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 1One of the fundamental questions that most school 
effect studies have continuously addressed is whether 
schools make a difference in student achievement, and if so, 
how much of the student achievement can be attributable to 
schools’ effort. Regarding this question, most researchers 
have agreed that schools do have a measurable impact on 
student achievement, even though the source and the 
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magnitude of the school effect are still heavily debated 
(Rumberger & Palardy, 2003). 

Using a simple Hierarchical Model (HM), one can 
successfully show how much of the total variation in 
achievement comes from the student level (within-school 
variance, σ2) and how much comes from the school level 
(between-school variance, τ). Many studies have found that 
between-school variance is much smaller than within-school 
variance. For example, using High School and Beyond 
(HS&B) data, Lee and Bryk (1989) found that about 19% of 
the total variation in student math achievement was 
attributable to school differences.  

More complicated HMs can be used to discover the 
source of these within- and between-school variances. 
Because school effect studies are usually focused on 
identifying effective schools after controlling for student 
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background characteristics, or on finding out school 
practices that are effective in increasing student achievement, 
between-school variance (τ) plays an important role. 
Substantial τ is evidence of a school’s contribution to 
student outcome, indicating the magnitude of variation 
among schools in their achievement levels (Raudenbush & 
Bryk, 2002). On the other hand, there has been little 
discussion on within-school variance (σ2) in school effect 
studies.  

We argue in this article that σ2 can provide valuable 
information regarding effective schools because school 
effectiveness can be determined not only by student 
achievement levels, but also by the dispersion of student 
achievement within a school. Given that all schools try to 
increase their students’ levels of achievement, it is clear that 
successful schools should have a smaller degree of 
variability in their student achievement levels. Additionally, 
these achievement levels themselves should be higher 
because a high average achievement level plus smaller 
within-school variation indicates that the school has 
successfully directed a majority of its students to a certain 
level. In other words, effective schools should be superior in 
both increasing students’ achievement levels and reducing 
the gap between high- and low-achieving students in the 
school. The former can be captured in common HM and has 
been addressed in many school effect studies. The latter—
the dispersal of student achievement within a school— can 
be captured through within-school variance by assuming 
that σ2 varies across schools with careful examination of 
variance heterogeneity in HM.  

The purpose of this study was to illustrate how to 
detect variance heterogeneity and find a systematic 
relationship between within-school variance and school 
practices. If certain school practices are related to smaller 
within-school variance, this could provide important 
information in the way in which school practice can have an 
equalizing effect on student performance.  

 
 

Data 
 
Data from the Third International Mathematics and 

Science Study-Repeat (TIMSS-R) was used for this study. 
TIMSS-R is an international study of math and science 
achievement conducted by the International Association for 

the Evaluation of Educational Achievement (IEA) in 1999 
(Eugenio & Julie, 2001). The target population was eighth-
grade students, and 38 countries participated in the study. 
The dataset contains student, teacher, and school 
background data, as well as student math and science 
achievement scores. More information can be found at the 
TIMSS website, www.timss.org.  

Due to the fact that the purpose was not international 
comparison, we used a data from a single country (Republic 
of Korea) and a single content area score (math 
achievement). In TIMSS-R, this math achievement score 
was equated across countries using Item Response Theory 
and rescaled to have a mean of 500 and a standard deviation 
of 100. We used a subsample from the larger TIMSS-R 
sample. The final sample contains 5,583 students in 143 
Korean schools. The average math achievement was 590.62, 
and the standard deviation was 77.60 - almost 1 SD above 
the international average achievement level with smaller 
variation.  

Earlier studies, using the same dataset, reported 
significant student- and school-level variables affecting 
student achievement (Park, Park, & Kim, 2001; Yang & 
Kim, 2003). According to these studies, most of the 
variation in math achievement was attributable to difference 
among students (95.6% in Park, Park, & Kim and 93.2% in 
Yang & Kim) and between-school variation (τ) contributed 
only less than 7% of the total variation. Significant student 
level correlates of higher math achievement identified in 
these studies include higher family SES, positive attitudes 
toward math, after school time management (taking extra 
math lessons and spend less time watching TV or playing 
with friends). In addition, the average socioeconomic status 
(SES) level and school location were closely related to 
achievement at the school level. These significant variables 
are selected to specify achievement models in our study (see 
Tables 1 and 2). However, it is possible that some important 
covariates are omitted from the model specification, as is 
generally recognized in most observational studies. This 
problem is discussed later in relation to the variance 
heterogeneity. 

For student background characteristics, student gender 
(GENDER), parents’ highest education level (PED), and the 
home educational resources index (HOMERSC) were used. 
HOMERSC is a composite variable that the IEA created, 
based on students’ responses regarding educational resources  
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Table 1  
Descriptive Statistics for Student-level Variables 

Name Description Category/Scale Freq.(%) Mean SD 

GENDER Student gender 0:Boy / 1:Girl 
2872 (51.4) 
2711 (48.6) 

0.49 0.50 

PED Parents highest education level 

0: No primary grad. 
1: Primary 
2: Secondary/college 
3: University 

719 (12.9) 
768 (13.8) 

2677 (47.9) 
1419 (25.4) 

1.86 0.94 

HOMRSC Home educational resources index 
0(Low) / 
1(Medium) / 
2(High) 

283 (  5.1) 
4471 (80.1) 
829 (14.8) 

1.10 0.44 

LESSON 
Take extra math lesson outside 
school more than 1 hour/week 

0 (No) / 1 (Yes) 
3288 (58.9) 
2295 (41.1) 

0.41 0.49 

AOFREQ 
Teacher explains rules at the 
beginning of new topic 

1 (never)~4 (always) 

229 (  4.1) 
741 (13.3) 

1602 (28.7) 
3011 (53.9) 

3.32 0.86 

STDUSEBOD How often student use board 1 (never)~4 (always) 

932 (16.7) 
2511 (45.0) 
1252 (22.4) 
888 (15.9) 

2.38 0.94 

MATATT Positive attitude towards math 
0(Low) / 
1(Medium) / 
2(High) 

1487 (26.6) 
3594 (64.4) 
502 (  9.0) 

0.82 0.57 

TIMEPLY 
Spend 3 or more hours/day watching 
TV/video or playing with friends 

0 (No) / 1 (Yes) 
2083 (37.3) 
3500 (62.7) 

0.63 0.48 

 
 
Table 2 
Descriptive Statistics for School-level Variables 

Name Description Category/Scale Freq.(%) Mean SD 

URBAN Urban schools 0 (No) / 1 (Yes) 
69 (48.3) 
74 (51.7) 

0.52 0.50 

SUBURB Suburban schools 0 (No) / 1 (Yes) 
89 (62.2) 
54 (37.8) 

0.38 0.49 

MPED School mean PED Continuous  1.85 0.32 

USEBOD* How often teacher use board 1 (never)~4 (always)  3.05 0.17 

Note. USEBOD is entered for variance modeling. 
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at home, such as computers, the student’s own desk, 
dictionary and number of books. In terms of student’s 
experience outside school, extra math lessons outside school 
(LESSON) and time spent on non-academic activities such 
as watching TV or playing with friends (TIMEPLY) were 
selected. Student responses to the frequency of teacher’s 
advance organizer use (AOFREQ) and how often students 
used the board (STDUSEBOD) were also selected to model 
the impact of the classroom experience. Finally, student’s 
positive attitudes toward mathematics (MATATT) was 
selected to check the impact of student motivation.  

Some student-level variables are aggregated to the 
school level to measure the contextual effects and school 
practice effects. The school mean of parents’ education level 
(MPED) can be used to measure the contextual effect of 
SES, which will be discussed in the results section. School 
location (rural, suburban or urban) is entered as a dummy 
variable to estimate the school location effects.   

Math teacher’s use of the board (USEBOD) was 
selected to model within-school heterogeneity for illustrative 
purposes. We assume that this variable, when aggregated to 
the school level, describes an important classroom practice. 
If a teacher uses the board more frequently, students in that 
class will share the same instructional experience more 
often, and as a result, math achievement for those students 
will become more similar. Based on this assumption, 
USEBOD was entered to explain variance heterogeneity. If 
this variable has an equalizing effect, schools in which 
teachers use the board more frequently should have a 
smaller variation in student achievement. Findings regarding 
this variable may suggest an equalizing effect; however, 
such a result may require closer theory-based investigation 
before further generalization. We also used school mean 
achievement levels as a predictor for modeling variance 
heterogeneity, because we hypothesize that in effective 
schools, achievement should be both high on average and 
narrow in dispersion. In other words, we will illustrate that 
even among schools with a similar average achievement 
level, the gap between high- and low-achievers can vary 
across schools depending on school’s instructional characteristics.  

 
 

Methods and Models 
 
A common practice in HM application is to assume 

that all errors at level-1 are drawn from an identical 
distribution, that is, rij ~ N(0, σ2). It is reported that the 
estimation of fixed effects and their standard errors does not 
change substantially when this assumption does not hold 
and σ2 varies randomly (Kasim & Raudenbush, 1998). 
Because of the robustness of this assumption, school effect 
studies rarely pay attention to the possibility of heterogeneous 
variance. However, level-1 variance may differ across 
schools and can give valuable information regarding the 
equalizing effect of certain school practices.  

However, one needs to specify the mean structure 
carefully before modeling the dispersion heterogeneity 
because variance heterogeneity can result from model 
misspecification. Bryk and Raudenbush (1988) pointed out 
that in randomized experiments, heterogeneous variance 
across groups can be viewed as an indicator that shows the 
possibility of treatment and aptitude interaction. Similarly in 
a multilevel situation, heterogeneity may be caused by 
model misspecification, either by omitting an important 
level-1 variable or by erroneously fixing a level-1 predictor 
slope (Raudenbush & Bryk, 2002). Another source of 
variance heterogeneity comes from differences in school 
characteristics and is of central interest in the effort to 
identify effective schools. Note that omission of the level-2 
variables in the mean structure is less problematic. Kim and 
Seltzer (2006) pointed out that in multisite studies that use 
multilevel model, differences in school level characteristics 
may work as another source of level-1 variance 
heterogeneity but is not necessarily associated with the 
model misspecification problem. That is, the omission of 
school-level correlates of level-1 variance heterogeneity in 
the mean structure model does not affect the inference on 
variance heterogeneity.  School effect studies that center 
on the school factors that reduce the achievement gap 
should attend to these correlates of dispersion. However, it 
should be pointed out that modeling heterogeneous variance 
using school level covariates does not compensate for the 
model misspecification problem and finding a systematic 
relationship between level-1 variance and school characteristics 
does not reduce the bias in fixed effects estimates caused by 
the misspecification of mean structure.  

If we find heterogeneity in level-1 variances after 
establishing the final model, the next step is to model this 
residual variance to see whether there is a systematic pattern. 
Variance homogeneity can be tested by computing chi-
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square statistics for standardized dispersion (see Raudenbush 
& Bryk, 2002, pp. 263-265, for example). After checking 
the variance heterogeneity, the next step would be to 
examine the distribution of variances and set up a regression 
model to find a relationship with school characteristics. Our 
specific models and their development are discussed below.  

First, we fit a fully unconditional model to decompose 
the total variance into student and school levels. The results 
showed that the grand mean math achievement was 590.22, 
between-school variance was 379.81, and within-school 
variance was 5652.50. These results indicate that only about 
6.3% of the total variance is attributable to school 
differences and the remaining 93.7% of the total variance 
comes from individual differences among students within 
schools. The test of homogeneous variance rejected the 
homogeneous variance assumption. The results are 
summarized in Table 3.  

As noted above, variance heterogeneity could occur by 
omission of an important level-1 variable or by fixing the 
level-1 slope that is in fact varying across schools. To make 
sure this was not the case, we fit a series of HM as described 
below.  

First, all eight level-1 variables entered in the model 
and random variation was allowed only for intercept (Model 
1, Random intercept ANCOVA model). The level-1 
homogeneous variance test for this model still rejected the 
null hypothesis that level-1 residual errors are drawn from 
an identical distribution. Following Raudenbush and Bryk 
(2002), we checked the variability of level-1 slopes across 
schools and found that LESSON, AOFREQ, and TIMEPLY 
effects varied significantly across schools. Therefore, in 
Model 2, we allowed random variation for intercept and the 
three slopes. Furthermore, in this model, school location and 

the average education level of parents (MPED) were entered 
to model the intercept (adjusted grand mean). The chi-
square test for this model also rejected the homogeneous 
level-1 variance assumption. In Model 3, school location 
and MPED were entered for the three random slopes 
specified in Model 2, as well as for the intercept. This was 
the final mean structure model. The homogeneous variance 
assumption was again rejected in this model. Therefore, we 
moved to the heterogeneous variance model, keeping the 
mean structure, as specified in Model 3. The results for 
Models 1 through 3 are summarized in Table 4. The 
statistics package HLM6 (Raudenbush, Bryk, Condon, & 
Cheong, 2004) was used to fit the three models described 
above.   

In the heterogeneous variance model, level-1 variance 
is assumed to vary across schools. Therefore, we posed a 
school-specific within-school residual variance, σ2

j for 
school j. The first step in our variance modeling was to 
check whether schools with higher achievement levels had 
smaller σ2

j. Modeling within-school residual variance using 
school mean achievement has two important implications. 
First, in relation to our definition of an effective school, 
using average achievement level as a predictor for 
achievement gap enables us to answer questions regarding 
the overall tendency, that is, whether high achievement 
schools are in general effective schools under our definition 
– a significant negative effect of achievement level on level-
1 variance will confirm this question. Next, to make a causal 
statement that schools’ instructional settings either reduce or 
magnify achievement gap, we need a strong assumption that 
the entry achievement gap was equal across schools. Since 
the data are not from a randomized experiment, this equal 
entry gap assumption is both too strong and difficult to 

Table 3 
Results from Unconditional Model 

Fixed Effect Estimate s.e. t-ratio p-value 

Grand mean  590.22 1.912 308.64  0.000 

Variance Components Estimate  χ2 p-value 

Between school variance  379.81  507.70  0.000 

Within school variance 5652.50    

Homogeneity of level-1 var. test   177.63 0.02 

 
 



Modeling within-school Variance Heterogeneity 

 211

 

 

Ta
bl

e 
4 

 
Re

su
lt 

Su
m

m
ar

y 
fo

r 
M

od
el

 1
 to

 M
od

el
 3

 w
ith

 H
om

og
en

ei
ty

 o
f L

ev
el

-1
 V

ar
ia

nc
e 

Te
st

 

 
M

od
el

 1
 

M
od

el
 2

 
M

od
el

 3
 

Fi
xe

d 
E

ff
ec

ts
 

Es
tim

at
e 

s.e
. 

t (
p-

va
lu

e)
 

Es
tim

at
e 

s.e
. 

t (
p-

va
lu

e)
 

Es
tim

at
e 

s.e
. 

t (
p-

va
lu

e)
 

Fo
r a

dj
us

te
d 

gr
an

d 
m

ea
n,

  β
0j
 

 
 

 
 

 
 

 
 

 
   

   
   

 A
dj

us
te

d 
gr

an
d 

m
ea

n,
  γ

00
 

59
0.

46
 

1.
49

 
 3

96
.2

4(
0.

00
) 

  5
90

.4
1 

  1
.3

1 
45

0.
69

(0
.0

0)
 

59
0.

94
 

1.
32

 
44

7.
67

 (0
.0

0)
 

   
   

   
 U

rb
an

 sc
ho

ol
s, 

 γ
01

 
 

 
 

   
 1

9.
73

 
  5

.4
0 

   
3.

66
 (0

.0
0)

 
18

.4
4 

   
  5

.5
 

3.
34

 (0
.0

0)
 

   
   

   
 S

ub
ur

ba
n 

sc
ho

ol
s, 

 γ
02

 
 

 
 

   
 1

6.
46

 
  5

.4
1 

3.
04

 (0
.0

0)
 

14
.6

9 
5.

49
 

2.
67

 (0
.0

0)
 

   
   

   
 S

ch
oo

l a
ve

ra
ge

 p
ar

en
t e

d.
 L

ev
el

,  
γ 0

3 
 

 
 

   
 1

1.
84

 
  4

.2
1 

2.
81

 (0
.0

0)
 

14
.9

2 
4.

46
 

3.
33

 (0
.0

0)
 

G
en

de
r c

on
tra

st
,  
γ 1

0 
  -

3.
33

 
3.

06
 

  -
1.

08
 (0

.2
7)

 
   

  -
2.

93
 

  3
.1

0 
-0

.9
5 

(0
.3

5)
 

-2
.7

7 
3.

14
 

-0
.8

8 
(0

.3
7)

 
Pa

re
nt

 h
ig

he
st

 e
d.

 S
lo

pe
,  
γ 2

0 
   

6.
92

 
1.

22
 

   
5.

68
 (0

.0
0)

 
   

   
6.

24
 

  1
.2

3 
5.

09
 (0

.0
0)

 
6.

12
 

1.
23

 
4.

94
 (0

.0
0)

 
H

om
e 

re
so

ur
ce

 sl
op

e,
  γ

30
 

 3
2.

86
 

2.
64

 
 1

2.
44

 (0
.0

0)
 

   
 3

2.
02

 
  2

.6
4 

12
.1

1 
(0

.0
0)

 
32

.1
6 

2.
63

 
12

.2
1 

(0
.0

0)
 

Fo
r e

xt
ra

 o
ut

si
de

 le
ss

on
 sl

oo
pe

,  
β 4

j 
 

 
 

 
 

 
 

 
 

   
   

   
 A

dj
us

te
d 

m
ea

n 
ef

fe
ct

,  
γ 4

0 
 2

1.
73

 
2.

30
 

   
9.

44
 (0

.0
0)

 
   

 2
0.

62
 

  2
.3

4 
8.

81
 (0

.0
0)

 
21

.2
2 

2.
34

 
9.

06
 (0

.0
0)

 
   

   
   

 U
rb

an
 sc

ho
ol

s, 
 γ

41
 

 
 

 
 

 
 

-1
0.

56
 

9.
66

 
-1

.0
9 

(0
.2

7)
 

   
   

   
 S

ub
ur

ba
n 

sc
ho

ol
s, 

 γ
42

 
 

 
 

 
 

 
-4

.6
8 

9.
78

 
-0

.4
7 

(0
.6

3)
 

   
   

   
 S

ch
oo

l a
ve

ra
ge

 p
ar

en
t e

d.
 L

ev
el

,  
γ 4

3 
 

 
 

 
 

 
-1

5.
21

 
7.

21
 

-2
.1

0 
(0

.0
3)

 
Fo

r '
te

ac
he

r e
xp

la
in

s r
ul

es
 at

 th
e b

eg
in

ni
ng

' s
lo

pe
,  
β 5

j 
 

 
 

 
 

 
 

 
 

   
   

   
 A

dj
us

te
d 

m
ea

n 
ef

fe
ct

,  
γ 5

0 
 1

4.
94

 
1.

33
 

 1
1.

22
 (0

.0
0)

 
   

 1
4.

75
 

  1
.3

2 
11

.1
7 

(0
.0

0)
 

14
.5

3 
   

  1
.3

 
11

.1
7 

(0
.0

0)
 

   
   

   
 U

rb
an

 sc
ho

ol
s, 

 γ
51

 
 

 
 

 
 

 
2.

44
 

7.
05

 
0.

34
 (0

.7
2)

 
   

   
   

 S
ub

ur
ba

n 
sc

ho
ol

s, 
 γ

52
 

 
 

 
 

 
 

2.
62

 
7.

05
 

0.
37

 (0
.7

1)
 

   
   

   
 S

ch
oo

l a
ve

ra
ge

 p
ar

en
t e

d.
 L

ev
el

,  
γ 5

3 
 

 
 

 
 

 
-1

0.
25

 
4.

98
 

-2
.0

5 
(0

.0
3)

 
St

ud
en

t u
se

 b
oa

rd
' s

lo
pe

,  
γ 6

0 
   

6.
48

 
1.

12
 

   
5.

78
 (0

.0
0)

 
   

   
6.

61
 

  1
.1

1 
5.

95
 (0

.0
0)

 
6.

63
 

1.
09

 
6.

05
 (0

.0
0)

 
Po

si
tiv

e 
at

tit
ud

e 
to

w
ar

d 
m

at
h 

sl
op

e,
  γ

70
 

 2
7.

38
 

1.
68

 
 1

6.
24

 (0
.0

0)
 

   
 2

7.
73

 
  1

.6
9 

16
.4

0 
(0

.0
0)

 
27

.7
4 

1.
69

 
16

.4
1 

(0
.0

0)
 

Fo
r '

sp
en

d 
m

or
e 

th
an

 3
 h

rs
. p

la
yi

ng
/T

V
' s

lo
pe

,  
β 8

j 
 

 
 

 
 

 
 

 
 

   
   

   
 A

dj
us

te
d 

m
ea

n 
ef

fe
ct

,  
γ 8

0 
-1

2.
34

 
2.

05
 

 -5
.9

9 
(0

.0
0)

 
  -

13
.1

8 
  2

.0
5 

-6
.4

2 
(0

.0
0)

 
-1

3.
24

 
2.

01
 

-6
.5

7 
(0

.0
0)

 
   

   
   

 U
rb

an
 sc

ho
ol

s, 
 γ

81
 

 
 

 
 

 
 

-1
3.

92
 

7.
49

 
-1

.8
5 

(0
.0

6)
 

   
   

   
 S

ub
ur

ba
n 

sc
ho

ol
s, 

 γ
82

 
 

 
 

 
 

 
-1

4.
27

 
7.

49
 

-1
.9

0 
(0

.0
5)

 
   

   
   

 S
ch

oo
l a

ve
ra

ge
 p

ar
en

t e
d.

 L
ev

el
,  
γ 8

3 
 

 
 

 
 

 
4.

29
 

6.
53

 
0.

65
 (0

.5
1)

 

V
ar

ia
nc

e 
C

om
po

ne
nt

s 
Es

tim
at

e 
χ2  

p-
va

lu
e 

Es
tim

at
e 

χ2  
p-

va
lu

e 
Es

tim
at

e 
χ2  

p-
va

lu
e 

   
   

   
 W

ith
in

-s
ch

oo
l (
σ2 ) 

44
17

.4
6 

 
 

43
12

.1
9 

 
 

43
13

.7
7 

 
 

   
   

   
 B

et
w

ee
n 

(in
te

rc
ep

t, 
τ 0

0) 
  2

05
.8

3 
39

7.
40

 
   

0.
00

0 
  1

35
.3

3 
28

4.
60

 
   

  0
.0

00
 

13
3.

57
 

28
3.

13
 

   
0.

00
0 

   
   

   
 B

et
w

ee
n 

(e
xt

ra
 le

ss
on

 sl
op

e,
 τ

44
) 

 
 

 
  1

98
.4

5 
18

4.
12

 
   

  0
.0

09
 

16
9.

02
 

17
4.

50
 

   
0.

01
9 

   
   

   
 B

et
w

ee
n 

(te
ac

he
r e

xp
la

in
 ru

le
s s

lo
pe

, τ
55

) 
 

 
 

   
 6

5.
51

 
19

6.
90

 
   

  0
.0

02
 

61
.7

5 
18

9.
59

 
   

0.
00

3 
   

   
   

 B
et

w
ee

n 
(3

 o
r m

or
e 

hr
s p

la
yi

ng
 sl

op
e,

 τ 8
8) 

 
 

 
   

 9
3.

86
 

16
9.

27
 

   
  0

.0
52

 
88

.0
7 

16
6.

76
 

   
0.

04
8 

   
   

   
 H

om
og

en
ei

ty
 o

f l
ev

el
-1

 v
ar

. t
es

t 
 

17
4.

37
 

   
0.

03
3 

 
17

5.
30

 
   

  0
.0

30
 

 
18

3.
37

 
   

0.
01

0 

 



Junyeop Kim, Kilchan Choi 

 212

justify. By controlling for achievement level, this assumption 
needs to be satisfied only among schools with similar 
achievement levels. To control for the achievement level, 
we used a latent variable regression technique (Raudenbush 
& Bryk, 2002; Seltzer, Choi, & Thum, 2003; Choi & Seltzer, 
in press), which essentially uses the unobserved latent 
variable (adjusted school mean, β0 in this study) as a 
predictor for σ2

j (Model 4). This latent variable modeling 
approach, instead of using observed mean achievement, 
enables us to avoid the attenuation problem of the regression 
coefficient, which is caused by measurement errors involved 
in observed variables. 

An effective school, according to our definition, is a 
school with high achievement and small variation in 
achievement among its students. Therefore, to determine 
school effectiveness it is crucial to examine school 
characteristics and practices that can reduce student 
achievement variation even after controlling for school 
mean achievement. Our final model (Model 5) illustrates 
this point. Both β0 (average achievement level) and 
USEBOD were entered to model σ2

j. Therefore, a 
significant USEBOD effect will indicate that among schools 
with the same achievement level, schools in which teachers 
use the board more frequently have a smaller gap between 
high- and low-achieving students. Specifications of the final 
models are shown in equations (1), (2), and (3).  

Note that at the student level, PED, HOMERSC and 
LESSON are grand mean centered and other level-1 
variables are group mean centered. These grand mean 
centered variables are related to either SES or academic 
input from outside the school, and would be better 
controlled in school effect studies because variation in 
student achievement due to these variables cannot be 
attributable to school practice. This is a particularly 
reasonable approach if we can assume, for example, that a 
school’s average achievement is high because most of its 
students take extra lessons outside school; then it would be 
more reasonable to adjust for the effect of these outside 
lessons when we evaluate the school’s performance. By 
virtue of this level-1 centering, β0j now represents the 
average math achievement of school j, controlling for 
parents’ education, home educational resources, and extra 
math lessons. β1j through β8j capture the effect of 
corresponding variables, respectively—that is, the average 
increase/decrease of student achievement in school j when 

the value of the corresponding variable changes by one unit. 
 

Achievement Model 
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Dispersion Model 
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At the school level, some βs are allowed to vary across 

schools, and school location and average PED level 
(MPED) are entered as predictors—also note that all the 
school- level variables are grand mean centered. By this 
grand mean centering, γ00 now captures the adjusted grand 
mean achievement level. γ01 and γ02 indicate how much 
urban and suburban schools did better/worse than the grand 
mean. γ03 requires special attention for interpretation—this 
fixed effect captures the contextual effect of parents’ 
education levels. Since we already have adjusted for PED at 
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the student level, γ03 captures, among students with similar 
parental education levels, how much extra advantage 
students receive in schools with a one-unit-higher mean 
PED level.  

Because preliminary analysis found no variability in 
GENDER, PED, and HOMERSC effects across schools, 
these slopes are fixed at the school level. Therefore, γ10, γ20, 
and γ30 show the overall gender difference, PED effect, and 
HOMERSC effect, respectively. LESSON and AOFREQ 
slopes showed significant variability across schools, and 
these slopes are set to vary randomly across schools. γ40 
captures the overall extra lessons effect. γ41 through γ43 
show whether extra lessons are more effective in urban 
schools (γ41), suburban schools (γ42) or in schools with 
higher average SES levels (γ43). γ50 through γ53 can be 
interpreted the same way as γ40 through γ43. USEBOD and 
MATATT slopes are also fixed across schools. Therefore, 
γ60 and γ70 represent the overall USEBOD effect and 
MATATT effect, respectively. γ80 is the overall achievement 
difference between students spending 3 or more hours 
playing/watching TV and students spending less than 3 
hours in those nonacademic activities. γ81 and γ82 show 
whether this difference is larger or smaller in urban schools 
(γ81) and suburban schools (γ82). Finally, γ83 shows whether 
the gap gets wider or narrower depending on school mean 
SES level.  

As we specified in the level-1 model (equation 1), each 

school has its own within-school residual variance (σ2
j), and 

σ2
j now captures the dispersion of student achievement in 

school j after explaining the effect of student-level variables.  
Before modeling the variance, we examined the 

distribution of σ2
j
1 (left in Figure 1). The distribution seems 

positively skewed with one outlying school (school #142). 
Due to the fact that variance can only take positive values, it 
is a common practice to log-transform the estimated 
variance to fit the model (Raudenbush & Bryk, 2002). This 
transformation reduces the degree of the skew and enables 
the transformed value to take on a negative value. However, 
because log-transformation is a non-linear function, the 
interpretation becomes rather complex. Another option in 
this situation is a square root transformation. Even though 
this is also a non-linear transformation, the interpretation 
becomes straightforward, considering the fact that the 
square root of variance is the standard deviation. On the 
right hand side of Figure 1 the distribution after square root 
transformation is shown. Note that the transformed data are 
less skewed. The degree of the skew of the original scale is 
1.11, whereas the degree of the skew of the transformed 
scale is substantially reduced to 0.52. Therefore, we fit the 
variance regression model using the square root of the 
variance as the outcome. Note also that, for a sensitivity 
check, we fit the same model without school #142, which 
seems to have outlying variance. The result was not 
substantially different. 2 
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Furthermore, before placing a regression model on the 
dispersion, we checked the relationship between school-
specific dispersion and the covariate, USEBOD, to confirm 
the shape of the relationship (Figure 2). The scatter plot shows 
a clear linear decreasing pattern of σj as USEBOD increases. 

At this point, d1 in equation (3) captures the 
relationship between the adjusted school mean (β0j) and 
within-school residual standard deviation (σ). A negative d1 
estimate indicates that schools with high average 
achievement also have smaller variance, holding constant 
USEBOD. This could possibly occur due to a ceiling effect 
or other successful instructional factors. Note that β0j is 
centered around its grand mean (γ00) so that the intercept 
(d0) can represent the average within-school variation of 143 
schools. d2 in equation (3) shows whether teachers’ frequent 
use of the board can reduce σ, after controlling for school 
mean achievement. USEBOD is also grand mean centered. 
Results for this variance model (Models 4 and 5) are 
summarized in Table 5. Since common software packages 
tailored to multilevel analysis do not provide solutions for 

latent variable regression for variance, we used a fully 
Bayesian approach via Markov chain Monte Carlo (MCMC) 
method (e.g., Gibbs sampler) implemented in WinBUGS 
(Spiegelhalter, Thomas, Bets, & Lunn, 2003).  

 
 

Results 
 
The results for Models 1 through 4 are preliminary 

analyses showing our procedures step-by- step. Therefore, 
we will discuss only the results for the final model (Model 
5). General fixed effects in the mean structure model 
(achievement model) will be discussed first; then, more 
importantly, the result for the variance model (dispersion 
model) will be discussed.  

 
Achievement Model  
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Table 5   
Result Summary for Heterogeneous Variance Modeling  

 Model  4 Model  5 

 
Mean 

95% 
interval 

Prob. >0 Mean 
95% 

interval 
Prob. >0

Mean model       

For adjusted grand mean,  β0j       
      Adjusted grand mean,  γ00 591.0 588.4, 593.7 1.000 591.0 588.3, 593.7 1.000 
      Urban schools,  γ01 18.08 7.55, 28.38 1.000 18.26 7.69, 28.65 1.000 
      Suburban schools,  γ02 14.27 3.80, 24.45 0.996 14.55 4.18, 24.78 0.997 
      School average parent ed. Level, γ03 15.45 5.87, 25.12 0.999 15.28 5.63, 24.96 0.999 

Gender contrast,  γ10 -2.60 -8.74,  3.55 0.203 -2.44 -8.57,  3.68 0.217 
Parent highest ed. Slope,  γ20 6.15 3.79,  8.49 1.000 6.16 3.82,  8.51 1.000 
Home resource slope,  γ30 31.84 26.71, 36.95 1.000 31.89 26.78, 37.00 1.000 
For extra outside lesson slope,  β4j       

      Adjusted average effect,  γ40 21.15 16.51, 25.75 1.000 21.01 16.42, 25.60 1.000 
      Urban schools,  γ41 -10.99 -30.02,  7.53 0.121 -10.86 -30.03,  7.99 0.128 
      Suburban schools,  γ42 -4.99 -23.54, 13.46 0.299 -4.81 -23.60, 14.10 0.305 
      School average parent ed. Level, γ43 -15.33 -31.01,  0.49 0.029 -14.94 -30.69,  0.85 0.031 
For 'AO frequency' slope,  β5j       

      Adjusted average effect,  γ50 14.61 12.01, 17.24 1.000 14.63 12.02, 17.25 1.000 
      Urban schools,  γ51 2.32 -7.71, 12.63 0.669 2.73 -7.19, 12.67 0.706 
      Suburban schools,  γ52 2.27 -7.50, 12.38 0.666 2.74 -7.15, 12.61 0.705 
      School average parent ed. Level, γ53 -10.53 -19.59, -1.49 0.011 -10.68 -19.76, -1.64 0.011 
Student use board' slope, γ60 6.63 4.61,  8.67 1.000 6.65 4.61,  8.69 1.000 
Positive attitude toward math slope, γ70 27.72 24.52, 30.92 1.000 27.74 24.55, 30.94 1.000 
For 'play time' slope,  β8j       

      Adjusted average effect, γ80 -13.41 -17.65, -9.19 0.000 -13.43 -17.74, -9.14 0.000 
      Urban schools,  γ81 -13.71 -30.11,  3.70 0.056 -13.95 -30.63,  2.35 0.047 
      Suburban schools,  γ82 -13.70 -30.10,  3.30 0.054 -13.76 -30.26,  2.24 0.048 
      School average parent ed. Level, γ83 3.81 -10.83, 18.58 0.693 4.15 -10.19, 18.90 0.712 

Variance model for σj       

      Average within-school SD, d0  65.62 (0.74) 64.18, 67.10 1.000 65.62 (0.73) 64.21, 67.09 1.000 

      School mean achievement slope, d1 -0.14 (0.06) -0.27, -0.02 0.012 -0.13 (0.06) -0.25, -0.01 0.019 

      Teacher ues board slope, d2    -8.57 (4.31) -16.92, -0.05 0.024 

Random effects variance matrix (T) 
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math lessons, the grand mean math achievement score is 
equal to 591 (γ00). The mean for urban schools was 18.26 
points above average (γ01). The mean for suburban schools 
was 14.55 points above average (605.55). The contextual 
effect of the aggregate parent education level was 15.28 
(γ03). Because the standard deviation of MPED is .32 (see 
Table 2), if we compare two students with the same parental 
education level in two schools differing by 1 SD MPED 
level, we would expect the student in the school in the 1 SD 
higher MPED level to show 4.89 points (i.e., 
15.28×.32≈4.89) higher achievement than the other student 
in the other school.    

We found no gender difference in math achievement 
(γ10). Parents’ education level did make a difference in 
student math achievement (γ20). Note that the possible 
difference in math achievement between students in the 
lowest parents’ education level and the highest is 18.48 (i.e., 
6.16×3=18.48). However, as mentioned above, depending 
on the school’s average PED level, this gap can get wider or 
narrower. Home resources had a strong effect on math 
achievement (the effect estimate is 31.89, γ30). Because this 
variable is coded 0 to 2, the expected difference between 
students with low and high home resources is 63.78 (i.e., 
31.89×2=63.78). However, note that most of the students 
(80%, Table 1) had a medium home resources level. 

Students who took extra math lessons outside school 
more than 1 hour per week scored about 21 points higher on 
average (γ40). However, students in high MPED level 
schools got less benefit from extra lessons (γ43). Students’ 
frequent exposure to teacher’s advance organizer (AO) did 
increase students’ achievement (γ50). In addition, in high 
MPED level schools, this AO effect was smaller than 
average (γ53). For example, the average AO effect was 14.63, 
and the AO effect for schools at 2 SD above the average 
MPED level was 7.79 (14.63 - (2×.32×10.68)≈7.79). The 
reason for extra lessons and AO being less effective in high 
SES schools requires further investigation. However, one 
possible explanation might be that in high SES schools, 
students could have access to various alternative educational 
resources and different environments (e.g., peer/family 
pressure and better classroom instruction) not specified in 
this study may contribute to student achievement, compared 
to low SES schools where students have, for example, fewer 
options to take extra lessons.  

Students’ more frequent board use was positively 

associated with math achievement (γ60). Moreover, students 
reporting a high positive attitude toward math showed a 
higher degree of math achievement (γ70). These effects did 
not vary significantly across schools.  

γ80 indicates that students who spend more than 3 hours 
doing non-academic activities after school scored 13.43 
points less on average. Interestingly, this gap gets wider in 
both urban (γ81) and suburban schools (γ82). In urban schools, 
the gap became 27.38 (-13.43 - 13.95 = -27.38), and in 
suburban schools, the gap is 27.19 (-13.43 - 13.76 = -27.19). 
In general, the gap between the two activity groups was 
smaller in rural schools than in non rural schools.  

 
Dispersion Model  

 
Variance model results (d0 to d2 in Model 5; see Table 

5) show that average σj was equal to 65.62 (d0). School 
mean achievement was significantly related to smaller σj (d1 

= -.13). d2, the effect of USEBOD, was -8.57 with prob.(d2 
> 0) equal to 0.024. This shows that 97.6% of the posterior 
distribution of d2 falls below zero—strong evidence of a 
negative relationship. Therefore, data supports the idea that 
even after adjusting for school mean, using the board 
frequently in classroom instruction seems to reduce the 
achievement gap within schools. Table 2 shows that 
teachers already used the board frequently in the 
classroom (mean=3.05, SD=.17). We expect a 1.46 point 
(8.57×.17≈1.46) decrease in σj when USEBOD increases by 
1 SD. If we compare two schools with a 2 SD difference in 
USEBOD and the same achievement level, the school with 
higher USEBOD will have about a 11.4 points smaller 95% 
interval. 3 This interval can alternatively be interpreted as the 
gap between the upper and lower 2.5% achievement level in 
a school. Therefore, the gap between the upper and lower 
2.5% students will also be smaller by 11.4 points in schools 
with 2 SD above the USEBOD level. This variance model 
result is summarized in Figure 3. Each bar in Figure 3 
represents the predicted 95% achievement range in a school.  

As noted before, the 95% achievement range can be 
interpreted as the achievement gap between the highest and 
lowest 2.5% of students in a school. Figure 3 presents a 
graphical representation of the results from the dispersion 
modeling in Model 5. We present three schools with 
different achievement levels (2 SD below average, average, 
and 2 SD above average), and within each achievement 
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level, we selected three USEBOD levels (2 SD below 
average, average, and 2 SD above average). This figure 
shows that high-achievement schools have a smaller gap, 
and among schools with the same achievement level, 
schools with high USEBOD schools tend to have a smaller 
gap. However, we recommend that readers interpret the 
result with caution because USEBOD is chosen solely for 
illustrative purposes and is not based on a systematic theory. 
For example, it is likely that USEBOD works as a proxy of 
the underlying construct or school practice. Clearly, further 
research is needed to identify factors that are associated with 
homogenizing the competency levels of students in a school. 

 
 

Summary and Discussion 
 
In this study, we tried to answer some important 

questions in school effect studies, such as: ‘what elements 

make a good school?’ and ‘what kind of school is effective 
in closing the gap between high- and low-achieving 
students?’ In this regard, we argue that effective schools not 
only increase student achievement levels on average, but 
also reduce the gap between student achievement levels. 
Through the illustration with data from TIMSS-R, we 
showed how simultaneous modeling of within-school 
variation and achievement levels under a multilevel 
framework can be utilized to answer these questions – that 
is, to identify effective schools and the correlates of a 
smaller achievement gap. Our analysis showed that schools 
did vary, not only in their achievement levels but also in the 
achievement gap between high- and low-achieving students.  

To illustrate examples of more and less effective 
schools, we chose three schools in Figure 4, based on our 
results. Note that solid reference lines represent the 
estimated upper 2.5% achievement level, the grand mean, 
and the lower 2.5% achievement level in the population, 
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respectively.  
First, schools #20 and #142 have similar mean 

achievement levels (606 and 603). However, if we compare 
the predicted gap between the upper and lower 2.5% of 
students in the two schools, we see that the gap is about 50 
points smaller in school #20. Therefore, in terms of closing 
the gap, school #20 is more effective than school #142. 
School #21 is an example of a less effective school in terms 
of dispersion as well as achievement, that is, low 
achievement and a larger gap. As shown, one advantage of 
proposed variance modeling is that we can actually calculate 
the gap between any two achievement percentile scores 
within a school (for example, 25% and 75%), and this can 
be used as a school indicator along with school performance 
level. 

Next, our proposed analytic method enables us to study 
the school characteristics or practices that reduce or magnify 
the gap, which can provide information for school reform to 

direct as many students as possible towards the achievement 
goal. Using the latent variable regression technique, we 
modeled the latent school-specific variance heterogeneity as 
a function of school-level observed (USEBOD) and latent 
(average achievement) variables. Incorporating latent 
average achievement levels in the dispersion model is 
especially useful because, by blocking by achievement level, 
one can effectively control for the ceiling effect on the 
inference regarding the effect of school practice on the 
achievement gap. 

In simultaneous modeling of dispersion and mean 
structure, the specification of mean structure is especially 
important because the detected difference in dispersion 
among schools with different levels of certain school 
characteristic may signal unnoticed interaction between the 
school characteristic and certain student characteristics, 
whether observed or not (Kim & Seltzer, 2006). Checking 
whether the specified mean structure adequately represents 
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the data or not is especially challenging in complex models, 
and has not been studied sufficiently in educational research. 
It is also possible that unnoticed student variables may 
affect the inference in terms of the dispersion and 
subsequent studies are needed to provide the basis for 
rigorous discussion as to why some schools are more 
homogeneous in achievement than others. One way which 
shows promise for assessing how well the model represents 
the observed data is to simulate data from the fitted model 
and compare it with the observed data, a technique called 
Bayesian posterior predictive model checking. Readers are 
referred to Gelman et al. (1995) and Kim and Seltzer (2008) 
for detailed discussion on this topic.  

 
 

Notes 
 

1 To examine the distribution of σ2
j, we first fit the achievement 

model specified in equations (1) and (2) and obtained the 
estimate of σ2

j, assuming that each school has its own level-1 
variance.  

2 The result for Model 5 without school #142 is as follows: d0 = 
65.37 (prob.(d0> 0) = 1.00), d1 = -1.83 (prob(d1> 0) = 0.26) and 
d2 = -8.15 (prob.(d2> 0) = 0.01).  

3 The 95% interval, which captures the middle 95% of the 
predicted achievement distribution in a school, can be calculated 
as β0j ± 1.96σj. This interval becomes smaller in schools with 
high achievement or with higher USEBOD level, because σj 
becomes smaller in these schools. 
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