict set B, the number of items in both sets (the 
intersection) corresponds to the number of true positives for the predictor that produced A; the number of items in A 
corresponds to the number of true positives plus the number of false positives; and the number of items in B 
corresponds to the number of true positives plus the number of false negatives. From this perspective, accuracy thus 
equates to percentage overlap as described by Al-Khalifa and Davis (2007). In addition, precision and Recall can be 
used for the asymmetric quantification of the similarity of the two sets and the F-measure can be used to provide a 
symmetric view of the overlap between the sets that takes into account their relative sizes. 
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Figure 1: Set comparison operations 

Demonstration and evaluation of proposed metrics 

The metrics described above are intended to be useful in scientific enquiries regarding the relationships that hold 
between different indexing languages. This information, in turn, should then be useful in informing assumptions about 
the relationships between the information systems that generate and use these languages. As such, it should be 
possible to use the metrics to answer specific questions. We chose the following questions as demonstrative 
examples: 

1. Are the intra-set characteristics of the folksonomies emerging from collaborative tagging systems sufficient to 
distinguish them from term sets associated with indexing languages created using professional labour? (We 
assume that the difference in kind between these groups will be expressed in a difference in shape as 
expressed in the intra-set measures.)  

2. How much direct overlap exists between terms from the Connotea, Bibsonomy, and CiteULike folksonomies, 
and terms from MeSH? These folksonomies are used to describe tens of thousands of the same resources as 
MeSH, hence we expect some overlap in representation, but how much is there in reality?  

To answer these questions and thus demonstrate example applications of the proposed set of metrics, we 
implemented programs that calculate each intra- and inter-set metric described above. In the text that follows, we 
describe the application of these programs to the automated characterization and comparison of twenty-two different 
indexing languages.  

Sample 

We gathered a sample of twenty-two different term sets. The terms were extracted from folksonomies, thesauri, and 
ontologies, all of which are currently in active use. Our domains span biology, medicine, agriculture, and computer 
science; however, the sample set is biased towards biology and medicine. Ontologies constitute the most common 
type of structure in the sample simply because more of them were accessible than the other forms, Table 4 lists the 
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subjects of the study (note that there are more than twenty-two listed because multiple versions for some of the 
larger term sets were considered separately). 

Name Abbreviation Source syntax Type Domain

Academic 
Computing 
Machinery subject 
listing

ACM 1997 OWL thesaurus computer 
science

Agriculture 
Information and 
Standards 
ontology

AG OWL ontology agriculture

Bibsonomy Bibsonomy text folksonomy general/academic

BioLinks BioLinks OWL thesaurus bioinformatics

Biological Process 
branch of the 
Gene Ontology

GO_BP OBO/OWL ontology biology

Cell Type 
Ontology

CL OBO/OWL ontology biology

Cellular 
Component 
branch of the 
Gene Ontology

GO_CC OBO/OWL ontology biology

Chemical Entities 
of Biological 
Interest

CHEBI OBO/OWL ontology biology

CiteULike CiteULike text folksonomy general/academic

Common 
Anatomy 
Reference 
Ontology

CARO OBO/OWL ontology biology

Connotea Connotea text folksonomy general/academic

Environment 
Ontology

ENVO OBO/OWL ontology biology

Foundational 
Model of Anatomy 
(preferred labels 
+ synonyms)

FMA + 
synonyms

OWL ontology biology/medicine

Foundational 
Model of Anatomy 
(preferred labels)

FMA 
PrefLabels

OWL ontology biology/medicine

Page 9 of 35Term based comparison metrics for controlled and uncontrolled indexing languages

4/13/2009http://informationr.net/ir/14-1/paper395.html



The indexing languages considered here were chosen for three general reasons: (1) they were freely available on the 

Medical Subject 
Headings 
(descriptors + 
entry terms)

MeSH With 
All Labels

XML thesaurus biology/medicine

Medical Subject 
Headings 
(descriptors)

MeSH 
PrefLabels

XML thesaurus biology/medicine

Molecular 
Function branch 
of the Gene 
Ontology

GO_MF OBO/OWL ontology biology

National Cancer 
Institute 
Thesaurus 
(preferred labels 
+ synonyms)

NCI 
Thesaurus 

+ 
synonyms

OWL thesaurus biology/medicine

National Cancer 
Institute 
Thesaurus 
(preferred labels)

NCI 
Thesaurus 
PrefLabels

OWL thesaurus biology/medicine

Ontology for 
Biomedical 
Investigation

OBI OBO/OWL ontology biology/medicine

Phenotype 
Ontology

PATO OBO/OWL ontology biology

Protein Ontology PRO OBO/OWL ontology biology

Sequence 
Ontology

SO OBO/OWL ontology biology

Thesaurus of 
EIONET, the 
European, 
Environment, 
Information, and 
Observation 
Network

GEMET SKOS/RDF thesaurus environment

Zebrafish 
Anatomy

ZFA OBO/OWL ontology biology

 
Table 4: Term sets 

(Each of the term sets evaluated in this study is listed here. See Appendix 1 for additional information about these 
languages.) 
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Web, (2) most of the terms associated with the indexing languages had representations in English and (3) we sought 
popular examples spanning both controlled and uncontrolled indexing languages. Availability on the Web not only 
made data collection for the present study easier, it increases the likelihood that the study could be repeated by 
others in the future. By constraining the natural language of origin for the indexing languages under study, the 
likelihood that the measured differences between term sets were the results of factors aside from differences in, for 
example, typical grammatical structure of the source languages, was increased. Finally, by sampling from a broad 
range of the known types of indexing language, as suggested, for example, in the typology of Tudhope (2006), we 
hoped to show the generic nature of the metrics introduced here and to offer some basic exploratory comparisons of 
the broad groups of controlled and uncontrolled languages.  

Although we provide results for all of the inter-term set comparisons, the emphasis of the set comparisons is on the 
relationship between MeSH and the uncontrolled indexing languages. To partially decrease the problems, noted 
above, associated with conducting syntactic comparisons of indexing languages operating in different contexts, 
uncontrolled languages were sought that were used to index many of the same documents as MeSH. Folksonomies 
emanating from social tagging services targeted towards academic audiences thus compose the set of uncontrolled 
languages in the sample.  

Data analysis 

Once each of the term sets was collected (see Appendix 1), two levels of term normalization were applied 
corresponding to the intra-set analysis (phase 1) and the inter-set analysis (phase 2). Both phases were designed 
based on the premise that most of the terms in the structures were English words. Though there were certainly some 
non-English terms present in the folksonomy data, notably German and Spanish, these terms constituted a relatively 
small minority of the terms in the set and, as such, we do not believe they had any significant effect on the results. 

Phase 1 term normalization 

Phase 1 normalization was designed primarily to help consistently delineate the boundaries of compound words, 
especially in the case of the folksonomies. The operations were: 

1. All non-word characters (for example, comma, semi-colon, underline and hyphen) were mapped to spaces 
using a regular expression. So the term automatic-ontology_evaluation would become automatic ontology 
evaluation.  

2. CamelCase compound words were mapped to space separated words: camelCase becomes camel case.  
3. All words were made all lower case (case-folded).  
4. Any redundant terms were removed such that, after operations 1-3, each term in a set composed a string of 

characters that was unique within that set.  

All of the intra-set measurements (Size and Flexibility for example) were taken after Phase 1 normalization. Phase 2 
normalization was applied before the set-intersection computations (for the inter-set measurements). 

Phase 2 term normalization 

Phase 2 normalization was intended to reduce the effects of uninformative inconsistencies such as dolphins not 
matching dolphin when estimating the intersections of the term sets. 

1. Phase 1 normalization was applied.  
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2. Porter stemming was applied to all terms and sub-terms (Porter 1980).  
3. All sub-terms were sorted alphabetically.  
4. All terms and sub-terms with less than two characters were removed.  
5. All terms and sub-terms matching words from a popular English stop-word list were removed (Default... 2008)  

These additional steps resulted in an average reduction in the total number of distinct terms per term set of 13% with 
the most substantial difference seen for the MeSH all term set, which included both the preferred labels for each 
descriptor and all of the alternate labels, at 52%. The set of just the preferred labels for the MeSH descriptors was 
only reduced by 3%. This demonstrates that the normalization step was successful in reducing redundancy within the 
term sets because the MeSH all set intentionally includes many variations of the same term while the preferred labels 
are intended to be distinct. Figure 2 plots the reduction in the (non-redundant) term set size between phase 1 and 
phase 2 normalization for all the term sets. 

 
Figure 2: The effect of phase 2 normalization on the size of the term set 

(For each term set, the chart displays the ratio of its size after phase 2 normalization versus its size after 
phase 1 normalization.) 

After normalization, the shape of each of the term sets was first assessed individually using the intra-set measures. 
Then each of the term sets was compared directly to all others using the inter-set metrics.  

Intra-set findings 

The intra-set measures displayed a broad range of diversity across all of the samples and provided some preliminary 
evidence of the presence of distinct shapes associated with term sets originating from controlled versus uncontrolled 
information organization structures. The collected measurements are provided in Tables 5 to 7 and discussed below.  
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Term set 
Number 
distinct 
terms

OLP mean 
number 

sub-terms 
per term

OLP max 
number 

sub-terms 
per term

OLP 
median 
number 

sub-terms 
per term

Complements Compositions

Bibsonomy 48120 0.63 21 0 16448 25881

CiteULike 234223 0.56 14 0 62364 127118

Connotea 133455 1.49 33 2 119486 183980

ACM 1997 (OWL 
version)

1194 2.47 15 2 583 654

AG (English terms) 28432 1.34 7 2 7146 10018

BioLinks 90 1.87 6 2 9 9

GEMET 5207 1.68 7 2 2201 3809

MeSH PrefLabels 24766 1.67 20 2 8333 11162

MeSH With All 
Labels

167081 2.35 27 2 90032 163010

CARO 50 2.38 4 2 21 22

CHEBI 73465 8.88 241 3 255506 289469

CL 1268 2.57 9 2 1171 1529

ENVO 2001 1.49 10 2 925 1452

FMA plus 
synonyms

120243 5.81 18 6 255632 545648

FMA Preflabels 75147 6.14 18 6 169042 352541

GO_BP 42482 5.00 33 5 33667 79062

GO_CC 3539 3.45 14 3 2493 3821

GO_MF 30843 4.83 62 4 18941 26138

NCI hesaurus ‚ 
preflabels

60980 3.38 31 3 107413 148151

NCI Thesaurus + 
synonyms

146770 3.81 73 3 391297 592554

OBI 764 2.20 8 2 288 315

PATO 2162 1.57 7 2 1162 2780

PRO 837 4.28 32 5 552 767

SO 2104 2.86 18 3 2342 3183

ZFA 3250 2.40 8 2 2255 3616
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Table 5: Size and composition of term sets 

(The term sets are grouped into three types: folksonomies are indicated in green, thesauri in yellow, and ontologies in blue. 
The maximum and minimum values for each column are indicated by the uncolored cells.)  

Term set OLP 
uniterms

OLP 
duplets

OLP 
triplets

OLP 
quadplus

OLP 
flexibility

Contains 
another

Contained 
by 

another

Bibsonomy 72.7% 21.7% 4.2% 1.5% 56.6% 25.8% 13.7%

CiteULike 75.8% 18.8% 4.3% 1.2% 68.2% 23.8% 9.6%

Connotea 44.8% 35.1% 12.4% 7.7% 43.8% 51.7% 18.2%

ACM 1997 
(OWL 
version)

18.5% 40.9% 18.4% 22.2% 9.2% 40.3% 12.8%

AG (English 
terms)

34.3% 63.1% 2.2% 0.4% 15.6% 32.5% 11.0%

BioLinks 35.6% 31.1% 14.4% 18.9% 6.5% 8.9% 8.9%

GEMET 27.5% 54.4% 13.9% 4.1% 26.6% 51.7% 16.0%

MeSH 
PrefLabels

37.3% 37.1% 15.7% 9.8% 15.8% 35.1% 10.5%

MeSH With 
All Labels

16.4% 40.6% 28.1% 14.9% 23.1% 62.0% 10.4%

CARO 4.0% 54.0% 38.0% 4.0% 3.7% 44.0% 12.0%

CHEBI 22.1% 18.8% 11.2% 47.9% 33.2% 73.7% 20.9%

CL 15.3% 35.3% 28.0% 21.4% 6.3% 80.6% 13.4%

ENVO 37.3% 47.6% 10.4% 4.6% 26.6% 51.6% 17.3%

FMA plus 
synonyms

1.2% 6.9% 11.7% 80.2% 15.0% 95.1% 24.6%

FMA 
Preflabels

1.4% 5.2% 8.8% 84.6% 16.6% 95.5% 25.3%

GO_BP 0.8% 14.4% 18.1% 66.7% 3.7% 87.1% 20.7%

GO_CC 9.1% 26.7% 22.3% 41.9% 7.0% 57.0% 19.5%

GO_MF 4.0% 8.2% 20.4% 67.5% 2.3% 58.2% 11.0%

NCI 
Thesaurus - 
preflabels

14.8% 25.8% 22.5% 36.9% 22.3% 77.9% 17.2%

NCI 16.8% 20.1% 17.5% 45.6% 37.5% 81.3% 24.8%
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Thesaurus 
+ 
synonyms

OBI 19.5% 42.1% 25.1% 13.2% 7.7% 32.2% 13.6%

PATO 36.6% 40.0% 17.7% 5.7% 42.8% 57.6% 32.2%

PRO 11.1% 6.0% 11.8% 71.1% 12.1% 69.7% 17.6%

SO 12.8% 29.8% 27.5% 30.0% 17.2% 76.4% 22.6%

ZFA 17.4% 36.4% 26.0% 20.3% 13.7% 60.9% 14.7%

 
Table 6: Modularity measurement ratios 

(The term sets are grouped into three types: folksonomies are indicated in green, thesauri in yellow, and ontologies in blue. 
The maximum and minimum values for each column are indicated by the uncolored cells.) 

Term set Mean Max Median Standard Deviation Skewness Coefficient of variation

Bibsonomy 10.19 196.00 9.00 6.59 5.17 0.65

CiteULike 12.38 80.00 11.00 7.35 1.83 0.59

Connotea 15.29 268.00 13.00 14.14 7.56 0.92

ACM 1997 (OWL version) 21.70 94.00 20.00 10.96 1.48 0.51

AG (English terms) 15.29 48.00 15.00 5.67 0.12 0.37

BioLinks 16.30 45.00 15.00 9.12 0.74 0.56

GEMET 15.48 54.00 15.00 6.73 0.67 0.43

MeSH PrefLabels 17.46 98.00 16.00 8.71 1.29 0.50

MeSH With All Labels 20.36 112.00 19.00 9.29 0.93 0.46

CARO 20.96 35.00 20.00 7.24 0.30 0.35

CHEBI 36.12 831.00 21.00 45.44 4.01 1.26

CL 19.35 72.00 18.00 9.59 1.07 0.50

ENVO 12.43 73.00 11.00 7.80 2.32 0.63

FMA plus synonyms 38.26 125.00 36.00 16.45 0.64 0.43

FMA Preflabels 40.35 125.00 38.00 17.03 0.59 0.42

GO_BP 39.71 160.00 37.00 18.63 1.38 0.47

GO_CC 26.50 96.00 23.00 15.29 1.00 0.58

GO_MF 39.82 322.00 38.00 19.61 1.45 0.49

NCI Thesaurus - preflabels 25.87 208.00 22.00 17.36 1.86 0.67

NCI Thesaurus + synonyms 26.67 342.00 23.00 19.96 2.25 0.75
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Table 5 contains the non-ratio measurements of the size and the composition of the term sets. From it, we can see 
that there is a wide range in the size and degrees of modularity of the term sets under study. The largest term set 
was the CiteULike folksonomy at 234,223 terms and the smallest was the Common Anatomy Reference ontology 
(Haendel et al. 2008) at just fifty terms. There was also substantial variation in the total number of Observed 
Linguistic Precoordination sub-terms per term, with the CHEBI ontology (Degtyarenko et al. 2008) averaging 8.88 
while the Bibsonomy folksonomy averaged just 0.63. This is suggestive of differences in the relative compositionality 
of the different term sets, with the ontologies being much more modular in general than the folksonomies.  

The sub-terms per term measurement highlights the uniqueness of the CHEBI ontology within the context of our 
sample; its terms include both normal language constructs like tetracenomycin F1 methyl ester and chemical codes 
like methyl 3,8,10,12-tetrahydroxy-1-methyl-11-oxo-6,11-dihydrotetracene-2-carboxylate. Although both term 
structures are highly modular in this large ontology, the latter are clearly driving the very high observed mean 
number of sub-terms per term.  

Table 6 focuses specifically on illustrating the amount of modularity apparent in these term sets. It displays the 
percentages of uniterms, duplets, triplets, and quadplus terms; the flexibility, and the percentages of terms that 
contain other terms or are contained by other terms. The CiteULike folksonomy has the highest percentage of 
uniterms at 75.8%, followed closely by the Bibsonomy folksonomy at 72.7%, while the two lowest percentages are 
observed for the Foundational Model of Anatomy (FMA) (including synonyms), described by Rosse and Mejino (2003), 
at 1.2% and the Biological Process (BP) branch of the Gene Ontology, described by Ashburner et al. (2000) at 0.8%. 
This tendency towards increased compositionality in these ontologies and decreased compositionality in these 
folksonomies is also apparent in the percentage of their terms that contain other complete terms from the structure, 
with more than 95% of the FMA terms containing other FMA terms and only 23.8% of the Bibsonomy terms 
containing another Bibsonomy term. As might be expected, larger average term lengths, as presented in Table 7, 
appear to correlate to some extent with some of the measures indicating increased compositionality. The highest 
correlation for a compositionality measure with average term length was observed for Observed Linguistic 
Precoordination Quad Plus (r-squared 0.86) while the lowest was for containedByAnother (r-squared 0.13). The 
highest mean term length observed was 40.35 characters for the preferred labels for the FMA and the lowest was 
10.19 for the Bibsonomy terms.  

OBI 18.69 62.00 17.00 9.46 0.99 0.51

PATO 14.96 46.00 14.00 7.33 0.67 0.49

PRO 26.38 162.00 27.00 13.82 1.40 0.52

SO 19.87 142.00 18.00 11.86 1.58 0.60

ZFA 18.45 72.00 18.00 8.72 0.54 0.47

 
Table 7: Measurements of term length 

(The term sets are grouped into three types: folksonomies are indicated in green, thesauri in yellow, and ontologies in blue. 
The maximum and minimum values for each column are indicated by the uncolored cells.) 

Factor analysis 

Following the collection of the individual parameters described above, exploratory factor analysis was applied to the 
data to deduce the major dimensions. Before executing the factor analysis, the data were pruned manually to reduce 
the degree of correlation between the variables. The features utilized in the factor analysis were thus limited to 
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percent of uniterms, percent of duplets, percent of quadplus, flexibility, percent of containsAnother, percent of 
containedByAnother, mean number of sub-terms per term, mean term length, and the coefficient of variation for 
term length. Maximum likelihood factor analysis, as implemented in the R statistical programming environment by 
the R Development Core Team (2008), was applied using these variables for all of the sampled term sets. Three tests 
were conducted with 1, 2, and 3 factors to be fitted respectively. In each of these tests, the dominant factor, which 
might be labelled term complexity, was associated with the variables: percent of quadplus, mean term length, and 
mean sub-terms per term. In the 2-factor test, the secondary factor was most associated with the percent of 
uniterms and the flexibility. Finally, in the 3 factor analysis, the third factor was associated with percent of 
containsAnother and percent containedByAnother. Table 8 provides the factor loadings for the 3-factor test.  

 
 

Variable Factor1 Factor2 Factor3

pct.OLP.uniterms -0.321 -0.537 0.774

pct.OLP.duplets -0.907 -0.131 -0.275

pct.OLP.quadplus 0.876 0.409 -0.24

OLP.flexibility -0.199 0.94

pct.containsAnother 0.421 0.814 -0.171

pct.containedByAnother 0.206 0.756 0.173

Mean.Term 
Length

0.769 0.438 -0.321

Coefficient.of.variation. 
Term.Length

  0.54

OLP.mean.number.sub.terms.per.term 0.665 0.518 -0.216

 
Table 8: Factor loadings from maximum likelihood factor analysis using three factors 

(The loadings for the dominant variables are indicated in bold.) 

Controlled versus uncontrolled term sets 

The data presented in Tables 5 to 7 provide evidence that the metrics captured here are sufficient to distinguish 
between term sets representing different indexing languages. To assess their utility in quantifying differences 
between indexing languages emanating from different kinds of information system, we tested to see if they could be 
used to differentiate between the languages produced by professional labour (the thesauri and the ontologies) and 
languages generated by the masses (the folksonomies).  

This examination was conducted using manual inspection of the data, multi-dimensional visualization, and cluster 
analysis. At each step, we tested to see if the data suggested the presence of a distinct constellation of intra-set 
parameters associated with the term sets drawn from the folksonomies. For some subsets of variables, the difference 
was obvious. For example, as Figure 3 illustrates, both the percent of uniterms and the Observed Linguistic 
Precoordination flexibility measurements were sufficient to separate the folksonomies from the other term sets 
independently. For other subsets of variables, the differences were less clear and, in some cases, the folksonomies 
did not group together. 
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Figures 4 to 10 use radar-charts to illustrate the shapes associated with the three folksonomies in the sample as well 
as representative ontologies and thesauri. Radar charts were chosen because they make it possible to visualize large 
numbers of dimensions simultaneously. Though it would be possible to reduce the number of features in the charts, 
for example using the results from the factor analysis presented above, we chose to present all of the measurements 
taken. These figures, which capture all of the features measured for a given term set in a single image, suggest fairly 
distinct patterns in the term sets associated with the different kinds of information system present in our sample. 
However, when utilizing all of the variables, the borders of the various categories are not entirely clear. For example, 
the Bibsonomy and CiteULike folksonomies appear to be nearly identical in these charts but, while similar, the 
Connotea folksonomy shows substantial variations.  

In various iterations of cluster analysis we repeatedly found that the Bibsonomy and the CiteULike term sets grouped 
tightly together and that Connotea was generally similar to them but that this similarity was strongly influenced by 
the specific subset of the metrics used. In one specific analysis presented in Good & Tennis (2008), Ward’s method 
identified a distinct cluster containing just the folksonomies using the following parameters: percent of uniterms, 
percent of duplets, flexibility, percent contained by another, standard deviation of term length, skewness of term 
length, and number of complements.  
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Figure 3: %Uniterms verse Observed Linguistic Precoordination flexibility  

(Either metric is sufficient to form a linear separator between the term sets originating from 
folksonomies (the three in the upper right corner) and the controlled terms from the other information 
organization structures in the sample. The Pearson correlation coefficient for percent of uniterms and 

Observed Linguistic Precoordination flexibility is 0.79. ) 
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These results indicate that the answer to the first question, namely: Are the terms from folksonomies shaped 
differently than the terms from controlled vocabularies? is, generally, yes. Subsets of these metrics can be used to 
separate folksonomies from the controlled vocabularies using a variety of methods. However, Bibsonomy and 
CiteULike are clearly much more similar to each other than either is to Connotea. Without advancing a definitive 
answer as to why this is the case, we offer several possible explanations. First, one clear technical difference between 
Connotea and the other two systems is that it allows spaces in its tags. For example, it is possible to use the tag 
semantic Web in Connotea, but, in Bibsonomy or CiteULike, one would have to use a construct like semanticWeb, 
semantic-Web, or semanticWeb to express the same term. Though the syntactic normalization we utilized will equate 
semantic-Web with semantic Web (and detect the two-term composition), the term semanticWeb would not match 
and would be classified by the system as a uniterm. This difference suggests that there may be more compound 
terms in Bibsonomy and CiteULike than our metrics indicate; however, this aspect of the tagging system may also act 
to discourage the use of complex tags by the Bibsonomy and CiteULike users. Aside from differences in the allowed 
syntax of these uncontrolled indexing languages, this may also be an effect of the differing communities that use 
these systems. While Connotea is clearly dominated by biomedical researchers, Bibsonomy is much more influenced 
by computer scientists and CiteULike seems to have the broadest mixture. Perhaps the biomedical tags are simply 
longer and more complex than in other fields. A final possibility, one that we will return to in the discussion of the 
direct measures of term-set overlap, is that Connotea may be disproportionately affected by the automatic import of 
terms from controlled vocabularies, in particular MeSH, as tags within the system.  

 
 

Figure 4: Radar graph of the MeSH thesaurus 
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Figure 5: Radar graph of the Association for Computing Machinery (ACM) thesaurus 
 
 

 
 

Figure 6: Radar graph of the Connotea folksonomy 
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Figure 7: Radar graph of the Bibsonomy folksonomy 
 
 

 
 

Figure 8: Radar graph of the CiteULike folksonomy 
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Figure 9: Radar graph of term set from Gene Ontology Biological Process (GO_BP) 
 
 

 
 

Figure 10: Radar graph of term set from the Foundational Model of Anatomy (FMA) 

Inter-set findings 

Following the intra-set results, the inter-set comparisons indicate high diversity in the term sets present in the 
sample while also highlighting interesting relationships between them. Figures 11 and 12 provide an overview of the 
all-against-all comparison of each of the term sets using the F-measure and the measures of precision and recall 
respectively. They show that, in general, there was a very low amount of overlap between most of the pairs that were 
examined. This is likely a direct result of the wide variance of contexts associated with the diverse indexing languages 
represented in the sample. Though the sample was biased towards ontologies in the biomedical domain, biomedical is 
an extremely broad term. For example, the domains of items intended to be indexed with the different languages 
ranged from amino acid sequences, to biomedical citations, to tissue samples. That there was not much direct 
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overlap in general is unsurprising. 

Aside from overlaps between different term sets drawn from the same structure (e.g., between a version of MeSH 
with only the preferred labels and a version that included all of the alternate labels), the greatest overlap, as 
indicated by the F-measure, was found between the Zebrafish Anatomy (ZFA) ontology (Sprague et al. 2008) and the 
Cell ontology (CL) (Bard et al. 2005) at (f = 0.28). This overlap results because the ZFA ontology contains a large 
proportion of cell-related terms that are non-specific to the Zebrafish, such as mesothelial cell and osteoblast.  

 
 

Figure 11: All against all comparison using the F-measure  
(The white intensity of each cell (or anti-redness) is determined by the overlap (F-measure) of the term 

set indicated on horizontal and vertical axes. As the relationship is commutative, either side of the 
diagonal is identical.) 
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Figure 12: All against all comparison using Precision/Recall  
(The white intensity of each cell (or anti-redness) is determined by the Precision of the term set 

indicated on the horizontal axis in its coverage of the term set indicated on the vertical axis. The chart 
may also be read as the Recall of the term set indicated on the vertical axis in its coverage (or prediction) 

of the term set on the horizontal axis.) 

Table 9 lists the F-measure, precision and recall estimates for the term-set pairs with the highest F-measures. Aside 
from the ZFA/CL comparison, the greatest overlaps were observed for the inter-folksonomy pairs, MeSH and the 
Agricultural Information Management Standards thesaurus (Ag), MeSH and the National Cancer Institute thesaurus 
(NCI) (Sioutos et al. 2007), and MeSH and Connotea (Lund et al. 2005).  

Comparison 
pair 

F(x,y) P(x,y) = r(y,x) R(x,y) = P
(y,x)

cl vs. zfa 0.28 0.46 0.20

citeulike vs. 
Connotea

0.22 0.17 0.30
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MeSH versus the folksonomies 

The second specific, demonstrative question put forward above, and one of the early motivators for this project, was 
the question of how the terms from MeSH compare to the terms from academic folksonomies. To answer this 
question, Tables 10 and 11 delineate the overlaps in terms of precision, recall, and the F-measure that were observed 
between the three folksonomies in our sample and the MeSH thesaurus (including one version with just the preferred 
labels and another that included alternate terms). Of the three folksonomies, Connotea displayed the greatest degree 
of overlap with MeSH in terms of the F-measure, precision, and recall for both the preferred labels and the complete 
MeSH term set. The precision of the Connotea terms with respect to the MeSH preferred labels was 0.073, the recall 
0.363, and the F-measure was 0.122.  

 
 

bibsonomy vs. 
Connotea

0.19 0.37 0.13

bibsonomy vs. 
CiteULike

0.16 0.47 0.09

ag_EN vs. 
mesh_prefLabel

0.15 0.14 0.17

ncithesaurus_prefLabel 
vs. 
mesh_prefLabel

0.14 0.10 0.24

mesh_prefLabel 
vs. Connotea

0.12 0.36 0.07

 
Table 9: Term set pairs with the highest F-measures 

term set mesh_all mesh_prefLabel Bibsonomy CiteULike Connotea

CiteULike 0.047 0.030 0.094 1.000 0.170

Connotea 0.104 0.073 0.129 0.297 1.000

Bibsonomy 0.075 0.047 1.000 0.470 0.370

mesh_all 1.000 0.301 0.039 0.122 0.155

mesh_prefLabel 1.000 1.000 0.081 0.263 0.363

 
Table 10: Precision/Recall estimates of the similarity between MeSH and three folksonomies.  

(Each cell in the table may be read as either the precision of the term set identified for the row with respect to the term set 
identified by the column or the recall of the column with respect to the row. For example, the first cell indicates that the 

precision of CiteULike with respect to mesh_all (including alternate term labels) and the recall of mesh_all with respect to 
CiteULike is 0.047.) 

 Bibsonomy CiteULike Connotea mesh_all mesh_prefLabel

Bibsonomy 1.000 0.157 0.191 0.051 0.059
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The fact that the Connotea term set contains nearly 9000 MeSH terms (36% of the entire set of preferred labels) 
suggests a) that there are a number of biomedical researchers using Connotea and b) that they have chosen, one 
way or another, to utilize MeSH terminology in the organization of their publicly accessible resource collections. How 
these terms came to be used in this manner is a more difficult question. In some cases, the Connotea users likely 
recreated the MeSH terms when going about their normal tagging practices; however, the relatively high level of 
overlap is suggestive of other underlying factors.  

Batch import in folksonomies 

Connotea, as well as the other social tagging systems in the study, offers a way to import data from other sources 
automatically. For example, it is possible to export bibliographic information from applications such as Endnote and 
then import these records as bookmarks within the Connotea system. This opens up the possibility that tags 
generated outside of the Connotea system, such as MeSH indexing by MEDLINE, can wind up in the mix of the tags 
contained within the Connotea folksonomy.  

To help assess the impact of imported tags on the contents of the Connotea folksonomy, we identified and removed a 
subset of the Connotea tags that were highly likely to have been imported through the use of additional information 
about the context of the creation of the tags, and then recomputed all of the metrics defined above. In a social 
bookmarking system like Connotea, tags are added to the system as descriptive annotations of Web resources. When 
a bookmark is posted to the system by a particular user, the tags associated with it, as well as a timestamp, are 
associated with the entry. Sets of bookmarks posted via batch import, for example from the contents of an Endnote 
library, will all have nearly identical timestamps associated with them. Thus, by pruning out tags originating only in 
posts submitted by the same user during the same minute, we constructed a new Connotea term set that should be 
more representative of the terms actually typed in directly by the users.  

Figure 13 shows the differences between the pruned Connotea term set (Connotea_no_batch) and the original 
dataset on both intra-set measures and measures of direct overlap with the MeSH preferredLabel term set. In every 
metric except for the skewness of the lengths of the terms, the pruned Connotea term set more closely resembled 
the other folksonomies. For example, in the pruned set, the % uniterms increased by about 10%, the % quadplus 
decreased by more than 30% and the flexibility increased by about 10%. The overlap with the MeSH prefLabels 
decreased from 0.12 to 0.11 with respect to the F measure, the precision decreased from 0.363 to 0.266, and the 
recall decreased from 0.073 to 0.069.  

CiteULike  1.000 0.217 0.068 0.054

Connotea   1.000 0.124 0.122

mesh_all    1.000 0.462

mesh_prefLabel     1.000

 
Table 11: F measures of the similarity between MeSH and three folksonomies 
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Figure 13: Differences between the full Connotea term set and Connotea term set with batch uploaded 

bookmark posts removed  

It appears the process of batch uploading bookmarks in Connotea, in cooperation with other personal information 
management practices such as the use of Endnote, has influenced the contents of the Connotea folksonomy. In 
particular, many MeSH terms appear to have been incorporated into it. Since most other folksonomies, including the 
others evaluated here, also have automated upload capabilities, it is highly likely that similar results may be observed 
within them. While this phenomenon makes the interpretation of folksonomy datasets more complex by obscuring the 
origins of the data, its illumination should provide new opportunities for investigation. For example, perhaps it would 
be possible to track the migration of terms across the boundaries of different systems through the addition of a 
temporal attribute to the inter-set metrics suggested here. Such data might help to explain the origins of the terms 
utilized in different indexing languages. One would assume for example, that many of the terms that now overlap 
between MeSH and the folksonomies appeared first in MeSH and then migrated over somehow; however, in the 
future, perhaps this process might be reversed as folksonomies are mined for candidate extensions to controlled 
vocabularies.  

Discussion 
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Robust, reproducible methods for comparing different information systems are vital tools for scientists and system 
developers faced with what has been called ‘an unprecedented increase in the number and variety of formal and 
informal systems for knowledge representation and organization’ (Tennis & Jacob 2008). Indeed, we are in a 
Cambrian Age of Web-based indexing languages. Metrics and tools, such as the system for indexing language 
characterization described here, can be used to provide information about how the many emerging kinds of 
information systems relate to one another. It can also be used in the design of new systems that incorporate ideas 
inspired by such comparisons, as suggested by the University of California’s Bibliographic Services Task Force (2005), 
or, as demonstrated by Good et al. (2006) and Willighagen et al. (2007), explicitly combine multiple extant systems 
to form novel hybrids. 

In the research presented above, we introduced metrics for the automatic characterization and set-theoretic 
comparison of sets of terms from indexing languages. Using these metrics, we provided a broad-spectrum analysis of 
twenty-two different languages. Within the data gathered in this exploratory analysis, we identified suggestive 
patterns associated with the terms that compose folksonomies versus the terms from controlled vocabularies as well 
as directly quantifying the degree of overlap present across each of the sets in the sample. Of particular interest is 
the apparent migration of terms across the boundaries of the different systems, in particular from MeSH into the 
folksonomies. Though the results presented here are informative, the main contribution of this work is the 
enumeration and implementation of the comparative protocol.  

Future term set analyses, particularly if they can be integrated with rich qualitative dimensions, might be put to any 
number of novel uses. Given the definition of these metrics and the provision of tools for their calculation, it would 
now be straightforward to test whether any of the term-based measurements are related to other attributes of 
information systems. For example, it might be interesting to test to see if any of these factors were predictive of 
system performance; e.g., is the percentage of uniterms in the tags that compose a folksonomy correlated with the 
performance of that folksonomy in the context of a retrieval task? If that answer turned out to be yes, then it would 
offer an easy way to estimate the retrieval performance of different systems and might suggest ways to improve 
performance, for example by adapting the tagging interface to encourage the contribution of more complex tags. 
Other potential applications include: comparative quality evaluation, term set warrant and the identification of 
relationships between term-set shape and theoretical types of indexing language. 

Comparative quality evaluation 

From the perspective of systems evaluation, one particular use of the methods defined here might be in gold-
standard based quality assessments similar to those described by Dellschaft and Staab (2006) for the automated, 
comparative evaluation of ontologies. If a particular indexing language is judged to be of high quality for some 
particular context, other structures might be evaluated for their quality in that or a very similar context based on 
their similarity to this gold-standard. For example, for the purpose of indexing biomedical documents for an 
institutional information retrieval system like MEDLINE, many would consider MeSH as a gold standard. The similarity 
of another indexing language, such as a folksonomy, to this standard might thus be used as a measure of its quality 
for indexing biomedical documents for retrieval. The principle advantage of such an approach is that it can be 
completely automatic, potentially helping to avoid the intensive manual labour and possible subjectivity associated 
with manual evaluations. The disadvantages are that, for any real, new application, (a) a gold standard is unlikely to 
exist and (b) any acceptable evaluation would still have to be informed by extensive qualitative alignment of the 
contextual attributes of the intended application in comparison with the gold standard.  

Term-set warrant 

The creators and maintainers of indexing languages often require justifications for the inclusion or exclusion of 
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classes within their structures (Beghtol 1986: 110-111). These justifications, referred to as warrants, may come in 
many forms, though the most commonly discussed is probably literary warrant. Essentially a particular kind of 
warrant bases the justification for the contents of an indexing language on a particular kind of empirical evidence 
(e.g., user requests) or argument (e.g., philosophical or scientific warrant). The inter-set metrics may provide data 
useful in the development of a new kind of warrant based upon the overlap between different structures. Essentially, 
such a term-set warrant might be invoked to justify the inclusion of terms or the concepts they represent based on 
the presence or absence of those terms in other structures. 

Relationship of term-set shape to theoretical type 

It is tempting to think that this approach, or some extension of it, could be used to describe meaningful types of 
indexing languages, not from design requirements, but from the actualization of those design requirements manifest 
in and observable to us in the shape of term sets. This could provide a weak empirical corroboration for types of 
indexing languages in use, not only according to standard or theory, but based on empirical evidence of term corpus. 
Defending and making use of such inferences would require a solid understanding of the meaning of the different 
shapes. The work presented here is exploratory and future work will have to substantiate any claim at deriving type 
from these empirical factors. However, we can see that, in this sample, there were clear distinctions between the 
shapes of controlled and uncontrolled vocabularies, demonstrating at this stage that we can hypothesize that 
folksonomies have a particular shape in relation to both thesauri and ontologies. Future studies may take advantage 
of the increasing number of different indexing languages to, for example, attempt to define the relationship of term-
set shape to the breakdown of theoretical type within the controlled vocabularies.  

Future work 

The metrics derived and applied here operate at what amounts to a syntactic level and no specific attempt, other 
than rudimentary term normalization, was made to identify the concepts present in the different indexing languages. 
A natural extension of this work would be to apply natural language processing technology to make this attempt. The 
rough indications of semantic similarity provided by the inter-term set comparisons could be made much more robust 
if the comparisons were made at the level of concepts rather than terms, for example making it possible to equate 
synonymous terms from different languages.  

Aside from the incorporation of natural language processing technology for concept identification, it would be useful 
to consider the analysis of predicate relationships between the terms (e.g., the hierarchical structure) and the 
analysis of the relationships between terms and the items they may be used to index. Metrics that captured these 
additional facets of information systems, characteristic of their form and application, would provide the opportunity 
for much more detailed comparisons, thus forming the raw materials for the derivation and testing of many new 
hypotheses.  

There remain many indexing languages, both controlled and uncontrolled, that are available online that have not 
been characterized with the methods and from the naturalistic perspective adopted here. In addition to improving 
and expanding methods, the majority of future work will be the application of these tools to the analysis of other 
languages. 

Conclusion 

We are at the very beginning of a rapid expansion in the number and the diversity of different frameworks for the 
organization of information. As more and more information systems come into the world, the application of 
expository, reproducible protocols for their comparative analysis, such as the one described in this article, will lead to 

Page 30 of 35Term based comparison metrics for controlled and uncontrolled indexing languages

4/13/2009http://informationr.net/ir/14-1/paper395.html



ever increasing abilities to illuminate and thus build upon this expanding diversity of form and content. 

Note 

Availability. All materials, including the programs generated to conduct the term set analysis and the term sets 
analysed, are freely available at http://biordf.net/~bgood/tsa/.  
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Appendix 1. Data collection: assembly of term sets 

MeSH 

1. Files representing the 2008 release of MeSH were downloaded from http://www.nlm.nih.gov/mesh/filelist.html 
on 11 February 2008.  

2. The preferred labels for the terms were taken from the downloaded file 'mshd2008.txt'.  
3. The union of the preferred labels and the synonyms (mesh all) was extracted from the downloaded MeSH XML 

file 'desc2008' using a Java program.  

Page 33 of 35Term based comparison metrics for controlled and uncontrolled indexing languages

4/13/2009http://informationr.net/ir/14-1/paper395.html



4. The MeSH terms with comma separated adjectives, like 'Cells, Immobilized', were programmatically re-ordered 
to reflect a more natural English language usage of adjective-noun, such as 'Immobilized Cells'. This step was 
taken to facilitate comparison with the other indexing languages that tended much more towards this form.  

OWL/RDF formatted thesauri and ontologies 

Unless otherwise, noted, all the labels for the concepts and their synonyms were extracted from the files using 
custom Java code built with the Jena OWL/RDF API. 

ACM – Association for Computing Machinery 

An OWL-XML version of the 1998 ACM thesaurus was acquired from Miguel Ferreira of the Department of Information 
Systems at the University of Minho. 

AG – AGROVOC thesaurus from the Agricultural Information Management Standards initiative 

An OWL-XML file containing the thesaurus ('ag_2007020219.owl') was downloaded from 
http://www.fao.org/aims/ag_download.htm 

BioLinks 

BioLinks is a subject listing used to organize the bioinformatics links directory. An OWL version of these subject 
headings was composed by one of the authors in August of 2007, and is available at 
http://biordf.net/~bgood/ont/BioLinks.owl. 

Open Biomedical Ontologies (OBO) 

The daily OWL versions of the following ontologies from the OBO foundry were downloaded from 
http://www.berkeleybop.org/ontologies/ on 11 February 2008. 

 Gene Ontology (biological process, molecular function, cellular component)  
 CARO – common anatomy reference ontology  
 CHEBI – chemical entities of biological interest  
 CL – cell ontology  
 ENVO – environment ontology  
 FMA – an OWL version of the Foundational Model of Anatomy  
 NCI Thesaurus – National Cancer Institute thesaurus  
 OBI – Ontology for Biomedical Investigations  
 PATO – Phenotypic Quality ontology  
 PRO – Protein Ontology  
 SO – Sequence Ontology  
 ZFA – Zebrafish Anatomy and Development Ontology  

GEMET 

GEMET - the thesaurus used by the European Environment Information and Observation Network - was downloaded 
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from http://www.eionet.europa.eu/gemet/rdf?langcode=en on 15 February 2008. The English terms were extracted 
from the provided HTML table. 

Folksonomies (collections of tags created in social bookmarking systems) 

 Connotea  
The Connotea folksonomy was extracted from 377885 posts to Connotea collected prior to 12 December 2007. 
The Connotea Web API and the Connotea Java library were used to gather and process the data.  

 Bibsonomy  
The Bibsonomy tag set was extracted from a 1 January 2008 export of the Bibsonomy database. It is available 
for research upon request from Webmaster@bibsonomy.org.  

 CiteULike  
The CiteULike tag set was extracted from a 31 December 2007 export of the CiteULike database. Daily versions 
of this database are available for research purposes from http://www.citeulike.org/faq/data.adp.  
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