

Miscellanea

210

ON QUALITY AND MEASURES IN SOFTWARE ENGINEERING

Ion I. BUCUR1

PhD, University Lecturer
Politechnica University of Bucharest, Romania

E-mail: ion.bebe.bucur@gmail.com

Abstract: Complexity measures are mainly used to estimate vital information about reliability
and maintainability of software systems from regular analysis of the source code. Such
measures also provide constant feedback during a software project to assist the control of the
development procedure. There exist several models to classify a software product's quality.
These models often include different measures and on their basis it is established a degree to
which the product satisfy each quality attribute. Each model can have a different set of
attributes at the highest level of classification, and also, the attributes can be defined
differently at all levels. Actually, more and more activities are based on computer programs
and they become highly dependent on their quality. In principle, everyone agrees that quality
is important, but few agree on what quality is. In this paper, we will present the most important
models and standards for measuring software quality. Afterworlds', we will give some metrics
for software complexity and we will explain its relationship with the quality.

Key words: quality, source code, ISO, metrics, cyclomatic complexity, complexity, testing,
reengineering

1. Introduction

The problem of quality's evaluation is quite an old one; it was approached long
time ago and led to the publication of the first quality standards by ISO (International
Standards Organization) since the late 80's. The goal of these standards was to eliminate
products amateurism by certifying some of their values or qualities. Nowadays, the quality
control methods are more and more implemented in all companies in order to provide
products and services in conformity with the clients' demands. Organizations all over the
world are more and more concerned with the raising of software products quality, which
may lead to success in many directions, from programmed microwaves to watches and toys.
The quality, when present, is transparent, but easily recognizable when missing.

Software complexity is one branch of software metrics dedicated to direct
measurement of software quality attributes, being distinct to indirect software measures such
as reported system failures, project milestone status, etc.

Complexity measures are mainly used to estimate vital information about reliability
and maintainability of software systems from regular analysis of the source code. Such
measures also provide constant feedback during a software project to assist the control of

Miscellanea

211

the development procedure. During testing and maintenance, complexity measures are
providing detailed information about software modules to help pinpoint areas of potential
instability.

There exist several models to classify a software product's quality. These models
often include different measures and on their basis it is established a degree to which the
product satisfy each quality attribute. Each model can have a different set of attributes at the
highest level of classification, and also, the attributes can be defined differently at all levels.

2. General quality standards

Different people may have different views on what software quality is. For some, it
is a largely aesthetic and practical issue, dealing with the question of how efficiently and
elegantly, a computer program performs a task and source code looks. For others, quality is
defined as strict conformance to requirements and absence of bugs. In both cases, there are
sets of practices that are either required, or highly useful in this pursuit.

Thus, the standards have been introduced in the attempt to assure some universal
reference systems. They are used on a large scale since they assure a background for the
organizations to define a quality model for a software product. This way, however, each
organization has the possibility to specify with precision its own quality model. This can be
done by establishing some reference values for the attributes quality.
In accordance with ISO 8402, the quality is in fact presented by a set of characteristics,
which can be divided as follows:
- Economic characteristics: expressed by means of costs, resources economies, as well as
productivity and growth performance.
- Social and psycho-sensorial characteristics: manifested by rendering profitable the creative
elements, by eliminating the routine and the stereotypy as well as by operators assisted
training;
- Technical characteristics: presented in the specialized literature and very well systematized
by ISO 9126 - a standard that exclusively deals with the software systems evaluation.

Among the quality characteristics, there are a lot of subordination relations, the
interdependence, hierarchy, unit, decomposition, and the complexity of these relations leads
to the quality characteristics assembly to make up a system. The quality characteristics are
aggregates of the quality attributes, which correspond to actual properties that the
programming systems must have.

Further on, in this article, one will analyze the technical characteristics due to the
fact that these are most important for software systems evaluation.

3. ISO 9126 - International standard for evaluating software products

In 1991, the ISO published its first international consensus on the terminology for
the quality characteristics for software product evaluation (ISO 9126 / 1991). From 2001 to
2004, the ISO published an expanded version, containing both the ISO quality models and
inventories of proposed measures for these models. The standard is divided into four parts
which addresses, respectively, the following subjects: quality model, external metrics,
internal metrics, and quality in use metrics:

• Quality models - ISO 9126-1.

Miscellanea

212

• External metrics - ISO TR 9126-2.
• Internal metrics - ISO TR 9126-3.
• Quality in use metrics - ISO TR 9126-4.

Internal metrics are those that do not rely on software execution (static measures)
while external metrics are applicable to running software. Ideally, the internal quality
determines the external quality and this one determines the results of quality in use.

The quality model established in the first part of the standard, ISO 9126-1,
classifies software quality in a structured set of factors as follows:
- Functionality - A set of attributes that bear on the existence of a set of functions and their
specified properties. The functions are those that satisfy stated or implied needs. This
characteristic has the following attributes: Suitability, Accuracy, Interoperability, Compliance,
Security;
- Reliability - A set of attributes that bear on the capability of software to maintain its level of
performance under stated conditions for a stated period of time. This characteristic has the
following attributes: Maturity, Recoverability, Fault Tolerance;
- Usability - A set of attributes that bear on the effort needed for use, and on the individual
assessment of such use, by a stated or implied set of users. This characteristic has the
following attributes: Learnability, Understandability, Operability;
- Efficiency - A set of attributes that bear on the relationship between the level of
performance of the software and the amount of resources used, under stated conditions.
This characteristic has the following attributes: Time Behavior, Resource Behavior;
- Maintainability - A set of attributes that bear on the effort needed to make specified
modifications. This characteristic has the following attributes: Stability, Analyzability,
Changeability, Testability;
- Portability - A set of attributes that bear on the ability of software to be transferred from
one environment to another. This characteristic has the following attributes: Installability,
Conformance, Replaceability, and Adaptability.

The sub-characteristic Conformance is not listed above and applies to all
characteristics. Examples are conformance to legislation concerning Usability or Reliability.

Each quality sub-characteristic (as Adaptability) is further divided into attributes. An
attribute is an entity which can be verified or measured in the software product. Attributes
are not defined in the standard, as they vary between different software products.

ISO 9126 distinguishes between a defect and nonconformity, a defect belongs to
the application space being the nonfulfilment of intended usage requirements, whereas
nonconformity is defined upon the application specification space and is defined as being
the nonfulfilment of specified requirements.

4. Software complexity measures

Software measurement method is a rule designed for assigning a number of
identifier to software in order to characterize it. It is essential to distinguish between the
characteristics which one would wishes to measure and the way by which this characteristic
is evaluated and appreciated. Code complexity, as an example, is a characteristic used to
describe a piece of a code. There are many different measures to evaluate this characteristic.
One could find in literature measures as the number of lines code lines, testability, easiness

Miscellanea

213

in fixing error, code understandability and many other ways used to evaluate code
complexity.

The term software complexity means mostly the degree to which a system or
component has a design or implementation that is difficult to understand and verify
(testable). Still, there is no total consensus concerning this definition, another interpretation
sees the complexity as a measure of the resources expended by a system while interacting
with a piece of software to perform a given task. If the interacting system is a programmer,
then complexity is defined by the difficulty of performing tasks such as coding, debugging,
testing or modifying the software.

All these definitions associate the software complexity with the difficulty or
performing a task on the software. An implicit assumption is that software complexity
correlates well with the work effort (man-hours) required developing or maintaining the
software.

Among the most well-known attempts to measure the complexity are: Software
Science, which deals with the difficulty of understanding the code, Cyclomatic Number,
which deals with the code's complexity structure, and Information Flow, which deals with the
relation between modules. During the last years, six metrics have been proposed to measure
some baselines in terms of Object Oriented Design, like Number of Class, Number of
Children, Depth of Inheritance Tree etc.

5. Complexity, Reengineering and Testing

There is in common usage hundreds of software complexity measures, ranging
from the simplest, such as source lines of code, to the complex, such as number of variable
definition/usage associations. It is essential to use a low complexity subset of these measures
for implementation. One of the most important criterions for metrics selection is uniformity
of usage. One can read mostly in all papers that the key idea here is open reengineering.
The reason that makes open systems so popular for commercial software applications stems
in the fact that the user is guaranteed a certain level of interoperability - it means that the
applications work together in a common framework, and software systems can be ported
across different hardware platforms with minimal effort. Complexity measurement using
metrics is a primary request, but open reengineering extends to other modeling techniques
such as flow graphs, structure charts, and structure-based testing. Common complexity
measures as the Halstead Software Science metrics are a significant step up in value.
Halstead measures were introduced in 1977 and have been used and experimented with
extensively since that time. They are one of the oldest measures of program complexity. By
counting the number of total and unique operators and operands in the program, measures
are derived for evaluating program size, programming effort, and estimated number of
defects. Halstead metrics are, in fact, independent of source code format, so they are able to
measure intrinsic attributes of the software systems. Halstead metrics are considered by
several authors as being a little bit controversial, especially in terms of the psychological
theory behind them, but they have been used productively on many projects. The main
weakness, however, is that the derived mathematical formulas of the main Halstead metrics
are considerably unconcerned from the measured code, so there isn't a strong prescriptive
component.

Miscellanea

214

One can identify code of an application as being potentially unpredictable, but the
Halstead theory doesn't say much about how to test it, if it is testable, or how to improve it, if
one proves to be necessary. Despite these limitations, Halstead Software Science metrics are
very helpful and constructive for identifying computationally-intensive code with many dense
formulas, which represent possible sources of inaccuracy or errors that other complexity
procedures are likely to miss. However, their properties are well-known and, in they have
been shown to be a very strong component of the Maintainability Index Technique
measurement of maintainability method.

The McCabe Cyclomatic Complexity Measure is very flexible and extensively used for
software systems complexity evaluation, mostly for existing ones. It measures the number of
linearly-independent paths through a program module. The McCabe complexity is one of the
more widely-accepted software metrics; it is intended to be independent of language and
language format. The complexity number is generally considered to provide a stronger
measure of a program's structural complexity than is provided by counting lines of code,
previously used. It is widely proposed as the foundation of every software complexity tool. It
may be considered a broad measure of soundness and confidence for a software system.
This complexity measure is based purely on the code's decision structure. It makes this
method to be uniformly applicable across projects and languages being completely
insensitive to cosmetic changes in code. Many studies have reported its correlation with
errors in software code, so it is used to predict reliability. More significantly, experimental
studies have shown that the risk of errors is rising for functions having cyclomatic complexity
over 15, so one could consider it as a validated threshold for reliability screening. If a
function has a cyclomatic number of 15, there are at least 15 (but probably more) execution
paths through it. More than 15 paths are hard to identify and test. Functions containing one
selection statement with many branches make up an exception. Also, this assessment can be
performed step by step during development and can even be estimated from a detailed
design. Considering a specified software module, one can easily calculate cyclomatic
complexity, in a manual way, by counting the decision constructs in the code. This approach
allows building up continuous control during project development, so that unreliable code is
prevented early at the unit development stage. A reasonable upper limit cyclomatic number
of a file is 100. Using automated tools one can verify code compliance at any stage of the
project development. McCabe's cyclomatic complexity measure gives precise testing rules.
Most complex function being most error prone piece of code has to be first considered in
order to receive required testing.

One of the most successful measurement concepts, used for quantitative
productivity levels is function point metrics. Software measure based on function points
techniques (FP) reflects the user's view of a system's functionality and gives size as
functionality. One unit (the function point) represents the amount of information processing
that a module offers the user. The unit is viewed separately from the way in which the
information processing is carried out in principle. This concept was introduced in the mid-
1970s when IBM commissioned engineer Allan J. Albrecht and his colleagues to explore
software measurement and metrics. IBM was motivated for this assignment by the growing
impact of software quality within the company tied with the difficulties and obvious
limitations of the ubiquitous line of the code metrics, used before.

Functional point data has two targets. First one is an estimation variable used
mainly to evaluate the size of each software module, while the second one is intended as a

Miscellanea

215

baseline metrics collected from older projects developed by same team and used
conjunctively with estimation variables helping to devise cost and effort projections. Function
points are categorized into five groups: outputs, inquiries, inputs, files, and interfaces.
Basically the approach proceeds to identify and count of unique function types:
- external inputs (file names, as example);
- external outputs (e.g. reports, messages);
- queries (interactive inputs needing a response);
- external files or interfaces (files shared with other software systems);
- internal files (invisible outside the system).

Function point metrics extended among many companies because they did provide
substantial benefits to their users. The first benefit of function point metrics is that they are
offering substantial ability to the software industry in order to carry out economical based
studies for developed products [05, 09, 10, and 24]. These metrics have become the
standard for studying topics associated with software, including but not limited to:

• Outsource contracts;
• Quality baseline and benchmarks ;
• Process improvement economics;
• Litigation analysis;
• Productivity baseline and benchmarks.

Function points are powerful metrics but successful usage of them is not a trivial
task. Accurate counting of function points metrics require good training. Main feature of
function point metrics is the fact that them are able to measure economic productivity or the
defect volumes found in software requirements, design, and user documentation as well as
measuring coding defects.

6. Conclusions

The quality of software is given by its capacity to be used effectively, efficiently and
comfortably by any user, for a set of goals, in the specified conditions. The quality
characteristics of a software product are described by a set of standardized properties
described by the International Standards Organization (ISO). For example: the functionality,
the reliability, usability and the others attributes of ISO 9126 on which the users are
concerned.

The software complexity is highly connected with its quality for a simple reason.
After the initial developing phase of a piece of code, one usually invests a lot in the
maintenance and permanent updating of the respective software. In order to ensure the
quality of a software program, one needs to have a good capacity to maintain and better
organize the code sources. A program with an advanced complexity will always need big
investments to permanently guarantee services in conformity with the client's demands.

References

1. Abran, A., Al-Qutaish, R.E., Desharnais, J. M., Habra, N., An Information Model for Software

Quality Measurement with ISO Standards, In: „SWEDC-REK, International
Conference on Software Development” , Reykjavik, Island , University of Iceland,
2005, p. 104-116

Miscellanea

216

2. Abu Talib, M., Abran, A., Ormandjieva, O., COSMIC-FFP & Functional Complexity (FC)
Measures: A Study of their Scales, Units and Scale Types, In Proceedings of „The
15th International Workshop on Software Measurement - IWSM'2005”,
Montreal, Canada, Shaker-Verlag , 2005, p. 209-225

3. Abu Talib, M., Ormandjieva, O., Abran, A., Buglione, L., Scenario-Based Black-Box Testing in
COSMIC-FFP, In: „Software Measurement European Forum - SMEF 2005”, Rome,
Italy , 2005, p. 173-182

4. Al-Qutaish, R.E., Abran, A., An Analysis of the Design and Definitions of Halstead's Metrics,
In proceedings of „The 15th International Workshop on Software Measurement -
IWSM'2005”, Montreal, Canada , Shaker-Verlag , 2005 , p. 337-352

5. Anton, A.I., and Potts, C., Functional Paleontology: System Evolution as the User Sees It, In:
Proceedings of „The 23rd International Conference on Software Engineering,
ICSE01”, Toronto, 12-19 May 2001, p. 421-430

6. Azuma, M., SQuaRE: The next Generation of ISO/IEC 9126 and 14598, International
Standards Series on Software Product Quality, in Proceedings of the European
Software Control and Metrics Conference (ESCOM), 2-4 April 2001, London, UK,
p. 337-346

7. Boehm, B.W., Abts, C., Brown A.W., Chulani, S., Clark , B., Horowitz, E., Madachy, R., Reifer, D.,
and Steece, B., Software Cost Estimation with COCOMO II, Prentice Hall PTR, 2000

8. Bruegge B., Dutoit, A.H., Object-Oriented Software Engineering - Using UML, Patterns, and
Java, Pearson Education Inc., Pearson Prentice Hall, 2004

9. Garmus, D., Herron, D., Function Point Analysis - Measurement Practices for Successful
Software Projects, Addison-Wesley, 6th Printing, December 2004

10. Halstead, M.H., Elements of Software Science, Operating, and Programming Systems
Series, Volume 7, New York, NY : Elsevier, 1977

11. Homer, S., and Selman, A. L., Computability and Complexity Theory, Springer Verlag, New
York , 2001

12. ISO, ISO/IEC 9126-1, Software Engineering - Product Quality - Part 1: Quality model,
Geneva , International Organization for Standardization, 2001

13. ISO, ISO/IEC FCD 25000, Software Engineering - Software Product Quality Requirements
and Evaluation (SQuaRE) - Guide to SQuaRE, Geneva, International Organization
for Standardization, 2004

14. ISO, ISO/IEC FCD 25020, Software and System Engineering - Software Product Quality
Requirements and Evaluation (SQuaRE) - Measurement Reference Model and
Guide, Geneva , International Organization for Standardization, January 24, 2005

15. ISO, ISO/IEC IS 9126, Software Product Evaluation - Quality Characteristics and
Guidelines for Their Use, Geneva , International Organization for Standardization,
1991

16. ISO, ISO/IEC PDTR 25021, Software and System Engineering - Software Product Quality
Requirements and Evaluation (SQuaRE) - Measurement Primitives, Geneva ,
International Organization for Standardization, 2004

17. ISO, ISO/IEC TR 9126-2, Software Engineering - Product Quality - Part 2: External Metrics,
Geneva , International Organization for Standardization, 2003

18. ISO, ISO/IEC TR 9126-3, Software Engineering - Product Quality - Part 3: Internal Metrics,
Geneva , International Organization for Standardization, 2003

19. ISO, ISO/IEC TR 9126-4, Software Engineering - Product Quality -Part 4: Quality in Use
Metrics, Geneva , International Organization for Standardization, 2004

20. Lopez Martin, M.-A., Habra, N., Abran, A., A Structured Analysis of the McCabe Cyclomatic
Complexity Measure, In: Proceedings of the 14th International Workshop on
Software Measurement (IWSM2004) Berlin, Germany, Shaker Verlag, 2004

21. McCabe, T., A Complexity Measure, In: IEEE Transactions on Software Engineering, Vol. SE-2,
No. 4, December 1976, p. 308-320

Miscellanea

217

22. McCabe, T.J., and Watson, A.H., and McCabe and Associates, Inc., Software Complexity,
December 1994, http://www.stsc.hill.af.mil/crosstalk/1994/12/xt94d12b.asp

23. SC7, ISO/IEC FCD 25000, Software Engineering - Software Product Quality Requirements
and Evaluation (SQuaRE) - Guide to SQuaRE, ISO/IEC JTC1/SC7 WG6, January 1,
2004

24. Suryn, W., Abran A., and April A., ISO/IEC SQuaRE : The Second Generation of Standards for
Software Product Quality, In: „The 7th IASTED International Conference on
Software Engineering and Applications”, California , USA , 2003

25. Tran-Cao, D., Abran A., and Levesque, G., Functional Complexity Measurement, In:
Proceedings of the „International Workshop on Software Measurement
(IWSM'01)”, Montreal, Quebec, Canada , August 28-29, 2001, p. 173-181

26. Tran-Cao, D., Levesque, and G., Meunier, J.-G., Software Functional Complexity
Measurement with the Task Complexity Approach, In: Proceedings of the
International Conference RIVF'04, Hanoi, Vietnam , February 2-5, 2004, p. 77-85

27. Tran-Cao, D., Levesque, G., Abran, A., From measurement of software functional size to
measurement of complexity, In: ICSM 2002, Montreal, Canada , 2002, p. 11-22

28. VanDoren, E., Cyclomatic Complexity, July 2000
29. VanDoren, E., Maintainability Index Technique for Measuring Program Maintainability,

March 2004, http://www.sei.cmu.edu/str/descriptions/mitmpm.html

1 Ion I. Bucur has graduated the Faculty of Automatic Control and Computers in 1975, and the faculty of
Mathematics in 1982; he holds a PhD diploma in Computer Science and Engineering from 1999.
Currently he is lecturer within the Department of Computer Science and Engineering at Faculty of Automatic Control
and Computers from the University "Politehnica" of Bucharest.
He published several books and over 20 journal articles in the field of computer engineering. His work focuses both
on hardware and software applications.
He is currently teaching architectures of information systems, logic design and design testing, and project
management of IT&C projects. He is member of IEEE, ACM and SRAIT.
He provides expert level support for ongoing design and verification projects with emphasis on the performance
aspects of simulation and verification tools.
Provides expert level training and introduction on advanced topics such as:

• HDL simulators,
• Software Code Testing Estimation (COCOMO - II, Function Points, etc) and Software Project Management,
• Advanced computer-programming techniques,
• Tuned and optimized complex application,
• Programming languages, irrespective compilers and related tools: C, C++, Visual Basic, PL/SQL, VHDL,

Verilog and Verilog PLI,
• Database design, optimization and implementation,
• Dynamic programming techniques,
• ISO 9001-3 Quality Assurance documents, protocols, methods,

Trained to manage projects with multiple teams.
He has participated in the organizing committee of recent International Conferences on Control Systems and
Computer Science, and First Symposium on Technical Physics and Physical Engineering (TPPE 2005) chairman of the
8th (F) Session "Physics, Informatics and Computer Engineering", the 3rd International Colloquium "Mathematics in
Engineering and Numerical Physics", MENP3F, 7-9 October 2004 Bucharest being member of the international
committee and chairman of the 6th Section "Modeling in Engineering".

