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It has been recognised that many student perspectives on equations and their use of 
the equals sign have not mirrored those that mathematicians would like to see in 
tertiary students. This paper tracks transition of understanding of the equals sign by 
comparing secondary school students’ thinking with that of first year university 
students. We analyse the understanding displayed in terms of properties of the 
constituent parts of equations, identifying a number of incomplete or pseudo-
conceptions that are sometimes influenced by representational aspects of the 
properties, and other times by apparent over-generalisation of a property. A start is 
made on constructing a framework for understanding of the mathematical equation 
object that could assist in the transition from school to tertiary mathematics study. 

Background 
Ubiquitous mathematical concepts such as equation, where understanding 

forms a crucial part of the mathematical experience from early school years right 
through to tertiary study, need to form part of any discussion of the transition from 
school to university. While to the experienced mathematical eye equations appear 
as a single object they are often seen by students to consist of a number of separate 
entities. Each of these parts, and indeed the gestalt they comprise, may, according 
to Laborde (2002), be viewed from several perspectives including a surface or 
perceptual one, and a mathematical one, from which the mathematical properties 
of the entity or object are understood. In this paper we seek to examine the role of 
the mathematical properties that constitute the concept of equation, by reference to 
the embodied, symbolic and formal worlds of thinking (Tall, 2004, 2007). This 
involves a consideration of arithmetic numbers, symbolic literals, operators, the ‘=’ 
symbol itself, and the formal equivalence relation, and how each may contribute to 
understanding of equation for students at different stages of mathematical 
development. Hence, our hypothesis is that understanding the mathematical 
equation object requires the formation and integration of individual properties 
from a number of areas, and that the crucial binding agent for such understanding 
of the constituent parts is language, although this aspect is not explicitly addressed 
here. 

There is no doubt that many students struggle to attach meaning to many of 
the symbols used in mathematics. Mason (1987) suggests that a semiotic problem, 
concerning the relationship between the sign and the signified, or the symbol and 
the symbolised, is at the root of this. For equation, the use of the sign ‘=’ to signify 
‘is equal to’ dates back to when Robert Recorde in the Whetstone of Witte (1557) 
first used ‘=====’ (see Figure 1 for the original and a translation into modern 
English). Prior to this time mathematicians laboriously wrote out the words ‘…is 
equal to…’, which was sometimes abbreviated to ae (or oe), from the Latin for 
equal—aequalis (Lacey, 2004).  

Further, the process of attaching appropriate meaning to mathematical 
symbols may be subverted by teaching that is heavily weighted in favour of 
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instrumental learning (Skemp, 1976). Such a learning environment encourages a 
process-oriented view of mathematics (Thomas, 1994), where the object of study is 
not cognitively engaged, and hence pseudo-conceptions (Vinner, 1997) are more 
likely to occur. Once these pseudo-conceptions are in place they can be very 
resistant to change and may act as cognitive obstacles when a student is 
encouraged to perceive a mathematical object, such as an equation, via its 
properties. For example, while many students develop a reasonable working 
knowledge of arithmetic numbers and their operators, the same cannot be said of 
symbolic literals (Küchemann, 1981). 

 

 
And to avoid the tedious repetition of these words: is equal to: I will 
set as I do often in work use, a pair of parallels, or Gemowe [ie twin] 
lines of one length, thus: =====, because no 2 things, can be more 
equal. 

Figure 1. Robert Recorde’s (1557) first use of an ‘=’ sign. 

Previous research agrees with placing an emphasis on symbolic 
understanding, and has suggested that to use equations in a versatile, 
mathematical way a strong symbol sense should be developed (Arcavi, 1994; Pierce 
& Stacey, 2001; Warren, 2001), rather than just an input-output process 
understanding. While symbol sense has not been fully defined, it should include 
the knowledge that the correctness of an algebraic transformation may be checked, 
and that modelling particular phenomena requires a particular type of function. 
Further, a view of letters as encapsulated objects (Tall, Thomas, Davis, Gray, & 
Simpson, 2000) appears to be an important attribute. However, those who have 
espouse symbol sense, such as Arcavi (1994), have often limited their discussion to 
behaviour demonstrating good use of literal symbols, with less emphasis on other 
symbols, such as the equals sign. Pierce and Stacey’s (2001) framework for 
algebraic insight characterises symbol sense in terms of two key aspects: algebraic 
expectation, requiring an emphasis on the structure and key features of algebraic 
expressions, and the ability to link representations.  

There is clear evidence that school students exhibit problems going beyond the 
separator-operator interpretation of the equals symbol (Baroody & Ginsburg, 
1983). While some can develop flexibility in accepting the use of the equals symbol 
in a variety of arithmetic sentence structures (Denmark, Barco and Voran, 1976) 
they may still view the equals symbol primarily as an operator rather than a 
relational symbol. Investigating student acceptance of an equivalent amount 
written in a variety of ways (e.g., 4+7=12–1), Herscovics and Kieran (1980) found 
that students were able to accept and work comfortably with arithmetic identities 
containing multiple operations on both sides. This suggests that the meaning of the 
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equals symbol needs to evolve from the intuitive ideas of sameness, or counting 
the total found in arithmetic (Gelman & Gallistel, 1978) and the idea of the result of 
or answer to a procedure (Kieran, 1981), to a notion of the equivalence of algebraic 
statements with reflexive, symmetric and transitive properties. While this process 
of change does not appear to come easily or quickly to many students, Whitman 
and Okazaki’s (2003) results showed that student understanding of “=” as 
equivalence could be improved from the first to second grade. In her research 
examining the ideas of quantitative sameness with 5 year olds Warren (2007) also 
concluded that, not only are they capable of this conception, but they can represent 
it using real world contexts and symbolic form. 

In the light of the above, when we ask the question ’What is an equation?’ we 
may get a number of differing responses, with schools and universities providing 
different emphases. Tall’s theory of three worlds of mathematical thinking 
provides a framework for looking at how and why a teaching sequence influences 
the growth of the equation as a mathematical object for the learner. Tall (2004, 
2007), describes three distinct but interrelated worlds of mathematical thinking, 
and bases his theoretical framework on a consideration of the different types of 
activity that underpin the mathematical thinking in each world. This model 
acknowledges that children perceive and act on the world, and build up 
increasingly sophisticated mathematical ideas by reflecting on the results of their 
perceptions and actions. This occurs in two different ways. If perception is the 
focus of thought about real world objects a categorization process takes place 
leading to the development of properties and a more sophisticated conception 
through performing thought experiments. This world, incorporating the iconic and 
enactive modes of Bruner (1966), he has named the embodied world. Applying this 
idea to equations, we see that thinking about relationships in the embodied world 
gives the child an initial experience with equations, an opportunity to grapple with 
the ideas of equality, without the need for any sort of written symbolism. 
However, at some stage they will need to shift their “…attention from the steps of 
an action to the effect and imagining the effect as an embodied object” (Tall, 2007, 
p. 5), thus moving to a stage of embodied compression. 

The introduction of symbols allows us to carry out processes e.g. addition, 
differentiation, but also allow us to think of the symbols as concepts that may be 
held in the mind e.g. sum, derivative. This duality of symbol use is termed a procept 
(Gray & Tall, 1994), and enables precise quantitative information to be obtained 
beyond that possible in an embodied world.  This world is termed the symbolic 
world. A change from symbolic manipulation to a formal approach in which 
definitions are formulated to build a systematic axiomatic theory heralds the move 
from the symbolic world to the formal world, the third of Tall’s worlds of 
mathematical thinking.  

One view of an equation is as a structural statement, or representation of a 
mathematical relationship between entities that are the objects of an algebraic 
and/or arithmetic representation system. One of the requirements for generating 
and adequately interpreting an equation structurally is a conception of 
equivalence. In the symbolic world this is usually achieved by algebraic 
manipulation leading to perception of the same structural form. However, 
sometimes there is no need for such manipulation, and in their research with 
preservice teachers, Hansson and Grevholm (2003) found that very few preservice 
teachers considered that y=x+5 was an equation, instead tending to a numerical 
interpretation of y=x+5. As thinking progresses in the transition from school to 
university, from the symbolic world to the formal world, the reflexive, symmetric, 
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and transitive character of the equals sign should come to the fore, and it is 
through these properties, recast as axioms, that the formal world conveys the 
concept of an equivalence relation. On this topic of equivalence, Gattegno (1974, p. 
83), stated: 

We can see that identity is a very restrictive kind of relationship concerned with 
actual sameness, that equality points at an attribute which does not change, and 
that equivalence is concerned with a wider relationship where one agrees that for 
certain purposes it is possible to replace one item by another. Equivalence being 
the most comprehensive relationship it will also be the most flexible, and therefore 
the most useful. 

In spite of these ideas it is not that easy to specify precisely what an equation 
is, or may be. A Collins mathematics dictionary (Borowski & Borwein, 1989, p. 194) 
deals with the definition in this way 

Equation, n. a formula that asserts that two expressions have the same value; it is 
either an identical equation (usually called an IDENTITY), which is true for any 
values of the variables, or a conditional equation, which is only true for certain 
values of the variables (the ROOTS of the equation). 

Thus they specify two possible types of equation: a conditional equation; and an 
identical equation and so, for example, 2x+1=6 would be a conditional equation, but 
2(2x+1)=4x+2 would be an identical equation (or equivalence); we make use of this 
distinction in our analysis below.  

The purpose of this present research study was to identify the progressive 
nature of student thinking about distinctive properties of the different types of 
equation during the transition from secondary school to university, in order to 
identify areas where targeted teaching might improve construction of the 
mathematical object. Thus we tracked students’ perceptions of what constitutes an 
equation and related these to the mathematical object. 

Method  
The results discussed here are taken from a large cross-sectional study aimed 

at mapping out changes in student use and understanding of the equals sign 
through secondary school and into tertiary study. We present results from three 
groups of students, in the lower secondary school, upper secondary school, and 
first year at university. 

The first group (P) comprised 29 Year 10 students (age 14-15 years), 8 female 
and 21 male, from a large, coeducational, high socio-economic school (decile 10 of 
10) in Auckland. They were given a questionnaire with 12 questions aimed at 
different aspects of equation, previously identified as important to understanding 
(Godfrey & Thomas, 2003) and appropriate to their age. They were given 55 
minutes to complete the questions, doing so in a normal mathematics class.  

The second group (Q) contained 76 Year 13 students (16-18 years old), 39 
female and 37 male, from two large, multicultural, coeducational, public schools 
situated in the suburbs of Auckland, but different from the group P school. While 
these students were from Year 13, the data was collected in late April so the 
students had had very little experience at this level. School A has a socio-economic 
rating of decile 6 and school B 4. Both these classes were considered mixed ability 
by their respective schools, and the students had chosen to study Mathematics 
with Calculus or Mathematics with Statistics in their final year at school. A 
questionnaire containing two parts, part A with 6 questions and part B with 5 
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questions, was given to the students to complete during one of their normal 
mathematics periods. The first-named researcher supervised the administration of 
the questionnaire by the teachers, who were keen to be involved. 

The third group (R) consisted of 30 first year students at The University of 
Auckland taking the Mathematical Modelling paper offered by the Engineering 
Science Department of the Faculty of Engineering. Five of the students (three 
females and two males) were from the Faculty of Science, doing the Food Science 
degree programme and the rest of the students (eight females and seventeen 
males) were from the Faculty of Engineering. The latter group are considered to be 
of very good mathematical ability, while the former group are generally 
considered not as good at mathematics. A questionnaire containing 2 parts, 6 
questions in the first and 5 questions in the second, was given to the students to 
complete after one of their normal mathematical modelling lectures and the first-
named researcher supervised administration of the questionnaire. They were given 
1 hour to complete the questionnaire, which proved to be ample time.   

Results 

Group P 
Figure 2 contains a summary of the 2 of the 12 questions given to Group P that 

are considered in the analysis below. Question 5 of this questionnaire asked 
students to identify from a list of five statements those that they thought were 
equations, giving reasons for their choices.  

 
 

5. Pick out those statements that are equations from the following list and 
write down why you think the statement is an equation. 
a)  k = 5  
b) 7w ! w   
c) 5t ! t = 4t  
d) 5r ! 1 = !11  
e) 3w = 7w – 4w 
10. If p = q + 3 and q + 3 = 2 – r, write p in terms of r. 

 
Figure 2. Two of the questions from the group P questionnaire. 

Overall the responses to what constitutes an equation for Group P students 
showed that 10 (34.4)% of them thought that k = 5  was an equation, 5 (17.2%) 
7w ! w , 21 (72.4%) 5t ! t = 4t , 23 (79.3%) 5r ! 1 = !11 , and 24 (82.8%) 
3w = 7w ! 4w , as seen in Table 1. The low rate of acceptance of k = 5  was not 
surprising, but we wanted to try and see what the students’ thinking was for 
rejecting this, and the items in the other question parts. A further examination of 
the individual student responses found that most of them fell into one of the three 
distinct categories described in Table 2. These categories may be exemplified by the 
responses of the students shown in Figures 3–6.  
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Table 1 
Group P Questionnaire Responses for Question 1.5 (N=29) 

Question 1.5 Yes No No Response 
a) k = 5  10 17 2 
b) 7w ! w   5 22 2 
c) 5t ! t = 4t  21 6 2 
d) 5r ! 1 = !11  23 4 2 
e) 3w = 7w ! 4w  24 3 2 

Table 2 
Categories of Responses for Question 5 

Statements that are 
an equation 

Stated reason for the choice Number of students 
in category 

a, c, d, e Needs an = sign 8 
b, c, d, e Needs an operation to carry out 3 
c, d, e Needs an = sign and an operation 

to carry out 
9 

It seems that the 8 category 1 students (see Figure 3) were basing their decision 
primarily on the surface structure of the equation; if it contains an equals sign then 
it is an equation. They responded, for example: 

P7.  An equation has an = sign in it 

P12. Equation, = is present 

P13. Because they have equals in them 

P21. These are equations because they have an = sign in the statement 

 
 

P7 
 

P21 

Figure 3. Examples of category 1 equation responses in question 5. 

In contrast the 3 category 2 students have the perspective that ability to carry 
out an operation to produce a result is the crucial factor for it to be an equation, 
regardless of whether there is an explicit ‘=’ sign present. Hence, we see that these 
students were happy to accept 7w ! w  as an equation, but reject k = 5. For the 
former they no doubt think that the sign is implicit and may be supplied prior to 
writing the answer (Kieran, 1981). As primarily symbolic world thinkers they place 
an emphasis on symbolic manipulation. These students explained their thinking in 
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the following ways (see also Figure 4): 
P1. …they involve taking 2 or more sets of numbers and either subtracting, adding 
or multiplying or dividing to get another number. 

P16. because you have to subtract, add, multiply and/or divide. 

P20. because there is still stuff to figure out. 

P26. because it envolves [sic] –, +, ×, ÷ sign in it. 

 
P1 

 

 
P20 

 
P26 

Figure 4. Examples of category 2 equation responses in question 5. 

The 9 category 3 students have a subtly different perspective from the second. 
While there must still be an operator, or as student 8 puts it “more than just one 
letter or number on the side”, implying an operator between them (see Figure 5), 
they also require an explicit ‘=’ sign to be present, and hence they reject both 
7w ! w  and k = 5, for different reasons. They comment that: 

P8. because they have equals sign and more than just one letter or number on the 
side. 

P16. Because it has an answer and a means of getting the answer.  

P24. Because it has an answer and uses subtraction. 

P29. They all have an = sign and it’s not just a statement like a). 

 
P8 

 
P29 

Figure 5. Examples of category 3 equation responses in question 5. 
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Among those not fitting neatly into this threefold classification were 6 students 
(there were also 3 no-response students) who gave a mixture of answers with little 
discernible consistency or pattern. It seems that they may be in transition between 
the groupings we have identified, or they may have developed pseudo-
conceptions. What they seem to have in common though is an emphasis on 
symbolic world thinking and the need for procedural operators, and on wanting to 
‘solve’ an equation. Some of their reasons for answers were: 

P3 – gave c and e, “Because it has a correct answer”;  “the answer is right.” 

P4 – gave b, d and e, “yes, because w stands for a number and you are minusing it 
from 7w”; For b he said “no, the t’s do not represent a number…”, so he has a 
specific unknown view, but only of particular letters. 

P20 – gave b, c and e “because there is still stuff to figure out.” She is close to a 
group 2 member but she only applies the operator to letters and not to part d 
which has 5r – 1. 

P27 – gave c and d, saying “has equal sign and only one unknown number” stating 
for e that “it is already true so it is not an equation.” He seems to be moving 
toward category one, but also wants to have some work to do. The reason for his 
failure to group e with c is shown in Figure 6, where he says that it is ‘already true’. 
This shows that his thinking is in transition. 
 

 

 

Figure 6. Student P27’s equation responses in question 5. 

Student P6 chose only 5c) as an equation (see Figure 7), rejecting 3w = 7w – 4w, 
and hence was requiring equivalence, but apparently only in the process-oriented, 
left to right, format identified by Thomas (1994), since she wants the ‘sum’ to 
appear before the answer, writing that this ‘goes in correct order’ and to be correct. 
 

 

Figure 7. Student 6’s equation response in question 5. 

We were interested to know how the categories identified above would mesh 
with student perspectives on transitivity, and Question 10, If p = q + 3 and q + 3 =  
2 – r, write p in terms of r, requires the ability to use the transitivity property of the 
‘=’ sign in an equation. Table 3 shows the Question 10 results of the 20 students in 
the 3 categories (see Figure 2 for the question).  
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Table 3 
Results on Question 10 for the 3 Categories of Students 

Category of Understanding of Equation Number with Q10 correct 
1 7 (out of 8) 
2 1 (out of 3) 
3 3 (out of 9) 

Category 2 was a small sample and only one student got the question correct, 
making them a less successful group. Overall it appeared that the category 1 
students were generally more successful than the category 3 group. However, we 
note that the students who wrote p=–r+2 rather than p=2–r had probably not 
applied the transitive property directly, but had likely resorted to symbolic 
manipulation to get answer. Only student 20 of the 6 non-categorised students 
correctly answered question 10. What do these results tell us? It may be deduced 
that the students who still had some view of equation as requiring operators and 
solutions did not perform quite as well as those who used the surface structure of 
the presence of an ‘=’ sign. This latter group may have subsumed other knowledge 
of equations, such as structure sense, under this umbrella catch-all, since 62.5% of 
them were able to apply the transitive property, compared with only 33.3% of the 
members of the other two, primarily procedure-oriented groups. 

Table 4 
Results on Question 10 for Category 1 and 3 Students 

Category 1 7. p=2–r; 12. p=2–r; 13. p=2–r; 15. p=–r+2; 17. p=2r; 18. p=2–r; 21. 
p=2–r; 30. q=2–r–3, q=–1–r, p=–r+2. 

Category 3 2. p–2=r; 8. p=2–r; 9. p=2–r; 11. p=q–2+r; 14. p=2–r; 23. NR; 24. NR; 
25. NR; 29. r=–q–1, q+1=–r. 

Group Q 
Figure 8 contains a summary of the 3 Group Q questions that are analysed 

here. Questions 1 and 2 address the way that students define equation, and 
Question 5 has been chosen to correspond with that given to Group P.  

 
1. Explain what an equation is. [read question 3 below before answering] 
2. Give an example(s) of an equation. 
5. Look at the following list.  Decide which ones you consider are equations 
and circle the Y.  Circle the N if you think they are not equations.  If you 
would like to comment please do so beside each statement. 
a) a = 5   Y N 
b) 7w ! w   Y     N 
c) 5t ! t = 4t  Y N 
d) 0 = x

2

+ 2x ! 5  Y N 
e) 3w = 7w ! 4w  Y N 
f) a = a   Y N 
 

Figure 8. Three questions from the group Q questionnaire (some minor changes). 



80 Godfrey & Thomas 
 

In this case 5d), 0 = x
2

+ 2x ! 5 , replaced the equation 5r – 1 = –11 as an 
appropriate standard of equation that is solved at the students’ level. In addition 
these older students were also asked whether a=a is an equation, in order to see if 
they were progressing in formation of the reflexive property of equivalence. 

Overall the responses to what constitutes an equation for Group Q students are 
shown in Table 5. Again we see a wide spread of facilities in the questions, from a 
sizeable minority, 21 (27.6%) accepting 7w ! w  as an equation with an implied 
equals, to 72 (91.1%) agreeing with 0 = x

2

+ 2x ! 5 . On the other hand 43 (56.6%) 
were unwilling to accept a = 5, and 47 (61.8%) did not see a = a as an equation, even 
though they probably considered it to be true. Thus a majority did not accept as 
valid the assignment [or definition] format, or the equivalence property uses of the 
‘=’ sign that are so common in formal world thinking. Like the younger secondary 
students, these students were still very much symbolic world thinkers. 

Table 5 
Group Q Responses for Question 5 (N=76) 

Question 5 Yes No No Response 
a) a = 5  31 43 2 
b) 7w ! w  21 53 2 
c) 5t ! t = 4t  62 12 2 

d) 0 = x
2

+ 2x ! 5  72 2 2 

e) 3w = 7w ! 4w  61 13 2 
f) a = a  27 47 2 

As with group P, most of the students’ responses in Question 5 fell into the 
same three categories, although we were able to identify an additional two 
categories that also appeared to have some students (see Table 6). These latter two 
categories may have emerged from the crystallization of some of the ideas of the 
younger students, who seemed to emphasise the solving aspect of an equation by 
carrying out an operation, but had previously not done so in a systematic manner. 
Nine students did not fall neatly into any of these classes. 

Table 6 
Categories of Responses for Question 5 (N=76) 

Statements which 
are an equation 

Stated reason for the choice Number of students 
in category 

a, c, d, e Needs an = sign 24 
b, c, d, e Needs an operation to carry out 10 
c, d, e Needs an = sign and an operation 

to carry out 
20 

b, d Needs an operation but is not an 
identity or an assignment 

7 

d Needs an operation and an = sign 
but is not an identity or an 
assignment 

4 
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For the extra equation, 5f), presenting the reflexive property, one might expect 
from Table 3 that only the first group of 24 would agree that a=a is an equation, 
since it has an ‘=’ sign but no operation to perform. In the event this was close to 
what happened, with 27 (35.5%) saying it is, and 47 (61.8%) that it is not. This result 
shows that, even in the final year of secondary school relatively few students have 
developed an understanding of the reflexive property as belonging to the concept 
of equality or equivalence. 

Responses to Question 1 of the 24 students in category 1 seem to confirm the 
use of a surface structure view of equation (Laborde, 2002), looking at the equation, 
rather than through it (Mason, 1995) without overlaying the properties of the object 
on that surface structure (Thomas, 2006). However, the extent to which they are 
also using an underlying equation schema with other properties is not clear. 
Typical responses were: 

Q6. Unknown numbers on each side connected with = sign 

Q33. Formula that makes sense with = sign 

Q41. One thing is = to another 

The only clear requirement for the 10 category 2 students was for an operation 
to be present, with the equals sign implicit or explicit, but this was often not 
mentioned in their responses. However, they clearly wanted, as a priority, to be 
able to ‘solve’, ‘find’, ‘work out’ or ‘calculate’ an answer: 

Q13. Mathematics problem to be solved to get an answer 

Q28. Mathematics question requiring an answer 

Q39. Mathematics statement which enables user to work out unknowns 

Q50. Mathematics sentence/statement…specific calculation to find something 

For the category three students an added requirement, apart from an operation 
to be present, was the addition of an equals sign as a signal of the answer (Kieran, 
1981), although they did not often mention it explicitly. Some who did said: 

Q15. One with = sign and some operations 

Q59. Both sides the same, with = sign, sometimes an unknown 

Q62. Set of numbers and letter[s], used to solve problems, LHS = RHS 

Those in category 4, who did not allow their ‘solution’ to the equation to 
produce an identity, but were happy not to have an explicit equals sign, 
concentrated on the solving-for-answer aspect, and tend to have the embodied 
input-output perspective: 

Q12. Mathematics problem to be solved to get an answer 

Q30. Question written numerically and requires an answer, has variables 
sometimes 

Finally, the 4 students in category 5, who were similar to those in category 4, 
but demanded an explicit equals sign, also emphasised the embodied solution 



82 Godfrey & Thomas 
 
aspects: 

Q20. Mathematics way to calculate or figure out something 

Q31. Mathematics statement to find a solution to a problem 

Q44. Method of mathematics to find unknown value 

Group R 
This group is clearly important in our consideration of the changing ideas of 

equation in the transition from school to tertiary study. One would hope that the 
undergraduate group might have consolidated their understanding of equation in 
the symbolic world and be moving towards the acceptance of properties in their 
own right, as a pre-cursor to formal world thinking. Figure 9 shows some of the 
questions that were given to the Group R first year university students. Again the 
examples used in Question 5 did not correspond exactly with those given to the 
other two groups, but they were intended to be parallel types appropriate for these 
older students. For example, 5c) is an identity appropriate to this level of student 
and replaces the identity 5t – t = 4t given to the other students. A second equation 
describing a property, this time the symmetric property has also been added for 
these students to see if they were developing a property perspective for 
equivalence.  
 

1. Explain what an equation is. [read question 3 below before answering] 
2. Give an example(s) of an equation. 
3. What is an equation for? 
5. Look at the following list.  Decide which ones you consider are equations 

and circle the Y.  Circle the N if you think they are not equations.  If you 
would like to comment please do so beside each statement.   

a) a = 5  b) 7w ! w   c) x(x + 2) = x
2

+ 2x   d) 0 = x
2

+ 2x ! 5  
e) a = a  f) a + b = b + a  

Figure 9. Four questions from the group R questionnaire (some minor changes).  

Hence, taking parts a) to d) for the categories we have seen before we would 
expect a category 1 student who judges on the equals sign to reject b) and answer 
yes to a), c) and d). A category 2 student who wants an operation to carry out 
would reject a) and accept b), c) and d), and so on (see Table 7). 

This shows that most of the university students are happy simply to require 
the explicit presence of the equals sign, although there are still a few (3) who place 
more emphasis on having an operation to carry out. For example student R12 
describes an equation as: 

 …when two statements are equate[d] with the use of an “=” sign. One of the 
statement[s] could be the process involved to produce a conclusion and the other 
one is the conclusion. It could also be two statements equating the different process 
that come with the same conclusion. 
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The multiple use of the words ’process’ and ‘conclusion’ in this explanation 
strongly suggest an emphasis on operational or procedural thinking with a 
subsequent result or output. 

Table 7 
Categories of Undergraduate Group R Responses for Question 5 (N=30) 

Statements 
that are an 
equation 

Stated reason for the choice Number of students 
in category 

a, c, d only Needs an = sign 17 (58.6%) 
b, c, d only Needs an operation to carry out 3 (10.3%) 
c, d only Needs an = sign and an operation to 

carry out 
4 (13.8%) 

b, d only Needs an operation but is not an 
identity or an assignment 

0 

d only Needs an operation and an = sign but 
is not an identity or an assignment 

0 

The other 5 students either had no response or a combination difficult to categorise. 

When we examined other responses to Question 1 for an understanding of 
what an equation is, there was no unanimity of answer; in fact the variety of 
responses was somewhat surprising. Some students mentioned embodied 
constructs, such as the input-output idea seen in younger students (eg R6 “An 
equation is a set of principals [sic] that operate on a given input variable in such a 
way that gives a different output value”), or focussed on the visual nature of the ‘=’ 
sign (R2 “Equation is a mathematical representation of a set of variables and 
constants on either side of an ‘=’ sign”; R20 “Right hand side = Left hand side”). 
Six students put an emphasis on the process of solving or evaluating to find the 
value of an unknown that is at the centre of much early work in the symbolic 
world of the secondary school (R7 “An equation is a set of expressions that have 
equal value when evaluated at the left hand side and the right hand side in 
comparison”; R14 “A mixture of numerical and/or alphabetical components which 
are constructed to assist in problem solving…they usually have unknown values 
which we try to find”; R15 “An equation is a mathematical formula form by some 
unknown variables and numbers. And it is those unknown variables we are trying 
to find a value/answer to it”). 

Some of the more interesting responses to the question were found in the five 
students who mentioned relationships as the core of equation (e.g., R9 “Provides a 
mathematical relationship between 2 or more variables, or gives information about 
any variable”; R17 “Something used to mathematically describe what is happening 
in a system and how the different components of it are related to each other”). This 
last comment shows the influence of engineering science study on their perception.  

A number of the student responses could not be easily categorised since they 
crossed boundaries. For example, R22 described an equation as a “Statement given 
to solve unknown variables in order to equate the right hand side is equal to the 
left hand side”. This uses the idea of a statement property but then places the 
emphasis on solving to find an unknown, hence straddling statement and 
evaluation categories. Further, R21’s comment that it is a “Statement of 
relationship between sets of terms (which is built by one or more mathematical 
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operations)” crosses between the categories of statement and relationships. R1 was 
one of only two students who used the word equivalence, saying it is “The way to 
express equivalence between things”. 

One of the aspects of equality that undergraduate students need to learn as 
part of the transition from school is the concept of an equivalence relation. Hence, 
this study considered the extent to which early undergraduates have this 
conception. We see from Table 8 that Group R students have made some progress 
over the school students in understanding the reflexive property, with 18 (60%) 
accepted a=a as an equation in question 5e), compared with 35.5% of Group Q. 
However, this indicates that 40% were still forming an understanding of the 
reflexive property of equivalence relations, or at least accepting its written 
algebraic representation as an equation. An indication that thinking is still more in 
the symbolic world than the formal world for some students was the fact that in 
question 5f) 8, or 26.7%, did not see a + b = b + a as an equation describing the 
commutativity property of addition, that becomes an axiom in formal world 
thinking (although 22, or 73.3%, did). 

Table 8 
First Year Undergraduate Questionnaire Responses  

Question 5 Yes No No Response 
a) a = 5  21 8 1 
b) 7w ! w  4 26 0 

c) x(x + 2) = x
2

+ 2x  27 2 1 

d) 0 = x
2

+ 2x ! 5  29 1 0 

e) a = a  18 12 0 
f) a + b = b + a  22 8 0 

Group Comparisons 
When we analyse and compare the results from the Groups P and Q students 

what do we see? It seems clear that there is a strong sense of procedural necessity 
that is attached to the concept of equation for these school students, whose 
thinking is dominated by the symbolic world, and for a significant minority this 
requirement is strong enough to overrule the need for an explicit ‘=’ sign to be 
present. The other large group present in both years comprises those who are 
generally satisfied if the ‘=’ sign is present, but who also require some operation to 
carry out. These students do not accept a simple assignment as an equation. 

The answers to a typical question from a university linear algebra examination 
raised an issue regarding the transitive property. 
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Figure 10. An undergraduate linear algebra question.  

What was interesting in this question (see Figure 10) was that, in part (ii), 
students have to consider when both quadratic expressions in k are zero. We 
noticed that some students used the transitive property to argue, correctly, that 
since we require both 3k

2

+ 2k ! 1 = 0  and 3 + k ! 2k
2

= 0  then it must be true that 
3k

2

+ 2k ! 1 = 3 + k ! 2k
2 . However, they then went on to accept both solutions of 

this equation as belonging to the intersection of the solution set of the first two 
equations. This is an over-generalisation, reversing the implication of the transitive 
property, and we decided to investigate this further to see how common it was. 
Question 8 in the questionnaire given to both Groups Q and R used exactly these 
expressions, asking: 

8. Sarah argues that if 3k
2

+ 2k ! 1 = 0  and 3 + k ! 2k
2

= 0  then it is true that 
3k

2

+ 2k ! 1 = 3 + k ! 2k
2 . Is she right? Explain your answer. 

For Group Q 33 students (43.4%) said that this was acceptable, while 23 (30.3%) 
said that it wasn’t, and 20 (26.3%) gave no response. Of the 30 students in Group R, 
13 (43.3%) answered ‘yes’, 8 (26.7%) said ‘no’, 5 (16.7%) that ‘it depends’, while 4 
(13.3%) gave no response. Thus, for both groups, while around 43.3%, agreed that 
it was correct to equate the two expressions, 27-30% thought that it was not. The 
reasons given for each position are important, and typical reasons from Group R 
students for and against using transitivity can be seen in Figures 11 and 12. 

We see that most of those who answered that the two expressions were equal 
reasoned using the transitive property; since both equalled zero then they must 
equal each other. They are moving towards formal world thinking based on 
axiomatic properties, and correctly followed reasoning that has been around since 
Euclid’s time, when he wrote as the first of his Axioms “1. Things which are equal 
to the same thing are equal to one another.” (Euclid, 1933, p. 6). Only R21 seems to 
have addressed the solution issue, accepting the transitivity implication but noting 
that they simply share “a common solution”, not all solutions. 
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Student Answer 
R1 

 
R7 

 
R23 

 
R21 

 

Figure 11. Undergraduate Group R reasons for equating two quadratic expressions. 

One has to be careful when applying transitivity to conditional equations 
(Borowski & Borwein, 1989), true for only some values of the variables, not to 
reverse the implication. This often does not arise at school since the most common 
use of the transitive property at that level is in identical equations, for objects 
equivalent for all variable values, such as in: 

a + b( )
2

= a + b( ) a + b( ) , and a + b( ) a + b( ) = a
2

+ 2ab + b
2

 
⇒ a + b( )

2

= a
2

+ 2ab + b
2 . However, while f(x) = g(x) (conditional) and g(x) = h(x) 

(conditional) imply the conditional statement f(x) = h(x), f(x) = h(x) does not imply 
both f(x) = g(x) and g(x) = h(x). Hence, the values of x for which f(x) = h(x) is true 
will not all necessarily satisfy the first two conditional equations. Only those values 
in the intersection of the solution sets of the first two equations will. 

 The students who said that the expressions were not equal gave various 
reasons and Figure 11 shows some responses. Here students R11, R12 and R29 use 
reasoning based on finding solutions for k to the two equations separately to 
identify a potential problem, but did not reconcile this with the notion of 
transitivity. These students are mainly thinking in the symbolic world, relying on 
results of manipulations, with student R15 unwilling to accept the transitivity.  

When we combine this data together it seems to support the view that these 
undergraduate students are moving towards formal world thinking about equality 
that mathematicians espouse, but the subtleties of such reasoning mean that a 
significant proportion of them still has some way to go to develop it fully.  
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Student Answer 
R11 

 
R12 

 
R29 

 
R15 

 

Figure 12. Undergraduate Group R reasons for not equating quadratic expressions.  

 Discussion 
Consideration of the nature of object construction in mathematics (eg Tall, 

Thomas, Davis, Gray, Simpson, 2000) is useful when analysing the use of equations 
in mathematics and the transition from embodied and symbolic thinking to formal 
world thinking. As Tall et al. observe, some mathematical objects are purely 
theoretical, or constructs from formal thinking, with no physical counterpart, while 
others do have such a counterpart. For example, Fischbein (1993, p. 141) refers to 
how “successful geometric reasoning can be achieved when we stop considering 
only two distinct categories of mental entities (images and concepts) and we deal 
apart from them with a third type of mental object, the figural concept”. This idea 
of a figural concept in geometry has also been examined by Laborde (2002), who 
drew a distinction between drawings and figures, explaining the former as 
physical and perceptual, and latter as theoretical and mathematical. To use 
semiotic language we may say that the perceived object changes roles from an icon 
to a symbol. According to Thomas (2006), this change in interpretation of the 
external sign (or representation) involves a link to an appropriate, existing 
mathematical schema to ascertain the properties that may be overlaid in memory 
on the external sign (see Figure 13). 

Thus, for example, the schema for the mathematical concept of rectangle, is a 
combination of a perception of an embodied sign or external representation, its 
object referent and mathematical data (including properties). It is addition of the 
properties that constitute the mathematical object of rectangle (enabling a decision 
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on what makes an object ‘not a rectangle’), namely two pairs of opposite sides 
equal and four 90˚ angles, to a schema for rectangle, that we have begun to 
construct the mathematical concept. On the other hand, a pseudo-conception 
(Vinner, 1997) of rectangle can lead to errors, such as the common one, based on 
perception alone, that a square is not a rectangle. The lack of a well-formed 
rectangle schema prevents reasoning that it satisfies the required properties. Thus 
the ability to see squares as a subset of rectangles is due to seeing different 
mathematical objects and the relationship between their mathematical properties. 

 

 

 

 

 

 

 

Figure 13. ‘Appropriate’ mathematical schema used to interact with external sign.  

However, these ideas need not be limited to geometric constructions, since 
most mathematical objects have symbolisms that may be viewed in different ways. 
A procept is a symbolic world object having possible variations on perspective, the 
process versus object view of the symbol. But this is not the only duality for 
symbols. When we perceive the symbolisation of an object we may simply have a 
surface or observational view (Thomas, 2001), but in order to get a mathematical 
perspective of what it represents we have to interpret what we see using our 
mathematical schemas (c.f., Booth & Thomas, 2000; Thomas, 2006). This process of 
interpretation of the symbolisation, or representation, may require us to interact 
with the figural-concept object (Thomas & Hong, 2001), giving rise to identification 
of the object’s properties, often underlying operational invariants (c.f. Vergnaud,  
1998). 

Considering the situation with regard to the equation concept, with its ‘=’ sign, 
it appears that organising the properties that define the mathematical object into a 
coherent schema can be elusive for students. Problems generalising properties 
appear to start early, with Warren (2001), for example, showing that many Year 4 
students had already developed misunderstandings with regard to the 
commutative property in arithmetic equations. As they progress from mainly 
embodied world thinking, through that of the symbolic world, to formal thinking, 
their perspective on equation changes gradually. Our evidence is that an embodied 
input-output, or a procedural/operational view of equation is quite persistent for 
around 25% of students, even during transition to university. Some of these form a 
recognition of an equation based on the surface observation that it contains an ‘=’ 
sign, as a number of students in this study did, but they still require the 

External World 

Internal World 

Sign eg symbols 

Schema with 
mathematical properties 

Interpret Interact 
with/Act on 
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operational aspect. An increasing proportion of our students focused solely on the 
presence of the ‘=’ sign, with 27.6%, 31.6% and 58.6% of group P, Q and R students 
respectively in this category.  

We have seen that the appreciation of properties develops slowly. While 73.3% 
of university students were willing to see a + b = b + a as an equation, only 35.5% of 
group Q students accepted the reflexive a=a as an equation, along with 60% of the 
university students. While 62.5% of the younger, group P students tackled an easy 
problem based on the transitive property, we cannot be sure that they did not 
resort to symbolic world manipulation in order to answer it. We have also 
identified a difficulty due to reversing the implication of this property. Thus even 
for students in the first year of university, understanding of the use of equality is 
often not predicated on explicit construction of properties of equations, such as the 
reflexive, symmetric and transitive nature of the ‘=’ sign, and the use of letter as 
variable, but is still based in symbolic world thinking.  

We suggest that, since the mathematical equation object comprises a number 
of disparate symbols for: arithmetic numbers; variables; operators; and the equals 
sign; along with formal properties of an equivalence relation, and the structure 
combining them, understanding the gestalt object requires multiple layers of 
schematic properties to be overlaid on the iconic view. This structural view is no 
doubt fed by a developing understanding of properties of the constituent parts, 
and in turn feeds back to further understanding of the object. One’s mathematical 
understanding of these parts eventually becomes welded into a more or less 
coherent, schematic whole, with embedded sub-schemas for each part, making the 
mathematical equation object much greater than the sum of its parts. The evidence 
we have is that students may have quite well-developed understanding of one or 
more of the constituent parts, such as the role of operators, but have less 
comprehension of others. 

We have concentrated in this paper on what students describe an equation to 
be, how they decide what is, or is not an equation, and their ability to recognise 
and use the symmetric, reflexive and transitivity properties of equivalence. We 
have distinguished a variety of perspectives that contribute to a view of equation 
and these are presented in our outline framework for equation (Figure 14). Of 
course, all our mathematical understanding is mediated by language and so any 
framework must include its vital role, and we plan to investigate the binding 
influence of this, and the role of a structural perspective.  

It appears that one reason why students do not construct the properties of an 
equals sign as an equivalence relation is that teachers at school, and first year 
university, often use the symmetric, reflexive or transitive properties of equals 
without making these explicit. For example, when solving an equation we may go 
from x + 6 = 3x + 1 to 2x + 1 = 6, rather than 6 = 2x + 1, using the symmetric 
property applied to the conditional equation. Or we may reason along the lines that 
if y = 2x + 1 (identical equation, defining y), then when y = 0 (conditional equation), 
2x + 1 = 0 (conditional equation), employing the transitive property to do so. 
However, we may not explicitly highlight these properties, or the kinds of 
equations employed, leaving students to abstract these themselves. If students 
have a view of the equals sign as signifying the result of a procedure, or only as a 
conditional equality, as many in our study did, and have not constructed the 
properties of an equivalence relation, they will not be able to interact fully with the 
mathematical equation object, or make good progress in their transition to 
university mathematics. 
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Figure 14. An outline framework of the mathematical equation object. 

One conclusion is that, since the equation object is fundamental to 
mathematical understanding, teachers should make a deliberate effort to assist 
students to enrich their perspective on equation by paying explicit attention to the 
structure and properties of equations, allowing students to interact fully with the 
mathematical equation object and hence construct a rich schema. Jones and Pratt 
(2006) report on the value to 13 year-old students of technology-supported utilities 
for the equals sign, and their changing conceptions of the sign as a result. It may be 
that interaction with powerful computer-based CAS systems that employ different 
uses of the equals sign in different mathematical equation contexts might be a way 
to assist older students to construct such a rich equation schema. In this manner 
the transition from school to university may be made a little smoother. 
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