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This paper focuses on the changes in thinking involved in the transition from school 
mathematics to formal proof in pure mathematics at university. School mathematics 
is seen as a combination of visual representations, including geometry and graphs, 
together with symbolic calculations and manipulations. Pure mathematics in 
university shifts towards a formal framework of axiomatic systems and 
mathematical proof. In this paper, the transition in thinking is formulated within a 
framework of ‘three worlds of mathematics’– the ‘conceptual-embodied’ world 
based on perception, action and thought experiment, the ‘proceptual-symbolic’ 
world of calculation and algebraic manipulation compressing processes such as 
counting into concepts such as number, and the ‘axiomatic-formal’ world of set-
theoretic concept definitions and mathematical proof. Each ‘world’ has its own 
sequence of development and its own forms of proof that may be blended together 
to give a rich variety of ways of thinking mathematically. This reveals mathematical 
thinking as a blend of differing knowledge structures; for instance, the real numbers 
blend together the embodied number line, symbolic decimal arithmetic and the 
formal theory of a complete ordered field. Theoretical constructs are introduced to 
describe how genetic structures set before birth enable the development of 
mathematical thinking, and how experiences that the individual has met before 
affect their personal growth. These constructs are used to consider how students 
negotiate the transition from school to university mathematics as embodiment and 
symbolism are blended with formalism. At a higher level, structure theorems 
proved in axiomatic theories link back to more sophisticated forms of embodiment 
and symbolism, revealing the intimate relationship between the three worlds.  

Introduction 
The ideas in this paper are situated in an overall view of long-term human 

learning, building from genetic structures that we all share and developing more 
sophisticated individual knowledge based on personal experiences. In particular I 
propose that there are three fundamental human attributes set before our birth in 
our genes that are essential to mathematical thinking and that personal growth 
depends on the individual’s interpretations of new situations based on experiences 
they have met before. 

Set-befores 
I use the term ‘set-before’ to refer to a mental structure that we are born with, 

which may take a little time to mature as our brains make connections in early life. 
For instance, the visual structure of the brain has built-in systems to identify 
colours and shades, to see changes in shade, identify edges, coordinate the edges to 
see objects and track their movement. Thus the child is born with a biological 
system to recognise small numbers of objects (one, two, or perhaps three) that 
gives a ‘set-before’ for the concept of ‘twoness’ before the child learns to count. 
Other set-befores include conceptions such as ‘up’ and ‘down’ related to the pull of 
gravity and our upright posture, and the related concept of the horizontal. Another 
is the sense of weight that we encounter through the pull on our muscles as we lift 
objects. Other set-befores include the social ability to interact with others using 
gestures such as pointing to draw attention to things. 
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However, there are three fundamental set-befores that shape our long-term 
learning and cause us to think mathematically in specific ways. They are: 

• recognition of patterns, similarities and differences; 
• repetition of sequences of actions until they become automatic. 
• language to describe and refine the way we think about things; 
While recognition and repetition to practice routines are found in other 

species, it is the power of language, and the related use of symbols, that enables us 
to focus on important ideas, to name them and talk about them to refine their 
meaning. Recognition of patterns is an essential facility for mathematics, including 
patterns in shape and number. 

Repetition that becomes automatic is essential for learning procedures. 
However, there is a more sophisticated level that involves not only the ability to 
perform the procedure, but also to think about it as sophisticated entities in their own 
right, where symbols operate dually as process and concept (procept) to allow us 
to think flexibly (Gray & Tall, 1994). 

Mathematical development depends profoundly on these three set-befores. By 
being able to routinise a sequence of actions so that we can do it without effort, we 
can think about it and do it again, and again. Each counting number is followed by 
another, and another, leading to potential infinity. By categorising the collection of 
numbers and giving it a name, or the symbol  ! , we can conceive of an actual 
infinity of numbers as a single entity. Thus repetition and categorisation can 
together lead to the notion of actual infinity. 

Met-befores 
Personal development builds on experiences that the individual has met 

before. Previous experiences form connections in the brain that affect how we 
make sense of new situations. I define a met-before to be ‘a current mental facility 
based on specific prior experiences of the individual.’ 

A met-before is sometimes consistent with the new situation and sometimes 
inconsistent. For instance, the met-before ‘2+2 makes 4’ is experienced first in 
whole number arithmetic and continues to be consistent with the arithmetic of 
fractions, positive and negative integers, rational, real and complex numbers. But 
the met-before ‘taking away gives less’ remains consistent with (positive) fractions, 
but is inconsistent with negatives where taking away –2 gives more. The same met-
before works consistently with finite sets, where taking away a subset leaves fewer 
elements, but is inconsistent in the context of infinite sets, where removing the 
even numbers from the counting numbers still leaves the odd numbers with the 
same cardinality. In this way, met-befores can operate covertly, affecting the way 
that individuals interpret new mathematics, sometimes to advantage, but 
sometimes causing internal confusion that impedes learning. 

Most long-term curricula focus only on broadening experiences based on 
positive met-befores, failing to address met-befores that cause many learners 
profound difficulties. For example, mathematicians will have the limit concept as a 
met-before in their own minds, which, for them, forms the logical basis of calculus 
and analysis; but it is not a met-before for students beginning calculus and causes 
profound difficulties. The brain changes in its ability to think over time, 
reorganising information to create new structures that are often more sophisticated 
and better at coping with new situations. It is not simply a repository of earlier 
experiences adding new information to old; it re-formulates old information in 
new ways, changing how we think as we grow more mature. Experts may have 
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forgotten how they thought when they were young and are likely to need to reflect 
on how different students’ met-befores affect their ways of learning. 

Three Worlds of Mathematics 
The development of the individual from a young child to a sophisticated adult 

builds on the three fundamental set-befores of recognition, repetition and language 
to construct three interrelated sequences of development that blend together to 
build a full range of mathematical thinking (Tall, 2004, 2006). This is not to say that 
there is a one-to-one correspondence between set-befores and sequences of 
development. However, recognition and categorisation of figures and shapes 
underpins thought experiments with geometry and graphs, while the repetition of 
sequences of actions symbolised as thinkable concepts leads to arithmetic and 
algebra. Each of these constructional processes develop further through the use of 
language to describe, define and deduce relationships, until, at the highest level, 
set-theoretic language is used as a basis for formal mathematical theory. 

While it may be argued that these developments are simply different modes of 
thinking that grow in sophistication, I have come to describe them as ‘three worlds 
of mathematics’ that develop in sophistication in quite different ways. 

• the conceptual-embodied world, based on perception of and reflection on 
properties of objects, initially seen and sensed in the real world but then 
imagined in the mind; 

• the proceptual-symbolic world that grows out of the embodied world 
through action (such as counting) and is symbolised as thinkable 
concepts (such as number) that function both as processes to do and 
concepts to think about (procepts); 

• the axiomatic-formal world (based on formal definitions and proof), 
which reverses the sequence of construction of meaning from 
definitions based on known objects to formal concepts based on set-
theoretic definitions. 

Terms such as ‘embodied’, ‘symbolic’, ‘formal’ have all been used in a range of 
different ways. Here I use a technique that arose from my friend and supervisor, 
the late Richard Skemp, in putting two familiar words together in a new way to 
signal the need to establish a new meaning (such as ‘instrumental understanding’ 
and ‘relational understanding’ or ‘concept image’ and ‘concept definition’). 

‘Conceptual embodiment’ refers not only to the broader claims of Lakoff (1987) 
that all thinking is embodied, but more specifically to perceptual representations of 
concepts. We conceptually embody a geometric figure, such as a triangle consisting 
of three straight line-segments; we imagine a triangle as such a figure and allow a 
specific triangle to act as a prototype to represent the whole class of triangles. We 
‘see’ an image of a specific graph as representing a specific or generic function. 
Conceptual embodiment grows steadily more sophisticated as the individual 
matures in a manner described by Van Hiele (1986), building from perception of 
objects, through description, construction and definition, leading to deduction and 
Euclidean geometry. Other embodied geometries follow, such as projective 
geometry, spherical geometry, and various non-euclidean geometries, all of which 
may be given a physical embodiment. It is only when the systems are axiomatised 
and the properties deduced solely from the axioms using set-theoretic formal proof 
that the cognitive development of geometry shifts fully to a formal-axiomatic 
approach (See Figure 1). 
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Figure 1. The Three Worlds of Mathematics illustrated by selected aspects. 

Proceptual symbolism’ refers to the use of symbols that arise from performing 
an action schema, such as counting, that become thinkable concepts, such as 
number (Gray & Tall, 1994). A symbol such as 3+2 or    b2

!4ac  represents both a 
process to be carried out or the thinkable concept produced by that process. Such a 
combination of symbol, process, and concept constructed from the process is called 
an elementary procept; a collection of elementary procepts with the same output 
concept is called a procept. 

Process-object encapsulation was first described succinctly by Dubinsky in his 
APOS theory (e.g. Cottrill et al., 1996) based on the theories of Piaget and was used 
mainly in programming mathematical constructs in a symbolic development. Later 
in this paper we will return to APOS theory to show how a blending of 
embodiment and symbolism gives a more complete way of developing 
sophistication in mathematical thinking. 

 ‘Axiomatic formalism’ refers to the formalism of Hilbert that takes us beyond 
the formal operations of Piaget. Its major distinction from the elementary 
mathematics of embodiment and symbolism is that in elementary mathematics, the 
definitions arise from experience with objects whose properties are described and 
used as definitions; in formal mathematics, as written in mathematical 
publications, formal presentations start with set-theoretic definitions and deduce 
other properties using formal proof. 

Formal mathematics does not arise in isolation. In his famous lecture 
announcing the twenty-three problems that dominated the twentieth century, 
Hilbert remarked: 
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To new concepts correspond, necessarily, new signs. These we choose in such a 
way that they remind us of the phenomena which were the occasion for the 
formation of the new concepts. So the geometrical figures are signs or mnemonic 
symbols of space intuition and are used as such by all mathematicians. Who does 
not always use along with the double inequality a > b > c the picture of three 
points following one another on a straight line as the geometrical picture of the 
idea “between”? Hilbert, 1900 ICME lecture 

It is important to discuss the interrelationship of worlds working together. 
Putting together two names, such as ‘conceptually embodied axiomatic formalism’ 
is clearly inappropriate and compression is required. For this purpose, we now 
refer to the three worlds simply as ‘embodied’, ‘symbolic’ and ‘formal’, using the 
meanings for the terms established above, which enables us to combine them to 
give names such as ‘embodied formalism’ when formal thinking is underpinned 
by embodiment. 

The overall structure of Figure 1 can now be seen in outline as a combination 

of interacting worlds of mathematics in Figure 2. 
School mathematics builds from embodiment of physical conceptions and 

actions: playing with shapes; putting them in collections; pointing and counting; 
sharing; measuring. Once these operations are practiced and become routine, they 
can be symbolised as numbers and used dually as operations or as mental entities 
on which the operations can be performed. As the focus of attention switched from 
embodiment to the manipulation of symbols, mathematical thinking switches from 
the embodied to the (proceptual) symbolic world. Throughout school mathematics, 
embodiment gives specific meanings in varied contexts while symbolism in 

 

Figure 2. Cognitive development through three worlds of mathematics. 
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arithmetic and algebra offers a mental world of computational power. 

The later transition to the formal axiomatic world builds on these experiences 
of embodiment and symbolism to formulate formal definitions and to prove 
theorems using mathematical proof. The written formal proof is the final stage of 
mathematical thinking; it builds on experiences of what theorems might be worth 
proving and how the proof might be carried out, often building implicitly on 
embodied and symbolic experience.  

Formal theories based on axioms often lead to structure theorems, which reveal 
that an axiomatic system (such as a vector space) has a more sophisticated 
embodiment and related symbolism—for instance a finite dimensional vector 
space is an n-dimensional coordinate system. In this way the theoretical framework 
turns full circle, building from embodiment and symbolism to formalism, 
returning once more to a more sophisticated form of embodiment and symbolism 
that, in turn, gives new ways of conceiving even more sophisticated mathematics. 

This gives a natural parsimony to the framework of three worlds: as human 
embodiment leads to the mathematical operations of symbolism and on to the 
formalism of pure mathematics and back again at higher levels to more 
embodiment and symbolism. Meanwhile those who use mathematics in physics, 
applied mathematics, economics and so on, formulate mathematical models and 
symbolism to process the mathematics in the models—an approach justified by the 
accompanying formal framework that interlinks embodiment, symbolism and 
formalism. 

Compression, Connection and Thinkable Concepts 
The study of the development of mathematical thinking is aided by several 

theoretical concepts to support our analysis. The human brain is highly 
sophisticated, but it is also surprisingly limited, being able to deal with only a 
small number of pieces of information at a time. In his famous paper, Miller (1956) 
suggested the number is around 7±2, based on a review of many articles published 
at the time. Personally I feel that it is much smaller than this; perhaps I could cope 
with more when I was younger – but I can’t remember. 

The human brain copes with this by connecting ideas together into ‘thinkable 
concepts’. (Although all concepts are clearly thinkable, I use the two words 
together to focus on how the concept is held in the mind as a single entity at a 
single time.) 

Compression into thinkable concepts occurs in several different ways. One, 
discussed by Lakoff (1987) in his book Women Fire and Dangerous Things, is 
categorisation, where concepts are connected in various ways in a category that 
itself becomes a thinkable concept. Sometimes the category may be represented by 
a specific case operating in a generic capacity such the equality   3+ 4 = 4 + 3 
representing commutativity of addition. 

Another mode of compression, described by Dubinsky and his colleagues  
(Cottrill et al., 1996), occurs in APOS theory where an ACTION is internalised as a 
PROCESS and is encapsulated into an OBJECT, connected to other knowledge within 
a SCHEMA; they also note that a SCHEMA may also be encapsulated as an OBJECT. 

Following Davis (1983), who used the term ‘procedure’ to mean a specific 
sequence of steps and a process as the overall input-output relationship that may 
be implemented by different procedures, Gray, Pitta, Pinto and Tall (1999) 
represented the successive compression from procedure through multi-procedure, 
process and procept, expanded in Figure 3 to correspond to the SOLO taxonomy 
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sequence: unistructural, multi-structural, relational, extended abstract (Pegg & 
Tall, 2005). 

This models the way in which a procedure—as a sequence of steps performed 
in time—is steadily enriched by developing alternative procedures to allow an 
efficient choice. The focus switches from the individual steps to the overall process, 
and may then be compressed as a procept to think about and to manipulate 
mentally in a flexible way. 

Some students who have difficulty may become entrenched in a procedural 
approach, perhaps reaching a multi-procedural stage that can lead to procedural 
efficiency. Other students develop greater flexibility by seeing processes as a whole 
and compressing operations into thinkable concepts. This can lead to a spectrum of 
outcomes within a single group of learners between those who perform 
procedurally and those who develop greater flexibility. In arithmetic, Gray and 
Tall (1994) called this the proceptual divide. 

The earlier work of Dubinsky and his colleagues (e.g. Cottrill et al., 1996) 
focused initially on a symbolic approach by programming a procedure as a 
function and then using the function as the input to another function. The data 
shows that, while the process level was often attained, encapsulation from process 
to object was more problematic. 

 

 

Figure 3. Spectrum of outcomes from increasing compression of symbolism. 
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A curriculum that focuses on symbolism and not on related embodiments may 
limit the vision of the learner who may learn to perform a procedure, even 
conceive of it as an overall process, but fail to be able to imagine or ‘encapsulate’ 
the process as an ‘object’. 

Widening the perspective to link symbolism to embodiment reveals that 
symbolic compression from procedure to process to object has an embodied 
counterpart. This happens when the actions involved operate on visible objects. 
The actions have an effect on the objects, for instance, when sharing them into equal 
shares, permuting them into a new arrangement, or translating an object on a 
plane. The ‘effect’ is the change from the initial state to the final state. The 
compression from procedure to process can be seen by shifting the focus of 
attention from the steps of a procedure to the effect of the procedure. 

For example, a translation of an object on a plane is an action in which each 
point of the object is moved in the same direction by the same magnitude. At the 
multi-structural level all the arrows from a start point to finish point can be seen to 
be equivalent, providing a set of equivalent translations. However, any one of these 
arrows can be used as a representative of all the equivalent arrows. A more subtle 
interpretation shifts us from the process level (equivalent arrows) to an object level 
by representing the effect of the action as a single free vector, as an arrow of given 
magnitude and direction that may be moved to any point to show how that point 
moves. This free vector is a conceptual embodiment of the vector translation as a 
mental embodied object. Adding free vectors is performed by placing them nose to 

 

Figure 4. Procedural knowledge as part of conceptual knowledge (from Tall, 2006). 
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tail to give the unique free vector that has the same effect as the two in succession. 
In the embodied world, there is therefore a meaningful parallel to symbolic 
compression in APOS theory by shifting one’s attention from the steps of an action 
to the effect of that action and imagining the effect as an embodied thinkable concept 
(See Figure 4). 

This combination of embodiment and symbolism can give an embodied meaning 
to the desired encapsulated object, changing the learning required from a search 
for an as yet un-encapsulated symbolic object in APOS theory to the state of having 
an embodiment of the required object and searching for a numeric or symbolic way 
to compute it. 

As different individuals follow through a mathematics curriculum that 
introduces ideas in increasing levels of sophistication, they cope with it in different 
ways. Piaget hypothesised that all individuals pass through the same sequence of 
stages at different rates, but Gray and Tall (1994) observed the proceptual divide in 
which children develop in different ways, some clinging to the security of known 
step-by-step procedures, while others compress their knowledge into the flexible 
use of symbols as process and concept (procepts). Procedures occur in time and 
work in limited cases but may not be sufficiently compressed into thinkable 
concepts to be used flexibly for more sophisticated thinking. Procedural learning 
may have a short-term advantage to pass an imminent test, but it needs the 
additional compression into thinkable concepts to enable the long-term 
development of increasingly sophisticated mathematical thinking. 

Knowledge Frameworks and Conceptual Blending 
Recent developments in cognitive science suggest an overall picture of long-

term growth that is of great value in mathematical thinking. Fauconnier and 
Turner (2001) present a view of the development of human thinking that focuses 
on compression and conceptual blending. Compression is seen as a general cognitive 
process that compresses situations in time and space into events that can be 
comprehended in a single structure by the human brain. For instance, the 
statement ‘If Mrs Thatcher stood for President, then she would not get elected 
because the unions would oppose her’ is a compression blending together the 
American and British democratic systems. The blend links similar ideas, such as 
the election of a leader in a democratic system subject to the support or opposition 
of pressure groups and ignores differences such as the fact that the American 
President is elected by all the people while the British Prime Minister is the elected 
leader of the party that wins the election. Blending also encourages new creative 
thinking, such as a higher-level analysis of the ways in which different 
democracies work. 

In general, when we encounter a new situation we interpret it by blending 
together our met-befores, which may come from different experiences having some 
aspects in common and others in conflict. Those in common may give pleasurable 
insight; those in conflict may cause confusion that can act as a challenge for those 
who feel confident but lead to anxiety for those who do not. 

The development of the number concept is a typical case of successive blends. 
While the number systems  ! ! " ! # ! $  may be seen by a mathematician as 
successive number systems represented on the number line which lies in the 
complex plane  ! , each extension involves a sophisticated blending process for the 
learner. The number line itself is a blend of counting and measuring where each 
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whole number has a ‘next’ in the counting operation, but in measurement there is 
no ‘next’ fraction. Operating with whole numbers gives the sense that ‘addition 
and multiplication give a bigger result’ and ‘take-away gives less’ which conflicts 
with the behaviour of integers, where taking away a negative gives more, and with 
fractions where multiplication can produce a smaller result. 

Later expansions of the number system blend an original knowledge structure 
within a wider structure with properties that conflict with previous experience. 
The hypotenuse of a right-angled triangle with rational sides may not itself be 
rational, the shift from fractions to decimals introduce infinite decimals that never 
end. The embodied number line includes numbers such as π, e and √2 that cannot 
be expressed as fractions or recurring decimals. Every non-zero number on the 
number-line has a square which is positive but the complex numbers have a 
‘number’ i whose square is negative.  

Blends can occur within one of the worlds of mathematics or between different 
worlds. For instance, multiplication is a blend of different embodiments such as the 
area produced by multiplying two lengths or the number of elements in a 
rectangular array of objects. On the other hand, algebraic symbolism may be 
blended with corresponding embodied graphs. The shift from school mathematics 
to the logical demands of university mathematics involves a major shift in 
knowledge blending. 

Blending Embodiment, Symbolism and Formalism in the Concept of 
Real Number 

The concept of real number is a blend of embodiment as a number line, 
symbolism as (infinite) decimals and formalism as a complete ordered field. Each has 
its own properties, some of which are in conflict. For instance, the number line 
develops in the embodied world from a physical line drawn with pencil and ruler 
to a ‘perfect’ platonic construction that has length but no thickness. This is a 
natural process of compression in which the focus of attention concentrates on the 
straightness of the line and the position of the lines and points. In Greek geometry, 
points and lines are different kinds of entity in which a point has position but no 
size and a point may by ‘on’ a line or not. The line is an entity in itself; it is not 
‘made up of points’. 

Physically the number line can be traced with a finger and, as the finger passes 
from 1 to 2, it feels as if it goes through all the points in between. But when this is 
represented as decimals, each decimal expansion is a different point (except for the 
difficult case of recurring nines) and so it does not seem possible to imagine 
running through all the points between 1 and 2 in a finite time. There is also the 
counterfactual dilemma that, if the points have no size, how can even an infinite 
number of them make up the unit interval? In the embodied world we may 
imagine a point as a very tiny mark made with a fine pencil, so practical points 
have an indeterminate small size even if theoretical points do not. Furthermore, if a 
point had no size and a line no thickness, then we would not be able to see them. 
Prior to the introduction of the formal definition of real numbers, we live, perhaps 
somewhat uneasily, with the blend of a practical number line that we draw and 
imagine and a symbolic number system that can be represented by infinite 
decimals. 

Formally, the real numbers  !  is an ordered field satisfying the completeness 
axiom. This involves entering a completely different world where addition is no 
longer defined by the algorithms of counting or decimal addition, instead it is 
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simply asserted that for each pair of real numbers a, b, there is a third real number 
call the sum of a and b and denoted by a+b. Formally, it is possible to prove that 
there is, up to isomorphism, precisely one complete ordered field and that this can 
be represented by infinite decimals which are unique (except for the case where 
one decimal ends in an infinite sequence of nines and the other increases the 
previous place by one and ends in an infinite sequence of zeros). Thus it is possible 
for the human brain to recycle its former experiences and use the arithmetic of 
experience to blend the symbolic world with the formal world. 

Personally I continue to be concerned that I ‘know’ things symbolically that I 
have never proved axiomatically. In the symbolic world, I ‘know’ that 210 is bigger 
than 103, because the first is 1024 and the second is 1000. But I have never proved 
this from the axioms for a complete ordered field or from the Peano postulates for 
the whole numbers. I am happy to accept that the familiar arithmetic of decimals is 
the unique arithmetic of the axiomatic complete ordered field because it fits 
together so coherently. But ‘acceptance’ is not mathematical proof. 

In the transition from school arithmetic to formal mathematics we need to 
confront many issues such as this. Is it any wonder that Halmos in his book I want 
to be a mathematician remarked, ‘I never understood epsilon-delta analysis, I just got 
used to it.’ As mathematicians we begin to appreciate the purity and logic of the 
formal approach, but as human beings we should recognise the cognitive journey 
through embodiment and symbolism that enabled us to reach this viewpoint and 
helps us sustain it. 

Blending Embodiment, Symbolism and Formalism in Calculus and 
Analysis 

Calculus builds in three very different worlds of mathematics. Calculus in 
school is a blend of the world of embodiment (drawing graphs) and symbolism 
(manipulating formulae). The geometric notion of slope of a graph is often 
represented by the action of moving a secant through a point on the graph towards 
a tangent at the point or, more subtly, through magnifying the graph near the point 
to see it look like a straight line under high magnification. The latter enables the 
learner to ‘see’ the changing slope of a curve and to imagine the slope itself as a 
changing function. The symbolic aspect allows the slope between two distinct 
points to be computed numerically or symbolically and a limiting process is 
required to get the symbolic slope of the tangent as the symbolic derivative. The 
embodied version has the limit process implicit in the process of magnification, 
while the symbolic version involves computing an explicit symbolic representation. 

It is interesting to note that the mathematical expert, who already has 
conceptions of derivative, integral and so on, has the limit concept as a met-before 
and sees the calculus as building logically from the limit concept, hence designing 
the curriculum to build on an ‘informal’ version of the limit concept. However, the 
novice may feel more comfortable with the embodied approach through 
magnification to ‘see’ the slope function before being introduced to symbolic 
techniques for computing it and formal language to define it. 

Reform calculus in the USA was built on combining graphic, symbolic and 
analytic representations of functions using computer software and graphical 
calculators. However, those of us occupied in research in undergraduate 
mathematics need to look a little deeper into how the concepts of calculus are 
constructed. Mathematicians, who live in a world built on the met-before of the 
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limit concept, have a view of calculus that sees the need to introduce the limit 
concept explicitly at the beginning of the calculus sequence. My own view is 
different. For students building on the embodiment and symbolism of school 
mathematics, I see a more natural route into the calculus combining embodiment 
and symbolism in a manner that has the full potential to lead either to standard 
mathematical analysis, non-standard infinitesimal analysis, or practical calculus in 
applications. 

This approach involves using the embodied notion of local straightness that is 
cognitively different from the symbolic notion of local linearity. Local straightness 
involves an embodied thought experiment looking closely at graphs to see that, as 
small portions of certain graphs are highly magnified, they look straight. Some 
mathematicians have difficulties with such an approach because it seems difficult 
to formalise at first encounter. But it makes sense to students as they look at a 
computer screen successively magnifying a graph of a familiar function composed 
of polynomials, trigonometric functions, exponentials or logarithms. It also makes 
sense that a function like 

  
sin x  has a corner at every multiple of π so that on can 

begin to imagine not only local straightness, but also situations that are not locally 
straight. It is also relatively simple to give an embodied proof with hand gestures, 
that the recursively-defined blancmange function is everywhere continuous, but 
nowhere differentiable (Tall & Giacomo, 2000). Here magnification of the graph 
shows tiny blancmanges growing everywhere, so the magnification never looks 
straight (Figure 5).  

 

Figure 5. A graph that nowhere looks straight under magnification. 

The arguments and pictures are found in several of my papers (see for 
example, Tall 2003). The embodied ideas can give highly insightful ideas not found 
in a normal symbolic approach. For example, defining the ‘nasty function’ 
   n(x) = bl(1000x) / 1000  then   sin x , and    sin x + n(x)  look the same when drawn on a 
computer over a range say –5 to 5, but one is differentiable everywhere and the 
other is differentiable nowhere! This can be seen just by magnification. It shows 
that just looking at a static graph is not enough. To be sure of differentiability one 
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needs to deal directly with the function given symbolically. Hence embodiment 
reveals subtle meanings that encourage the use of symbolism and formal 
definitions. 

No regular calculus course attempts to give insight into what it means to be 
nowhere differentiable, yet I do it in my first lesson on calculus to show some 
functions are locally straight and some are not. If one can imagine, in the mind’s 
eye, that a graph is locally straight, then as the eye follows the curve from left to 
right, focusing on the slope of the curve, it is possible to see the changing slope as a 
function that can be graphed in its own right. This brings us precisely to the 
principle enunciated earlier, that the slope can be embodied and visualised giving 
a slope function that can be seen but now needs to be calculated either numerically 
or symbolically. The need for a limit arises from the embodiment to calculate the 
slope function, not the other way round.  

An approach using local linearity, as in College Calculus, on the other hand, 
involves a symbolic concept, seeking the best linear approximation to the curve at a 
single point. It involves an explicit limiting concept from the beginning instead of 
an implicit limiting concept that occurs when zooming in to see how steep the 
curve is over a short interval. Non-differentiability is the non-existence of a limit, 
which lacks the immediacy of the embodied idea of a graph that does not magnify 
to look locally straight. 

The function 
   
a(x) = bl(t) dt

0

x

!  has bl(x)  as its derivative, so it is differentiable 
once everywhere and twice nowhere. When I showed a class of undergraduates 
the graph of   a(x)  calculated numerically by a computer program, one of the 
students (not a mathematics major) said, ‘you mean that function is differentiable 
once but not twice.’ (Tall, 1995.) If you know of any other mathematics professor 
who has had a student imagine a function that is differentiable once and not twice, 
tell him or her to e-mail me. 

Local straightness is particularly apt when dealing with differential equations. 
A differential equation    dy / dx = F(x, y)  tells us the slope of a locally straight curve 
at a point   (x, y)  is   F(x, y) , so it is easy to program software to draw a small 
segment of the appropriate slope when the mouse points to   (x, y)  and by 
depositing such segments end to end, the user can build an approximate solution 
onscreen. This was done in the Solution Sketcher (Tall, 1991) and has been 
implemented in the currently available Graphic Calculus software (Blokland & 
Giessen, 2000, Figure 6). 

The Reform Calculus Movement in the USA focuses on the notion of local 
linearity, with the derivative as the best linear approximation to the curve at a 
single point. It seeks a symbolic representation at a point, using a limiting 
procedure to calculate the best linear fit perhaps even with a formal epsilon-delta 
construction. Then the fixed point is varied to give the global derivative function. I 
cannot imagine a worse approach to present to beginning calculus students. 

Thurston (1994) suggested seven different ways to think of the derivative: 
(1) Infinitesimal: the ratio of the infinitesimal change in the value of a 

function to the infinitesimal change in a function. 
(2) Symbolic: the derivative of  xn  is    nxn!1 , the derivative of sin(x) is cos(x), the 

derivative of   f ! g  is   !f ! g " !g , etc. 
(3) Logical:    !f (x) = d if and only if for every ε there is a δ such that when  
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0 < !x < ! , then 

    

f (x +!x)" f (x)
!x

" d < !.  

(4) Geometric: the derivative is the slope of a line tangent to the graph of the 
function, if the graph has a tangent. 

(5) Rate: the instantaneous speed of f(t), when t is time. 
(6) Approximation: The derivative of a function is the best linear 

approximation to the function near a point. 
(7) Microscopic: The derivative of a function is the limit of what you get by 

looking at it under a microscope of higher and higher power. (Thurston, 
1994.) 

These ideas show a mathematician with great insight blending together a 
range of possible meanings, including local straightness expressed at a point (item 
7). However it omits the global concept of local straightness from which all others 
can grow: 

(0) Embodied: the (changing) slope of the graph itself. 

Mathematicians, with their met-befores based on the limit concept have long 
passed beyond this missing level 0. Learners without experience of the limit 
concept benefit from such an embodied introduction. 

It is my contention (Mejia & Tall, 2004) that the calculus belongs not to the 
formal world of analysis, ‘looking down’ on it from above: it belongs in the vision 
of Newton and Leibniz, looking up from met-befores in embodiment and 
symbolism used appropriately.  

Using a framework of embodiment and symbolism, Hahkiöniëmi (2006) 
studied his own calculus teaching to find students following different 

  

Figure 6. Building the solution of a differential equation by following its given 
slope (Blokland & Giessen, 2000). 
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developments, including an embodied route, a symbolic route and various 
combinations of the two. He found that ‘the embodied world offers powerful 
thinking tools for students’ who ‘consider the derivative as an object at an early 
stage.’ 

This simple observation is at variance with APOS theory suggesting the 
building up of the limit concept from (symbolic) ACTION to PROCESS and then to 
OBJECT. It questions Sfard’s (1991) suggestion that operational thinking invariably 
must precede structural. In our technological age, one can see the structure of the 
derivative globally as a slope function stabilizing onscreen and seek to 
operationalise it by computing it numerically or symbolically. The formal limit can 
follow later as a natural way of completing the process already seen as an object in 
the mind’s eye. 

To cope with the complexity of the derivative, Hahkiöniëmi proposed a 
framework in which the teacher is responsible as a mentor for guiding the students 
through a variety of possible routes by which the students may blend together the 
various knowledge structures in a way that is personally meaningful (Figure 7). 

 

Figure 7. Hypothesised learning framework (Hahkiöniëmi, 2006). 

The Cognitive Development of Proof 
Proof is handled differently in each of the three worlds (Mejia-Ramos & Tall, 

2006). In the embodied world the child may begin with specific experiments 
represented by specific pictures to confirm that something is true, for instance, a 
rectangle of items with 3 rows and 2 columns shows that the same array can be 
seen as 3 lots of 2 or 2 lots of 3, so   3!2 = 2!3 . The same picture may also be seen 
as a generic picture demonstrating this property for any two whole numbers. Later, 
as language is used more carefully to make definitions, geometric proofs in 
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Euclidean geometry become verbalised and build into an organised structure of 
proof from definitions. Meanwhile, in symbolic development, proof of specific 
properties may be performed using specific arithmetic calculations, perhaps seen 
as generic demonstrations, later developing into proof by algebraic manipulation. 

The major shift in proof occurs from the embodiment and symbolism of school 
mathematics to the formalism of advanced mathematical thinking (Tall, 1991). 
Proof in the embodied and symbolic worlds is based on concepts that are given 
definitions, so the concepts underpin any sense of proof. Proof in the formal world 
is ostensibly based only on set-theoretic definitions and mathematical deduction. 
However, as students come to appreciate formal proof, they build on their 
previous experience, as do mathematicians who use a variety of approaches, 
perhaps using embodiment to suggest new hypotheses that are subsequently 
proved as formal theorems, or counting arguments and other calculations and 
manipulations that can develop into formal proofs. 

My colleague and PhD student, Marcia Pinto (1998) followed students learning 
concepts in formal mathematical analysis and found there were two distinct routes, 
one a ‘natural’ route giving meaning to definitions from the met-befores of the 
individual’s concept image (including both embodiment and symbolism), the other 
a ‘formal’ route extracting meaning from the concept definition (Figure 8). 

For instance, Chris followed the natural route building on his imagery to give 

meaning to the limit concept, ‘seeing’ the terms (sn) of the sequence plotted as 
points (n, sn) in the plane and imagining that for any ε>0, he could find an N such 
that the points (n, sn) for n≥N lie between horizontal lines L± ε.  Ross, on the other 

 

Figure 8. Natural thinking builds on embodiment and symbolism, while  
formal thinking builds on concept definition. 
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hand, followed the formal route by repeating the definition until he could say it in 
full detail and carefully studying proofs to see how they deduced a theorem from 
its assumptions. 

Cliff also followed the natural route, but his met-befores clashed with the 
formal definition. He believed that a function on the integers could not be 
continuous as its graph consisted of disconnected dots, not a ‘continuously drawn’ 
pencil line. 

Meanwhile, Rolf built on his symbolic experience and could show numerically 
that if    an = 1 / n2  and    != 10!6 , then he could calculate    N = 103  for which    an < !  

when n > N. However, he could not show that if    an !1 , then for some N, if n>N, 
then    an > 3

4 . Not knowing the formula for  an  he could not carry out a numerical 
calculation to find N. 

Weber (2004) refined this analysis by a qualitative case study on a particular 
analysis lecturer and his students. He found that the lecturer began with an initial 
logico-structural teaching style in which he guided the students into constructing a 
sequence of deductions to prove a theorem. He divided his working space on the 
board into two columns, with the left column to be filled in with the text of the 
proof and the right column as ‘scratch work’. He wrote the definitions at the top of 
the left column and the final statement at the bottom, then he used the scratch-
work area to translate information across and to think about the possible 
deductions to lead from the assumptions to the final result. Later, he became more 
streamlined, presenting proofs in a sequential procedural style, writing the proof 
down in the left column and using the right column to work out detail such as 
routine manipulation of symbols. Later, he taught topological ideas in what Weber 
termed a semantic style, building on visual diagrams to give meaning, then 
translating into formal proof. 

He analysed student approaches into three types, building on the theory of 
Pinto: 

• a natural approach involved giving an intuitive description and using it 
to lead to formal proof, 

• a formal approach where students had little initial intuition but could 
logically justify their proofs, 

• a procedural approach where students learnt the proofs given them by the 
professor by rote without being able to given any formal justification. 

The term ‘natural’ corresponds to that of Pinto in giving meaning from 
intuitive (embodied) knowledge, ‘formal’ now refers to those who are successful in 
following a formal approach and ‘procedural’ refers to those who attempt to learn 
the formal proofs by rote without either embodied or logico-structural meaning. Of 
the students considered in Pinto’s research, Chris was successful in giving 
embodied meaning to formal theory via a ‘natural’ route. Ross was successful in a 
‘formal’ approach, extracting meaning from the definitions and the logical 
structure of theorems. Cliff was unable to make sense of the formal definition 
because it conflicted with his embodied imagery. Rolf attempted to extract 
meaning from the definitions based on his symbolic experience. Essentially, both 
Cliff and Rolf follow Weber’s procedural route, but Cliff was unsettled because of a 
conflict with his embodied ideas, while Rolf was happy to relate the definition to 
his met-befores in performing calculations to find a numerical N given a numerical 
 ! ; Rolf conceived his task as learning procedures by rote to use in solving 
problems but this was insufficient to cope with more sophisticated ideas and he 
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left the course halfway through. 

Weber’s data also shows that students can vary in approach dependent on the 
context in which they work. Six students interviewed after the course all 
responded in a natural manner to a topological question (where topology had been 
taught in a semantic manner building from visual imagery). However, in two other 
questions about functions and limits, only one student responded naturally. The 
other responses to a question on functions were 4 formal and 1 procedural, and to 
a question on limits, 2 formal and 3 procedural. 

Other research studies reveal how embodiment can operate in subtle ways to 
affect how students interpret formal definitions. For instance, in a formal lecture 
course that took the logical route of defining a relation as a set of ordered pairs, 
and then specialized the definition to specify functions, order relations, and 
equivalence relations, students gave a variety of meanings to the definitions that 
affected their interpretation of the mathematics. For example, the transitive law 
  a ~ b  and   b ~ c  implies   a ~ c  was given subtle embodiments in which a, b, c were 
implicitly assumed to be all different, which is true for a strong order relation 
  a < b , but not for an equivalence relation (Chin & Tall, 2002). 

From Formal Proof Back to Embodiment and Symbolism 
A major goal in building axiomatic theories is to construct a structure theorem, 

which essentially reveals aspects of the mathematical structure in embodied and 
symbolic ways. Typical examples of such structure theorems are: 

• An equivalence relation on a set A corresponds to a partition of A;  
• A finite dimensional vector space over a field F is isomorphic to  F n ;  
• Every finite group is isomorphic to a subgroup of a group of 

permutations;  
• Any complete ordered field is isomorphic to the real numbers.  

In every case, the structure theorem tells us that the formally defined axiomatic 
structure can be conceived in an embodied way and in the last three cases there is a 
corresponding manipulable symbolism. 

Thus, not only do embodiment and symbolism act as a foundation for ideas 
that are formalized in the formal-axiomatic world, structure theorems can also lead 
back from the formal world to the worlds of embodiment and symbolism. This 
means that those who use mathematics as a tool can use the embodiment and 
symbolism to imagine problem situations and model them symbolically. In this 
way, engineers, economists, physicists, biologists and others often use embodiment 
and symbolism as a foundation for their work. 

 The new embodiments depend not just on experience in the world, but on 
concept definition and formal deduction, leading to new formal insights. 

As an example, the completion of the rationals to give the reals using 
Dedekind cuts was seen by many as ‘filling in’ the gaps between rational numbers 
with real numbers so that the line is ‘complete’, with ‘no room’ for other numbers 
such as infinitesimals.  

This interpretation is false. Once the formal definition of ordered field has been 
formulated and its properties determined by mathematical proof, then we can 
conceive of an ordered field K that is a proper ordered extension of the field  ! . It 
is then easy to prove that any element in K is either greater than, or less than all 
elements in  ! , or is of the form    a + !  where    a!!  and  !  is an infinitesimal 
(meaning that    !k < !< k  for all positive real numbers k). In a regular picture of the 
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line, it will be impossible to distinguish between a and    a + !  because they differ by 
something too small to see. However, the map     µ : K! K  given by     µ(x) = (x! a) / !  
maps a to 0 and    a + !  to 1, which allows them to be ‘seen’ separately under the 
magnification  µ . Now we can imagine the number line to have not only real 
numbers, but infinitesimals that we can ‘see’ under high magnification. 

Reflections 
The final return of formalism to a more sophisticated form of embodiment and 

symbolism through structure theorems leads me to see the three worlds of 
mathematics as a natural structure through which the biological brain builds a 
mathematical mind. The child builds from the three major set-befores of 
recognition, repetition and language to recognise and categorise geometric objects, 
to repeat procedures until they become automatic and perhaps compressed into 
thinkable procepts, and later to use the more technical language of set theory and 
logic to construct formal mathematical structures at the highest level. 

A wider awareness of the met-befores of embodiment and symbolism and 
their subtle effects on the students transition to formal mathematical thinking now 
offers the possibility of explicit discussion between mathematicians and students of 
the nature of the transition that is occurring in learning formal mathematics. 

While university mathematicians differ in their perception of the relevance of 
embodiment to formal proof—and some may insist that their research is purely 
formal—all human beings enter this world as children who cannot speak and thus 
go through a long-term development that builds through embodiment and 
symbolism to formalism. Axiomatic systems are not designed arbitrarily; they need 
some form of insight as to what axioms are appropriate, and here met-befores in 
embodiment and symbolism play subtle roles. Furthermore, formalism itself leads 
back to structure theorems that have embodied and symbolic meanings, giving a 
parsimonious framework that returns to its origins. 

 The proposed theory of conceptual embodiment, proceptual symbolism and 
axiomatic formalism offers a rich framework in which to interpret mathematical 
learning and thinking at all levels from the earliest pre-school mathematics 
through to mathematical research, and, in particular, in the transition from school 
to undergraduate mathematics. 
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