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Introduction

he Ancient Greeks knew something about integration. They did not have

our modern concept of function, were uneasy with limits, and they
certainly did not know about antiderivatives or fundamental theorems.
Nevertheless, Antiphon and Bryson calculated the area of a circle by filling it
up with a sequence of triangles. Archimedes did the same for the branch of a
parabola. Archimedes found the volume of a sphere by considering the areas
of circular cross sections and somehow adding them up. Eudoxus had previ-
ously done the same for a cone. Archimedes calculated the surface area of
spheres as well. By any reasonable measure, that is integration.

All of these people lived between the fifth and third centuries BCE. Many
historical references are available for these facts. We just mention Chapter 10
of Smith (1958), because it contains much of what we need in one place, and
O’Connor and Robertson (2008), because it is recent, accessible and compre-
hensive.

The area of a rectangle is the product of its length and width. A rectangle
is also the region under the graph of a constant function. Integration is thus
an abstraction of multiplication.

Mankind has been differentiating for less than 350 years, since the work of
Newton and Leibniz in the seventeenth century. Why did it take more than
two millenia to take the leap from integrals to derivatives? Perhaps because
the derivative is a deeper concept than the integral.

A derivative is the limit of a quotient. It is an abstraction of division. Since
division is harder to understand than multiplication, we teach it later, hope-
fully only after a sound understanding of multiplication has been attained.

For the same reason, it may make sense to teach integration first, and
move on to differential calculus only after a sound understanding of integra-
tion has been attained. My own thoughts on this issue are constantly
changing, and I hope that others will take up this discussion. The next section
describes what led me to this train of thought.
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Rationale

I attempted to teach integrals before derivatives in a first calculus unit
intended primarily for engineering students at the University of Ballarat in
2005. This note describes how that developed with some anecdotal comments
about the students’ reactions. My original motivation for this approach was
purely to coordinate my teaching with the other engineering units. The engi-
neering students study statics in their first semester and dynamics only in the
second semester. Thus they need integrals (to calculate moments and
centroids) well before they need derivatives (to define velocity and study kine-
matics). Only later did it dawn on me that this reversal of order could have
educational advantages for the teaching of calculus generally. The next
section describes how the unit was structured.

Integrate first!

I began with the problem of calculating areas. The area of a rectangle is not
a controversial topic, and any triangle is half a rectangle, so the area of any
triangle is quickly defined. Any polygon can be dissected into triangles, so we
can calculate their areas too. Life gets harder when we have a region with a
curved boundary. The most obvious such example is a circle.

We all get taught about tr® at school, but as a fact from on high. To calcu-
late this area in the classroom, we inscribed polygons inside the circle, much
as Antiphon did. First consider » triangles, each with one vertex at the centre
of the circle, and the others a consecutive pair from 7 equally spaced points
on the circumference. The sum of their areas must be less than the area of
the circle. Now expand the triangles a bit so that midpoints of their third sides
all lie on the circumference. The sum of their areas must exceed the area of
the circle. With an estimate from both sides, we let n go to infinity — and
bingo!

Not quite so fast. In the middle of this calculation, we need to know what
happens to nsin(2m/n) as n gets larger. In order words, we are forced to intro-

duce the concept of a limit, and to calculate the classic
: sin x
lim

x—0
X

I emphasised the importance of this limit and that the fact that we would
need it again later. It is arguable that the concept of a limit is easier to grasp
in this concrete situation than in some of the artificial exercises usually
performed prior to calculating derivatives.

Next comes the problem of calculating the area under the graph of some
function. The integral was introduced in the usual way, as a limit of sums of
the form X f(x;)Ax. The concept was presented without a great deal of rigor. It
was emphasised that grasping the definition of an integral is important not
only from our theoretical point of view, but is also an important skill in engi-
neering problems.

How do we calculate the integral of a reasonable (e.g., continuous) func-



tion f, without resorting to the cumbersome definition every time? As usual,
we defined a primitive of fto be any function F'so that for any a,b in the inter-
val where fis defined, we have

|'1=ro)-ra

This formula reduces the problem of finding an area to that of evaluating a
(different) function. But it begs two questions: given f, does such an F exist,
and if so, how do we find it?

In one sense, the existence of a primitive is obvious: just define

Fe= '

This is enlightening for some students, and confusing for others. As in any
calculus course, a sound grasp of function notation is very useful at this stage.
Note that we still have not used the “D-word” in the classroom.
To be practical, the next step was to calculate the primitive for power func-

tions. To prove that a primitive of f(x) = x" is
n+1

Flx)=%_

n+l

we need some classical summation formulae, which tell us that the sum

1"+2"+ 3"+ ... + k" is equal to
kn+1

n+l
plus some lower powers of k. (We presented without proof the exact formulas
for this sum for all values up to n = 10, as in Weisstein (2008). Most students
had some memory of the formula for » = 1, and some had seen it for n=2.)
Plug this into the definition of the integral, and the formula

n L n  n
J.abx dx=m(b —a)

then drops out after a short calculation.

We note here that this calculation was performed by Bonaventura Cavalieri
and by Gilles Roberval in the 1630s, several decades before the development
of differential calculus.

Next we calculated the primitive for the sine and cosine functions. The
identity

sin (2 ch cos [2 (n+1)x)
cos(x)+ 2x)+ 3x)+...+ =
( ) cos( x) cos( x) cos (nx) 1
sin| —x
2
can be proved easily using complex exponentials. The left side is the real part of

N

and the result follows by applying the formula for a finite geometric series.
Not assuming any knowledge of complex numbers, we just presented it as a
known fact. Plugging into the definition of integral, we quickly saw that —sin
is a primitive of cos. A similar calculation showed that cos is a primitive of sin.
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This calculation was also performed by Roberval, long before the work of
Newton and Leibniz.

One may argue that all these summation identities are unlikely to be used
elsewhere in the syllabus and that their introduction is a refined form of
torture. I would point out that the “D-word” has still not been used, and that
the extra time spent on developing integration slowly leads to a deeper
understanding.

Eventually derivatives have to be introduced, and the calculus was
presented in a conventional manner after this point.

Reactions

I made no attempt to scientifically survey the opinions of the students. A straw
poll at the end of the course suggested that mature age students, particularly
those with no previous exposure to calculus, found this approach easier to
follow. On the other hand, students straight out of Year 12 did not like it
because it was not what they were used to.

This year I taught the unit again and conducted another unscientific poll
at the beginning of the semester. To the question, “Which concept is easier to
understand: the area of a circle or the velocity of a projectile?”, a clear major-
ity responded, “The area of a circle.” This suggests integration is easier to
grasp, and should be taught first.

However, in answer to the next question, “Which is harder to do: integral
or differential calculus?”, a clear majority responded, “Integral.”

I tentatively draw two conclusions from this minuscule bit of evidence.
Firstly, students’ failure to see a connection between the two questions
suggests they are more concerned with getting the right answer than under-
standing what they are doing. (For some discussion of the relative importance
of the algorithmic approach to learning and the conceptual approach, see
Pettersson and Scheja (2008).) Secondly, the formal manipulations required
for high school differential calculus questions are simpler than those for inte-
gral calculus.
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