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Abstract
The central messages of this paper are that (a) unequal variances may be 
more prevalent than typically imagined in educational and policy research, 
and (b) when considering tests of equal variances one needs to be cautious 
about what is being referred to as “Levene’s test” because Levene’s test is 
actually a family of techniques. Depending on which of the Levene tests that 
are being implemented, and particularly the Levene test based on means which 
is found in widely used software like SPSS, one may be using a statistical 
technique that is as bad (if not worse) than the F test which the Levene test 
was intended to replace. 

Introduction

	 When	comparing	groups	in	educational,	social,	behavioral,	and	policy	
research	 a	 common	 tacit,	 yet	 essential,	 statistical	 assumption	 is	 that	 the	
variances	of	the	dependent	variable	for	each	group	are	equal.	This	assumption	
is	 referred	 to	as	 ‘homogeneity	of	variances’	when	using	 statistics	 like	 the	
t-test	or	analysis	of	variance	 to	compare	group	means.	For	example,	as	 is	
widely	seen	in	educational	and	policy	research,	one	may	use	the	independent	
samples	t-test	to	compare	boys	and	girls	in	terms	of	their	average	mathematics	
achievement	test	scores,	and	hence	one	is,	sometimes	unknowingly,	assuming	
that	the	boys	and	girls	have	equal	mathematics	score	variances.	

The	matter	of	unrecognized,	or	ignored,	statistical	assumptions	and	their	
impact	on	research	practice	are	exaggerated	during	what	one	of	the	founding	
editors	of	this	journal,	Professor	Sean	Mulvenon,	aptly	describes	as	our	“Era	
of	Point-and-Click	Statistics,”	wherein	easy	to	use	statistical	software	often	
masks	and	hides	the	complex	statistical	assumptions	and	realities	of	day-to-
day	research	practice	in	educational,	social,	behavioral,	and	policy	studies.	
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This	 matter	 of	 meeting	 complex	 statistical	 questions	 and	 procedures	 with	
deceptively	easy	to	use	statistical	software,	and	in	turn	its	impact	on	research	
practice,	is	a	theme	that	runs	throughout	this	paper.
	 Zumbo	 and	 Coulombe	 (�997)	 remind	 us	 that	 there	 are,	 at	 least,	 two	
situations	 in	which	one	 cannot	 assume	equality	of	 variances:	 (a)	when	 the	
groups	 of	 participants	 (i.e.,	 subjects	 or	 experimental	 units)	 are	 formed	 by	
domain	differences	such	as	age	groups,	gender,	or	educational	level,	and/or,	(b)	
when	the	participants	(knowingly	or	unknowingly	to	the	researcher)	differ	on	
some	important,	possibly	unmeasured	variable.	In	either	situation,	one	cannot	
necessarily	 assume	 that	 the	participants	 are	 homogeneous	or	 exchangeable	
and	so	there	is	no	basis	to	assume	equality	of	variances	when	testing	the	null	
hypothesis	of	no	difference	between	means	or	median	–	nonparametric	tests	
are	 also	 susceptible	 to	 issues	 of	 unequal	 variances	 when	 testing	 for	 equal	
medians	(Harwell,	Rubinstein,	Hayes,	&	Olds,	�99�;	Zimmerman	&	Zumbo,	
�993a;	�993b).	It	can	be	easily	argued	that	either	of	these	situations	occurs	
commonly	in	educational,	behavioral,	social,	and	policy	research.	One	then	
cannot	assume	equal	variances	and	hence	needs	to	regularly	test	for	equality	
of	variances	before	testing	for	equal	means	(or	medians).
	 Common	understanding,	as	documented	in	statistical	and	methodological	
research papers, textbooks, and codified in widely used statistical software, is 
that the F test for equality of variances is problematic in terms of its inflated 
Type	I	error	rate	with	non-normal	population	data.	As	a	reminder,	the	hypothesis	
for	the	F	test	of	variances	is
																																																																																												

	 	 	 	 	 	 	 										 											 	 						(H�)

The	test	statistic	to	test	 0H 	against	 �H 	is	
																																																									
	 	 	 	 	 	 						.	 	 	 	 	 	 						(T�)

When	the	 0H 	in	(H�)	is	true,	the	sampling	distribution	of																	from	(T�)	is	
the	F-family	of	distributions	with																		and																		degrees	of	freedom,	
and	the	sample	variances	and	sample	sizes	are	 �

�s ,	 �
�s ,	 �n 	and	 �n ,	respectively.	The	

reader	should	see	Glass	&	Hopkins	(�984,	p.	�63)	for	a	detailed	description.	It	

(a) when the groups of participants (i.e., subjects or experimental units) 
are formed by domain differences such as age groups, gender, or 
educational level, and/or, (b) when the participants (knowingly or 
unknowingly to the researcher) differ on some important, possibly 
unmeasured variable. In either situation, one cannot necessarily assume 
that the participants are homogeneous or exchangeable and so there is no 
basis to assume equality of variances when testing the null hypothesis of 
no difference between means or median – nonparametric tests are also 
susceptible to issues of unequal variances when testing for equal 
medians (Harwell, Rubinstein, Hayes, & Olds; Zimmerman & Zumbo, 
1993a; 1993b). It can be easily argued that either of these situations 
occurs commonly in educational, behavioral, social, and policy research. 
One then cannot assume equal variances and hence needs to regularly 
test for equality of variances before testing for equal means (or 
medians). 
 Common understanding, as documented in statistical and 
methodological research papers, textbooks, and codified in widely used 
statistical software, is that the F test for equality of variances is 
problematic in terms of its inflated Type I error rate with non-normal 
population data. As a reminder, the hypothesis for the F test of variances 
is
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When the  in (H1) is true, the sampling distribution of 0H ),( 21 F  from 
(T1) is the F-family of distributions with 111  n  and 122  n  degrees 
of freedom, and the sample variances and sample sizes are , ,  and 

, respectively. The reader should see Glass & Hopkins (1984, p.263) 
for a detailed description. It has been known for over half a century; 
however, that the test of (H1) by (T1) is notoriously sensitive to and 
largely invalidated by non-normally distributed (population) dependent 
variable scores (Box, 1953). 
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has	been	known	for	over	half	a	century,	however,	that	the	test	of	(H�)	by	(T�)	
is	notoriously	sensitive	to	and	largely	invalidated	by	non-normally	distributed	
(population)	dependent	variable	scores	(Box,	�953).

Building	 on	 the	 work	 of	 Box,	 Scheffe,	 and	 others,	 Levene	 (�960)	
introduced	 a	 methodological	 approach	 that	 was	 meant	 to	 resolve	 Box’s	
concern	for	the	F-test	being	so	sensitive	to	population	non-normality	when	
investigating	equality	of	variance.	In	short,	Levene’s	approach	involves	using	
the	usual	F-test	for	equality	of	means	computed	on	what	we	will	refer	to	as	
intermediary scores, which one defines as the absolute deviations of the data 
points	from	an	estimate	of	the	center	of	the	group	–	i.e.,	a	one-way	ANOVA	
of	the	centered	original	data.	Levene’s	original	proposal	was	to	compute	these	
intermediary	(centered)	scores	by	centering	at	the	sample	mean.	In	short,	the	
original	Levene’s	test	involves	one	conducting	a	one-way,	 j -group,	ANOVA	of	
the	transformed	original	data,															,	for	each	 i 	individual	in	the	 j 	groups,	
where					denotes	the	mean	of	the						group;	and	for	our	purposes,	Levene’s	
original	test	will	be	denoted	as	

										ANOVA(													).																																																	 	 						(T�)

The	original	Levene’s	test,	(T�),	was	initially	found	to	be	quite	robust	
to departures from normality (Levene, 1960). It was this initial finding 
that	drew	attention	to	(T�)	as	a	useful	alternative	to	the	F-test,	(T�).	It	has,	
however,	been	shown	using	computer	simulation	that	violations	of	normality	
increases	the	Type	I	error	rate	of	the	Levene’s	test	(T�)	(e.g.,	Shoemaker,	�003;	
Zimmerman,	�004).	Carroll	and	Schneider	 (�985)	showed	mathematically	
that	Levene’s	test	involving	means,	(T�),	maintains	its	nominal	Type	I	error	
rate	 only	 for	 symmetric	 distributions	 –	 distributions	 that	 are	 non-normal	
but	yet	still	symmetric	obviously	fall	within	this	category;	for	example,	the	
uniform distribution. They also described a modified Levene’s test (Brown 
and	Forsythe,	�974)	incorporating	the	sample	median,	rather	than	the	mean,
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show	that,	asymptotically,	Levene’s	approach	has	the	correct	Type	I	error	rate	
whenever	the	estimate	of	group	‘center’	is	an	estimate	of	group	median,	(T3).	
They	went	on	to	show	that	this	explains	why	published	Monte-Carlo	studies	
have	found	that	Levene’s	original	proposal	of	centering	at	the	sample	mean,	
(T�),	has	the	correct	Type	I	error	rate	only	for	symmetric	distributions,	while	
centering	at	the	sample	median	has	correct	Type	I	error	rate	both	for	symmetric	
and	for	asymmetric	distributions	(Brown	and	Forsythe,	�974).	Interestingly,	
it	was	this	median-based	approach,	(T3),	and	not	the	mean-based	approach,	
(T�),	that	was	found	to	be	the	most	robust	and	useful	of	56	possible	tests	for	
homogeneity	in	extensive	simulations	done	by	Conover,	Johnson,	and	Johnson	
(�98�).	

What	becomes	evident	from	the	simulations	and	mathematical	work	is	
that	one	needs	to	be	precise	about	which	Levene-like	test	is	being	used,	(T�)	
or	 (T3).	 In	 fact,	Levene	 introduced	a	 strategy	 for	data	 analysis,	 centering	
then	applying	the	ANOVA,	so	there	really	is	no	one	Levene	test,	per	se,	but	
instead	an	approach	or	strategy	to	the	problem.	Curiously,	research	papers	and	
textbooks, as well as the codified methods in widely used statistical software, 
such	as	SPSS,	continue	to	use	the	original	Levene’s	test,	(T�),	without	even	
mentioning	that	alternatives	have	been	developed,	or	warning	the	data	analyst	
that	(T�)	may	be	problematic.	In	many	textbooks	and	software	documentation	
it is stated that the (unspecified) “Levene test” is robust to non-normality and 
should	be	used	instead	of	the	notorious	F-test	from	(T�).	For	example,	SPSS	
calls	its	test	the	Levene	F-test	and	states	that	their	Levene	test	is	reported	in	
place	of	the	traditional F-test	in	(T�).	

To	take	our	discussion	a	step	further,	textbooks	going	back	�0	years,	
including	recently	published	introductory	statistics	and	research	methodology	
textbooks	for	the	social	and	educational	sciences,	were	consulted	to	obtain	
information	regarding	the	assumption	of	equal	variances,	for	two	independent	
groups,	 and	 how	 to	 test	 that	 assumption	 for	 one’s	 data.	 Nearly	 all	 of	 the	
textbooks	recommended	using	what	they	refer	to	as	Levene’s	test	for	equality	
of	variances	and	most	suggested	the	use	of	SPSS	(e.g.,	Cohen	&	Lea,	�004,	
Cramer,	 �996,	Tabachnick	&	Fidell,	 �007,	Vaughan,	�998).	What	 is	 even	
more troubling is that one widely used and influential textbook suggested 
that	if	the	sample	sizes	are	equal	then	the	assumption	of	equal	variances	can	
be	disregarded	(Hays,	�988),	and	yet	another,	Ferguson	and	Takane	(�989)	
suggested	to	conduct	the	F-test	of	(T�),	without	reference	to	the	over	half	
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a century old finding by Box. In fact, as Keyes and Levy (1997) note, the 
Levene’s	test	involving	means,	(T�),	is	available	in	many	widely	used	statistical	
software	packages	such	as	BMDP,	MINITAB,	and	SPSS,	and	in	some	cases	
(e.g.,	SPSS	t-test)	it	is	the	only	test	made	available	to	the	software	user.

To	provide	a	concrete	example	of	the	analytic	results	noted	above,	we	
conducted	a	simulation	study	of	the	Type	I	error	rate	of	the	Levene	test,	(T�),	
provided	by	software	packages	like	SPSS.	In	addition,	we	also	included	the	
F-test,	(T�),	to	show	its	comparative	performance	to	(T�)	–	i.e.,	how	does	the	
Levene’s	test	compare	to	using	the	notoriously	bad	F-test?		This	comparison	
of	(T�)	to	(T�)	is	somewhat	novel	and	really	meant	to	be	a	pointed	contrast	
of	the	much-advocated	use	of	Levene’s	test;	by	which	is	typically	meant	(T�).	
Therefore,	the	purpose	of	the	simulation	is	to	document	the	Type	I	error	rates	
(and,	if	appropriate	the	statistical	power)	of	Levene’s	test,	(T�),	with	an	eye	
toward	cautioning	researchers	who	implement	tests	of	equal	variances	using	
Levene’s	test	–	by	which	is	meant	(T�)	–	in	their	day-to-day	research	activities.	
In	fact,	much	to	our	chagrin	in	our	era	of	“point-and-click”	statistics,	(T�)	is	
embodied	in	day-to-day	research	activities	by	default	in	statistical	software	
packages.			

It	should	be	noted	that	Carroll	and	Schneider’s	(�985)	results	make	a	
simulation	study,	per	se,	unnecessary	for	the	mathematically	(and	statistically)	
inclined who can decode those findings and incorporate them into their research 
practice.	However,	as	we	show	above,	given	that	�0	years	after	its	publication	
Carroll	and	Schneider’s	results	have	evidently	yet	to	enter	the	consciousness	of	
textbook	writers	and	statistical	software	designers	in	the	social	and	behavioral	
sciences.	Hence,	this	simulation	study	was,	in	its	essence,	intended	to	be	a	
persuasive	demonstration	of	why	we	should	tend	to	the	warnings	in	Carroll	
and	Schneider	(�985)	and	others	in	the	statistical	and	methodological	literature,	
and	a	reminder	that	when	one	hears	reference	to	the	“Levene	test”	one	should	
then	ask:	which	one?

Methods

Data Generation
	 Given	our	study	purposes,	a	computer	simulation	was	performed	using	
SPSS	 software.	Throughout	 the	 remainder	 of	 this	 paper,	 we	 will	 use	 the	
term	“SPSS	Levene’s	test”	as	shorthand	for	the	original	Levene	test	in	(T�).	
Following	standard	simulation	methodology	(e.g.,	Zimmerman,	�987;	�004),	
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population	 distributions	 were	 generated	 using	 a	 pseudo	 random	 number	
sampling method to produce χ�	distributions.	The	design	of	the	simulation	
study	was	a	4	x	3	x	3	x	9	completely	crossed	design	with:	(a)	four	levels	of	
skewness	of	the	population	distribution,	(b)	three	levels	of	sample	size,	(c)	

three	levels	of	sample	size	ratio, �
�

n
n ,	and	(d)	nine	levels	of	ratios	of	variances	

–	the	dependent	variables	in	the	simulation	design	are	the	Type	I	error	rates	
(when	 the	 variances	 are	 equal),	 and	 power	 under	 the	 eight	 conditions	 of	
unequal	variances.	Of	course,	we	will	only	investigate	statistical	power	in	
those	conditions	wherein	the	nominal	Type	I	error	rate	(in	our	study	0.05)	is	
maintained.

Shape of the population distribution.	We	 investigated	 four	 levels	 of	
skewness, 0, 1, 2, and 3. We used the family of χ�	distributions	to	simulate	
the population data. As is well known, as the degrees of freedom of a χ�	
distribution	increases	it	more	closely	approximates	a	normal	distribution�.	The	
skew	of	the	distributions	for	both	groups	were	always	in	the	same	direction	
in	all	replications.	

Sample Sizes.	Three	different	sample	sizes,	 �� nnN += ,	were	investigated:	

�4,	48,	and	96.	Three	levels	of	ratio	of	group	sizes	(
�

�
n

n :	�/�,	�/�,	and	3/�)	
were	also	investigated.	

Population variance ratios. Nine	 levels	 of	 variance	 ratios	 were	

investigated	(	 	 	 	 	 	 	 	 :	5/�,	4/�,	3/�,	�/�,	�/�,	�/�,	�/3,	�/4,	�/5).	The	design	

was	created	so	that	there	were	direct	pairing	and	inverse	pairing	in	relation	
to	 unbalanced	 groups	 and	 direction	 of	 variance	 imbalance.	 Direct	 pairing	
occurs	when	the	larger	sample	sizes	are	paired	with	the	larger	variance,	and	
inverse	pairing	occurs	when	the	smaller	sample	size	is	paired	with	the	larger	
variance	(Tomarken	&	Serlin,	�986).	This	was	done	to	investigate	a	more	
complete range of data possibilities. In addition, Keyes and Levy (1997) drew 
our	attention	to	concern	with	unequal	sample	sizes,	particularly	in	the	case	of	
factorial	designs	–	see	also	O’Brien	(�978,	�979)	for	discussion	of	Levene’s	
test	in	additive	models	for	variances.	As	a	whole,	the	complex	multivariate	

�	 	It	should	be	noted	that	the	population	skewness	was	determined	empirically	for	large	sample	
sizes	of	�00,000	simulees	with	�0,000,	7.4,	�.�,	and	0.83	degrees	of	freedom	resulting	in	skewness	
values	of		0.03,	�.03,	�.9�,	and	3.06,	respectively.

Sample Sizes. Three different sample sizes, , were 
investigated: 24, 48, and 96. Three levels of ratio of group sizes (

21 nnN 

2
1

n
n :

1/1, 2/1, and 3/1) were also investigated.  
Population variance ratios. Nine levels of variance ratios were 

investigated ( 2
2

2
1


 : 5/1, 4/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/4, 1/5). The design 

was created so that there were direct pairing and inverse pairing in 
relation to unbalanced groups and direction of variance imbalance. 
Direct pairing occurs when the larger sample sizes are paired with the 
larger variance and inverse pairing occurs when the smaller sample size 
is paired with the larger variance (Tomarken & Serlin, 1986). This was 
done to investigate a more complete range of data possibilities. In 
addition, Keyes and Levy (1997) drew our attention to concern with 
unequal sample sizes, particularly in the case of factorial designs – see 
also O’Brien (1978, 1979) for discussion of Levene’s test in additive 
models for variances.

As a whole, the complex multivariate variable space represented 
by our simulation design captures many of the possibilities found in day-
to-day research practice. 

Determining Type I Error Rates & Power 
 The frequency of Type I errors was tabulated for each cell in the 
design. In all there were 324 cells in the simulation design. As a 
description of our methodology, the following will describe the 
procedure for completing the steps for one cell in the design. First, two 
similarly distributed populations are produced; for this example it is two 
normally distributed populations that are sampled to create two groups. 
In this case each group has twelve members, and the population 
variances of the two groups are equal. An independent samples t-test 
using SPSS is then performed on the two groups; a Levene’s test for 
equality of variances, by which we mean (T2), is reported in this 
procedure as a default test to determine if the variances are significantly 
different at the nominal alpha value of 0.05. Again, note, that we intend 
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variable	space	 represented	by	our	simulation	design	captures	many	of	 the	
possibilities	found	in	day-to-day	research	practice.

Determining Type I Error Rates & Power
	 The	frequency	of	Type	I	errors	was	tabulated	for	each	cell	in	the	design.	
In	all	there	were	3�4	cells	in	the	simulation	design.	As	a	description	of	our	
methodology,	the	following	will	describe	the	procedure	for	completing	the	
steps	for	one	cell	in	the	design.	First,	two	similarly	distributed	populations	are	
produced;	for	this	example	it	is	two	normally	distributed	populations	that	are	
sampled	to	create	two	groups.	In	this	case	each	group	has	twelve	members,	and	
the	population	variances	of	the	two	groups	are	equal.	An	independent	samples	
t-test	using	SPSS	is	then	performed	on	the	two	groups;	a	Levene’s	test	for	
equality	of	variances,	by	which	we	mean	(T�),	is	reported	in	this	procedure	
as a default test to determine if the variances are significantly different at the 
nominal	alpha	value	of	0.05.	Again,	note,	that	we	intend	to	mimic	day-to-day	
research	practice.	This	procedure	was	replicated	5,000	times	for	each	cell	in	
the	design.	
	 In	the	cells	that	maintained	their	Type	I	error	rates,	statistical	power	is	
represented	by	the	percentage	of	times	that	the	Levene’s	test,	(T�),	correctly	
rejected	the	null	hypothesis.			

Results and Conclusions

Type	I	error	rates	for	the	Levene’s	mean	test	is	presented	in	Table	�.	
Table	�	has	four	columns:	(i)	total	sample	size,	N,	(ii)	ratio	of	sample	sizes,

�
�

n
n

,	(iii)	Type	I	error	rate	of	SPSS’s	Levene	test,	(T�),	and	(iv)	the	Type	I	
error	rate	for	 the	F-test,	 (T�).	Within	the	table	 there	are	 the	four	 levels	of	
skewness	of	the	population	distribution.	As	an	example,	the	Type	I	error	rate	
of	SPSS’s	Levene	test	for	a	skewness	of	zero,	a	total	sample	size	of	�4	(with	
��	per	group)	is	6.0%.	

For	 symmetric	distributions	 (i.e.,	 skewness	of	zero)	 the	Type	 I	error	
rates,	for	both	the	SPSS	Levene’s	test	and	the	F-test,	were	near	the	nominal	
alpha	level	of	0.05.	Furthermore,	for	these	symmetric	distributions,	the	SPSS	



Journal of Educational Research & Policy Studies

8

Table 1 
Empirical Type I Error Rates for the SPSS Levene’s and the F Tests, for 
Various Sample Sizes, and Skewness of the Population Distribution 

N n1/n2 SPSS’s
Levene’s

Test

F-test

       Skew = 0 
24 1/1 6.0 5.1
24 2/1 5.9 5.6
24 3/1 5.8 5.2
48 1/1 5.3 5.4
48 2/1 5.6 4.9
48 3/1 5.5 4.9
96 1/1 4.8 4.6
96 2/1 5.1 4.8
96 3/1 4.7 4.9

Skew = 1 
24 1/1 8.1 8.5
24 2/1 8.0 8.1
24 3/1 8.3 8.5
48 1/1 8.0 8.7
48  2/1 7.7 9.6
48 3/1 8.5 9.1
96 1/1 8.3 10.8
96 2/1 8.2 10.2
96 3/1 7.1 10.0

Skew = 2 
24 1/1 14.4 16.4
24 2/1 13.5 16.2
24 3/1 13.7 15.3
48 1/1 14.6 17.5
48 2/1 13.0 17.3
48 3/1 13.0 18.9
96 1/1 12.8 18.8
96 2/1 13.3 18.4
96 3/1 12.8 20.1

Skew =3 
24 1/1 22.8 24.4
24 2/1 23.4 27.7
24 3/1 19.7 28.0
48 1/1 21.0 24.8
48 2/1 20.4 27.8
48 3/1 19.2 29.9
96 1/1 20.3 27.5
96 2/1 20.2 29.2
96 3/1 19.5 29.9



Spring 2007 / Volume 7, Number 1

					9										
Levene’s	test	and	the	F-test were not influenced by either total sample sizes 
or	unequal	group	sizes.	

When	the	distribution	had	a	skewness	of	one,	two,	or	three,	(i.e.,	the	
non-normal	distributions)	 the	Type	I	error	rate	of	both	the	SPSS	Levene’s	
test	and	the	F-test were inflated above the nominal level of 0.05. In fact, one 
finds that the skewness and sample size inequalities lead to even further Type 
I error rate inflation. Although both are quite inflated above their nominal 
Type	I	error	rates,	SPSS	Levene’s	test	appears	to	be	less	effected	by	unequal	
group	sizes.
	 The	statistical	power	results	of	the	SPSS	Levene’s	test	and	F-test	under	
zero	skewness	(symmetric	distribution)	conditions	are	presented	in	Table	�.	
Note	that	power	was	only	reported	for	those	cells	in	the	simulation	design	for	
which	the	nominal	Type	I	error	rate	was	protected.	Table	�	is	structured	so	
that the first column lists the two statistical tests, either SPSS Levene’s test 
or	the	F-test.	Furthermore,	columns	two	and	three	list	the	total	sizes	and	the	

ratio	of	sample	sizes,	respectively.	The	ratio	of	samples	sizes,	 �
�

n
n

:	�/�,	�/�,	

and	3/�,	are	also	paired	with	the	ratio	of	population	variances,									,	resulting	
in	�/�,	�/3,	�/4,	�/5	being	inversely	paired,	and	5/�,	4/�,	3/�,	�/�	are	directly	
paired.	Therefore,	as	an	example,	in	the	case	of	a	total	sample	size	of	�4,	with	
�6	in	group	one	and	8	in	group	two	(i.e.,	a	�/�	sample	size	ratio),	the	statistical	
power	of	the	SPSS	Levene’s	test	is	6�.0%	and	the	F-test	67.5%	in	the	variance	
ratio of one to five (group one to group 2, hence an inverse pairing).

It	 is	 evident	 from	Table	 �	 that	 when	 comparing	 the	 SPSS	 Levene’s	
test	to	the	corresponding	F-test,	in	66	of	the	possible	7�	such	comparisons	
in	Table	�	the	F-test	is	more	powerful	than	the	SPSS	Levene’s	test.	In	fact,	
the	F-test	is	more	powerful	than	the	corresponding	SPSS	Levene’s	test	for	
all	cases	of	direct	pairings	(i.e.,	when	the	larger	sample	size	comes	from	a	
population	with	the	larger	variance).	The	power	superiority	of	the	F-test	for	
normal	distributions	is	expected	from	mathematical	statistics	(i.e.,	the	F-test	
is	most	powerful	for	the	normal	population	distribution).

Sample Sizes. Three different sample sizes, , were 
investigated: 24, 48, and 96. Three levels of ratio of group sizes (

21 nnN 

2
1

n
n :

1/1, 2/1, and 3/1) were also investigated.  
Population variance ratios. Nine levels of variance ratios were 

investigated ( 2
2

2
1


 : 5/1, 4/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/4, 1/5). The design 

was created so that there were direct pairing and inverse pairing in 
relation to unbalanced groups and direction of variance imbalance. 
Direct pairing occurs when the larger sample sizes are paired with the 
larger variance and inverse pairing occurs when the smaller sample size 
is paired with the larger variance (Tomarken & Serlin, 1986). This was 
done to investigate a more complete range of data possibilities. In 
addition, Keyes and Levy (1997) drew our attention to concern with 
unequal sample sizes, particularly in the case of factorial designs – see 
also O’Brien (1978, 1979) for discussion of Levene’s test in additive 
models for variances.

As a whole, the complex multivariate variable space represented 
by our simulation design captures many of the possibilities found in day-
to-day research practice. 

Determining Type I Error Rates & Power 
 The frequency of Type I errors was tabulated for each cell in the 
design. In all there were 324 cells in the simulation design. As a 
description of our methodology, the following will describe the 
procedure for completing the steps for one cell in the design. First, two 
similarly distributed populations are produced; for this example it is two 
normally distributed populations that are sampled to create two groups. 
In this case each group has twelve members, and the population 
variances of the two groups are equal. An independent samples t-test 
using SPSS is then performed on the two groups; a Levene’s test for 
equality of variances, by which we mean (T2), is reported in this 
procedure as a default test to determine if the variances are significantly 
different at the nominal alpha value of 0.05. Again, note, that we intend 
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Table 2 
Statistical Power for SPSS Levene’s Test and the F-Test for Varying Sample 
Size

Population Variance Ratio, 2
2

2
1




Test N n1/n2 1/5 1/4 1/3 1/2 2/1 3/1 4/1 5/1

Inverse Pairings Direct Pairings 

Levene 24 1/1 60.6 50.7 35.7 18.2 18.2 35.7 50.7 60.6

F 24 1/1 81.0 73.1 54.4 29.3 29.3 54.4 73.1 81.0

Levene 24 2/1 62.0 50.8 36.1 17.7 13.8 26.0 40.1 49.7

F 24 2/1 67.5 54.6 38.5 17.3 35.5 58.2 75.6 84.0

Levene 24 3/1 57.0 45.7 33.3 16.4 11.7 19.5 28.4 36.6

F 24 3/1 49.1 37.0 23.0 9.0 37.9 57.5 73.4 83.7

Levene 48 1/1 92.4 84.3 64.9 31.3 31.3 64.9 84.3 92.4

F 48 1/1 98.6 95.0 81.2 48.5 48.5 81.2 95.0 98.6

Levene 48 2/1 90.3 80.3 63.1 31.9 27.1 55.3 76.4 87.7

F 48 2/1 95.1 88.2 72.2 37.7 51.7 82.8 94.7 98.3

Levene 48 3/1 85.2 75.0 57.3 29.4 21.4 45.7 66.2 78.0

F 48 3/1 88.0 78.8 60.2 27.8 51.0 80.2 93.2 97.6

Levene 96 1/1 99.9 98.9 92.4 58.6 58.6 92.4 98.9 99.9

F 96 1/1 100.0 99.8 97.8 76.4 76.4 97.8 99.8 100.0

Levene 96 2/1 99.5 98.0 89.4 56.9 51.0 89.0 98.4 99.8

F 96 2/1 99.8 99.4 94.8 68.3 74.6 97.8 99.9 100.0

Levene 96 3/1 98.7 96.1 85.9 48.4 41.0 81.9 96.1 99.1

F 96 3/1 99.4 98.2 90.7 56.2 70.6 97.0 99.8 100.0
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Discussion

Several	points	are	important	to	take	away	from	this	study.
�.	When	speaking	of	“Levene’s”	test	it	is	important	to	be	precise	about	which	

of	the	family	of	possible	Levene	tests	one	is	referring	to.	Furthermore,	
most	elementary	textbooks	in	the	social	and	behavioral	sciences,	as	well	
as	some	of	the	widely	used	statistical	software	packages,	are	referring	to	
the	original	test	proposed	by	Levene	in	�960,	(T�),	based	on	means.

�.	The	widely	discussed	Levene’s	test,	(T�),	has	been	shown	to	be	sensitive	
to	non-normality	of	the	population	distribution	(e.g.,	Carroll	&	Schneider,	
1985). Not surprisingly our simulation study also showed this inflation 
in Type I error rate. However, it should be noted that the inflation is 
not	minimal	and	depends,	to	some	degree,	on	degree	of	skewness	and	
sample	size	ratio.	In	fact,	what	is	interesting	is	that	the	Levene’s	test,	
(T�),	actually	performs	on	par,	in	terms	of	invalidity,	with	the	notorious	
F-test	of	(T�),	known	widely	since	�950	to	be	problematic.	However,	
although both are quite inflated above their nominal Type I error rates, 
Levene’s	test,	(T�),	appears	to	be	less	affected	by	unequal	group	sizes	
–	hardly	a	consolation	when	the	Type	I	error	rates	tend	to	be	between	
two	to	four	times	the	nominal	alpha!

3.	 In	 those	 situations	 wherein	 the	 Levene’s	 test	 (and	 hence	 the	 F-test)	
maintain	their	nominal	alpha,	as	expected	from	results	in	mathematical	
statistics, the statistical power findings show that in most situations the 
F-test	is	more	powerful	than	the	Levene’s	test,	(T�).

4.	Given	the	current	state	of	knowledge,	following	Brown	and	Forsythe	
(�974)	 and	 Conover,	 Johnson,	 and	 Johnson	 (�98�)	 we	 recommend	
that	day-to-day	researchers	use	the	median-based	Levene’s	test,	(T3).	
Unfortunately,	this	median-based	Levene	test	is	not	currently	available	in	
the	widely	used	software	packages	such	as	SPSS.		An	easily	implemented	
new	statistical	technique	we	have	developed	entitled	the	‘nonparametric	
Levene	 test’	 is,	 however,	 showing	 very	 promising	 results	 in	 terms	
of	 maintaining	 its	 nominal	Type	 I	 error	 rate	 and	 having	 substantial	
statistical	power	in	all	the	conditions	studied	in	this	current	paper.	This	
nonparametric	Levene	test	uses	Conover	and	Iman’s	(�98�)	notion	of	the	
rank	transformation	as	a	bridge	between	parametric	and	nonparametric	
statistics	 and	 simply	 involves	 (i)	 pooling	 the	 data	 and	 replacing	 the	
original	scores	by	their	ranks	and	then	(ii)	separating	the	data	back	into	
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their	groups	and	(iii)	applying	the	mean-based	Levene	test	(T�)	to	the	
ranks.	This	can	be	easily	accomplished	using	widely	available	software	
such	as	SPSS.	

In	closing,	this	paper,	therefore,	is	a	cautionary	tale	about	Levene’s	test	
for	homogeneity	of	variances.	If	one	is	using	the	original	variation	of	Levene’s	
test,	a	mean-based	test,	(T�),	such	as	that	found	in	SPSS,	one	may	be	doing	as	
poorly	(or	worse)	than	the	notorious	F	test	of	equal	variances.	We	hope	that	
Carroll	and	Schneider’s	caution	about	the	Levene’s	test	will	soon	become	as	
widely	recognized,	and	adopted	in	textbooks	and	statistical	software,	as	was	
Box’s	tale	in	�953	about	the	F-test,	and	that	the	median-based	Levene’s	test	
will	be	more	widely	used.	In	closing,	then,	one	needs	to	keep	in	mind	Ted	
Micceri’s	observation	that	in	real	data	situations	the	normal	curve	appears	
nearly	as	often	as	the	mythical	unicorn	(Micceri,	�989).	Therefore,	to	George	
Box’s well-known quip in his influential paper on tests on variances that the 
preliminary test on variances is rather like putting to sea in a row boat to find 
out whether conditions are sufficiently calm for an ocean liner to leave port, 
we	would	add	that	using	the	mean-based	Levene’s,	(T�),	is	akin	to	sending	
out	a	dinghy	instead.
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