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Abstract
The central messages of this paper are that (a) unequal variances may be 
more prevalent than typically imagined in educational and policy research, 
and (b) when considering tests of equal variances one needs to be cautious 
about what is being referred to as “Levene’s test” because Levene’s test is 
actually a family of techniques. Depending on which of the Levene tests that 
are being implemented, and particularly the Levene test based on means which 
is found in widely used software like SPSS, one may be using a statistical 
technique that is as bad (if not worse) than the F test which the Levene test 
was intended to replace. 

Introduction

	 When comparing groups in educational, social, behavioral, and policy 
research a common tacit, yet essential, statistical assumption is that the 
variances of the dependent variable for each group are equal. This assumption 
is referred to as ‘homogeneity of variances’ when using statistics like the 
t-test or analysis of variance to compare group means. For example, as is 
widely seen in educational and policy research, one may use the independent 
samples t-test to compare boys and girls in terms of their average mathematics 
achievement test scores, and hence one is, sometimes unknowingly, assuming 
that the boys and girls have equal mathematics score variances. 

The matter of unrecognized, or ignored, statistical assumptions and their 
impact on research practice are exaggerated during what one of the founding 
editors of this journal, Professor Sean Mulvenon, aptly describes as our “Era 
of Point-and-Click Statistics,” wherein easy to use statistical software often 
masks and hides the complex statistical assumptions and realities of day-to-
day research practice in educational, social, behavioral, and policy studies. 
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This matter of meeting complex statistical questions and procedures with 
deceptively easy to use statistical software, and in turn its impact on research 
practice, is a theme that runs throughout this paper.
	 Zumbo and Coulombe (1997) remind us that there are, at least, two 
situations in which one cannot assume equality of variances: (a) when the 
groups of participants (i.e., subjects or experimental units) are formed by 
domain differences such as age groups, gender, or educational level, and/or, (b) 
when the participants (knowingly or unknowingly to the researcher) differ on 
some important, possibly unmeasured variable. In either situation, one cannot 
necessarily assume that the participants are homogeneous or exchangeable 
and so there is no basis to assume equality of variances when testing the null 
hypothesis of no difference between means or median – nonparametric tests 
are also susceptible to issues of unequal variances when testing for equal 
medians (Harwell, Rubinstein, Hayes, & Olds, 1992; Zimmerman & Zumbo, 
1993a; 1993b). It can be easily argued that either of these situations occurs 
commonly in educational, behavioral, social, and policy research. One then 
cannot assume equal variances and hence needs to regularly test for equality 
of variances before testing for equal means (or medians).
	 Common understanding, as documented in statistical and methodological 
research papers, textbooks, and codified in widely used statistical software, is 
that the F test for equality of variances is problematic in terms of its inflated 
Type I error rate with non-normal population data. As a reminder, the hypothesis 
for the F test of variances is
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for a detailed description. It has been known for over half a century; 
however, that the test of (H1) by (T1) is notoriously sensitive to and 
largely invalidated by non-normally distributed (population) dependent 
variable scores (Box, 1953). 
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has been known for over half a century, however, that the test of (H1) by (T1) 
is notoriously sensitive to and largely invalidated by non-normally distributed 
(population) dependent variable scores (Box, 1953).

Building on the work of Box, Scheffe, and others, Levene (1960) 
introduced a methodological approach that was meant to resolve Box’s 
concern for the F-test being so sensitive to population non-normality when 
investigating equality of variance. In short, Levene’s approach involves using 
the usual F-test for equality of means computed on what we will refer to as 
intermediary scores, which one defines as the absolute deviations of the data 
points from an estimate of the center of the group – i.e., a one-way ANOVA 
of the centered original data. Levene’s original proposal was to compute these 
intermediary (centered) scores by centering at the sample mean. In short, the 
original Levene’s test involves one conducting a one-way, j -group, ANOVA of 
the transformed original data,               , for each i  individual in the j  groups, 
where     denotes the mean of the      group; and for our purposes, Levene’s 
original test will be denoted as 

          ANOVA(             ).                                                	 	       (T2)

The original Levene’s test, (T2), was initially found to be quite robust 
to departures from normality (Levene, 1960). It was this initial finding 
that drew attention to (T2) as a useful alternative to the F-test, (T1). It has, 
however, been shown using computer simulation that violations of normality 
increases the Type I error rate of the Levene’s test (T2) (e.g., Shoemaker, 2003; 
Zimmerman, 2004). Carroll and Schneider (1985) showed mathematically 
that Levene’s test involving means, (T2), maintains its nominal Type I error 
rate only for symmetric distributions – distributions that are non-normal 
but yet still symmetric obviously fall within this category; for example, the 
uniform distribution. They also described a modified Levene’s test (Brown 
and Forsythe, 1974) incorporating the sample median, rather than the mean,
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show that, asymptotically, Levene’s approach has the correct Type I error rate 
whenever the estimate of group ‘center’ is an estimate of group median, (T3). 
They went on to show that this explains why published Monte-Carlo studies 
have found that Levene’s original proposal of centering at the sample mean, 
(T2), has the correct Type I error rate only for symmetric distributions, while 
centering at the sample median has correct Type I error rate both for symmetric 
and for asymmetric distributions (Brown and Forsythe, 1974). Interestingly, 
it was this median-based approach, (T3), and not the mean-based approach, 
(T2), that was found to be the most robust and useful of 56 possible tests for 
homogeneity in extensive simulations done by Conover, Johnson, and Johnson 
(1981). 

What becomes evident from the simulations and mathematical work is 
that one needs to be precise about which Levene-like test is being used, (T2) 
or (T3). In fact, Levene introduced a strategy for data analysis, centering 
then applying the ANOVA, so there really is no one Levene test, per se, but 
instead an approach or strategy to the problem. Curiously, research papers and 
textbooks, as well as the codified methods in widely used statistical software, 
such as SPSS, continue to use the original Levene’s test, (T2), without even 
mentioning that alternatives have been developed, or warning the data analyst 
that (T2) may be problematic. In many textbooks and software documentation 
it is stated that the (unspecified) “Levene test” is robust to non-normality and 
should be used instead of the notorious F-test from (T1). For example, SPSS 
calls its test the Levene F-test and states that their Levene test is reported in 
place of the traditional F-test in (T1). 

To take our discussion a step further, textbooks going back 20 years, 
including recently published introductory statistics and research methodology 
textbooks for the social and educational sciences, were consulted to obtain 
information regarding the assumption of equal variances, for two independent 
groups, and how to test that assumption for one’s data. Nearly all of the 
textbooks recommended using what they refer to as Levene’s test for equality 
of variances and most suggested the use of SPSS (e.g., Cohen & Lea, 2004, 
Cramer, 1 996, Tabachnick & Fidell, 2 007, Vaughan, 1998). What is even 
more troubling is that one widely used and influential textbook suggested 
that if the sample sizes are equal then the assumption of equal variances can 
be disregarded (Hays, 1988), and yet another, Ferguson and Takane (1989) 
suggested to conduct the F-test of (T1), without reference to the over half 
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a century old finding by Box. In fact, as Keyes and Levy (1997) note, the 
Levene’s test involving means, (T2), is available in many widely used statistical 
software packages such as BMDP, MINITAB, and SPSS, and in some cases 
(e.g., SPSS t-test) it is the only test made available to the software user.

To provide a concrete example of the analytic results noted above, we 
conducted a simulation study of the Type I error rate of the Levene test, (T2), 
provided by software packages like SPSS. In addition, we also included the 
F-test, (T1), to show its comparative performance to (T2) – i.e., how does the 
Levene’s test compare to using the notoriously bad F-test?  This comparison 
of (T1) to (T2) is somewhat novel and really meant to be a pointed contrast 
of the much-advocated use of Levene’s test; by which is typically meant (T2). 
Therefore, the purpose of the simulation is to document the Type I error rates 
(and, if appropriate the statistical power) of Levene’s test, (T2), with an eye 
toward cautioning researchers who implement tests of equal variances using 
Levene’s test – by which is meant (T2) – in their day-to-day research activities. 
In fact, much to our chagrin in our era of “point-and-click” statistics, (T2) is 
embodied in day-to-day research activities by default in statistical software 
packages.   

It should be noted that Carroll and Schneider’s (1985) results make a 
simulation study, per se, unnecessary for the mathematically (and statistically) 
inclined who can decode those findings and incorporate them into their research 
practice. However, as we show above, given that 20 years after its publication 
Carroll and Schneider’s results have evidently yet to enter the consciousness of 
textbook writers and statistical software designers in the social and behavioral 
sciences. Hence, this simulation study was, in its essence, intended to be a 
persuasive demonstration of why we should tend to the warnings in Carroll 
and Schneider (1985) and others in the statistical and methodological literature, 
and a reminder that when one hears reference to the “Levene test” one should 
then ask: which one?

Methods

Data Generation
	 Given our study purposes, a computer simulation was performed using 
SPSS software. Throughout the remainder of this paper, we will use the 
term “SPSS Levene’s test” as shorthand for the original Levene test in (T2). 
Following standard simulation methodology (e.g., Zimmerman, 1987; 2004), 
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population distributions were generated using a pseudo random number 
sampling method to produce χ2 distributions. The design of the simulation 
study was a 4 x 3 x 3 x 9 completely crossed design with: (a) four levels of 
skewness of the population distribution, (b) three levels of sample size, (c) 

three levels of sample size ratio, �
�

n
n , and (d) nine levels of ratios of variances 

– the dependent variables in the simulation design are the Type I error rates 
(when the variances are equal), and power under the eight conditions of 
unequal variances. Of course, we will only investigate statistical power in 
those conditions wherein the nominal Type I error rate (in our study 0.05) is 
maintained.

Shape of the population distribution. We investigated four levels of 
skewness, 0, 1, 2, and 3. We used the family of χ2 distributions to simulate 
the population data. As is well known, as the degrees of freedom of a χ2 
distribution increases it more closely approximates a normal distribution�. The 
skew of the distributions for both groups were always in the same direction 
in all replications. 

Sample Sizes. Three different sample sizes, �� nnN += , were investigated: 

24, 48, and 96. Three levels of ratio of group sizes (
�

�
n

n : 1/1, 2/1, and 3/1) 
were also investigated. 

Population variance ratios. Nine levels of variance ratios were 

investigated (               : 5/1, 4/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/4, 1/5). The design 

was created so that there were direct pairing and inverse pairing in relation 
to unbalanced groups and direction of variance imbalance. Direct pairing 
occurs when the larger sample sizes are paired with the larger variance, and 
inverse pairing occurs when the smaller sample size is paired with the larger 
variance (Tomarken & Serlin, 1986). This was done to investigate a more 
complete range of data possibilities. In addition, Keyes and Levy (1997) drew 
our attention to concern with unequal sample sizes, particularly in the case of 
factorial designs – see also O’Brien (1978, 1979) for discussion of Levene’s 
test in additive models for variances. As a whole, the complex multivariate 

�	  It should be noted that the population skewness was determined empirically for large sample 
sizes of 100,000 simulees with 10,000, 7.4, 2.2, and 0.83 degrees of freedom resulting in skewness 
values of  0.03, 1.03, 1.92, and 3.06, respectively.

Sample Sizes. Three different sample sizes, , were 
investigated: 24, 48, and 96. Three levels of ratio of group sizes (

21 nnN 

2
1

n
n :

1/1, 2/1, and 3/1) were also investigated.  
Population variance ratios. Nine levels of variance ratios were 

investigated ( 2
2

2
1


 : 5/1, 4/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/4, 1/5). The design 

was created so that there were direct pairing and inverse pairing in 
relation to unbalanced groups and direction of variance imbalance. 
Direct pairing occurs when the larger sample sizes are paired with the 
larger variance and inverse pairing occurs when the smaller sample size 
is paired with the larger variance (Tomarken & Serlin, 1986). This was 
done to investigate a more complete range of data possibilities. In 
addition, Keyes and Levy (1997) drew our attention to concern with 
unequal sample sizes, particularly in the case of factorial designs – see 
also O’Brien (1978, 1979) for discussion of Levene’s test in additive 
models for variances.

As a whole, the complex multivariate variable space represented 
by our simulation design captures many of the possibilities found in day-
to-day research practice. 

Determining Type I Error Rates & Power 
 The frequency of Type I errors was tabulated for each cell in the 
design. In all there were 324 cells in the simulation design. As a 
description of our methodology, the following will describe the 
procedure for completing the steps for one cell in the design. First, two 
similarly distributed populations are produced; for this example it is two 
normally distributed populations that are sampled to create two groups. 
In this case each group has twelve members, and the population 
variances of the two groups are equal. An independent samples t-test 
using SPSS is then performed on the two groups; a Levene’s test for 
equality of variances, by which we mean (T2), is reported in this 
procedure as a default test to determine if the variances are significantly 
different at the nominal alpha value of 0.05. Again, note, that we intend 
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variable space represented by our simulation design captures many of the 
possibilities found in day-to-day research practice.

Determining Type I Error Rates & Power
	 The frequency of Type I errors was tabulated for each cell in the design. 
In all there were 324 cells in the simulation design. As a description of our 
methodology, the following will describe the procedure for completing the 
steps for one cell in the design. First, two similarly distributed populations are 
produced; for this example it is two normally distributed populations that are 
sampled to create two groups. In this case each group has twelve members, and 
the population variances of the two groups are equal. An independent samples 
t-test using SPSS is then performed on the two groups; a Levene’s test for 
equality of variances, by which we mean (T2), is reported in this procedure 
as a default test to determine if the variances are significantly different at the 
nominal alpha value of 0.05. Again, note, that we intend to mimic day-to-day 
research practice. This procedure was replicated 5,000 times for each cell in 
the design. 
	 In the cells that maintained their Type I error rates, statistical power is 
represented by the percentage of times that the Levene’s test, (T2), correctly 
rejected the null hypothesis.   

Results and Conclusions

Type I error rates for the Levene’s mean test is presented in Table 1. 
Table 1 has four columns: (i) total sample size, N, (ii) ratio of sample sizes,

�
�

n
n

, (iii) Type I error rate of SPSS’s Levene test, (T2), and (iv) the Type I 
error rate for the F-test, (T1). Within the table there are the four levels of 
skewness of the population distribution. As an example, the Type I error rate 
of SPSS’s Levene test for a skewness of zero, a total sample size of 24 (with 
12 per group) is 6.0%. 

For symmetric distributions (i.e., skewness of zero) the Type I error 
rates, for both the SPSS Levene’s test and the F-test, were near the nominal 
alpha level of 0.05. Furthermore, for these symmetric distributions, the SPSS 
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Table 1 
Empirical Type I Error Rates for the SPSS Levene’s and the F Tests, for 
Various Sample Sizes, and Skewness of the Population Distribution 

N n1/n2 SPSS’s
Levene’s

Test

F-test

       Skew = 0 
24 1/1 6.0 5.1
24 2/1 5.9 5.6
24 3/1 5.8 5.2
48 1/1 5.3 5.4
48 2/1 5.6 4.9
48 3/1 5.5 4.9
96 1/1 4.8 4.6
96 2/1 5.1 4.8
96 3/1 4.7 4.9

Skew = 1 
24 1/1 8.1 8.5
24 2/1 8.0 8.1
24 3/1 8.3 8.5
48 1/1 8.0 8.7
48  2/1 7.7 9.6
48 3/1 8.5 9.1
96 1/1 8.3 10.8
96 2/1 8.2 10.2
96 3/1 7.1 10.0

Skew = 2 
24 1/1 14.4 16.4
24 2/1 13.5 16.2
24 3/1 13.7 15.3
48 1/1 14.6 17.5
48 2/1 13.0 17.3
48 3/1 13.0 18.9
96 1/1 12.8 18.8
96 2/1 13.3 18.4
96 3/1 12.8 20.1

Skew =3 
24 1/1 22.8 24.4
24 2/1 23.4 27.7
24 3/1 19.7 28.0
48 1/1 21.0 24.8
48 2/1 20.4 27.8
48 3/1 19.2 29.9
96 1/1 20.3 27.5
96 2/1 20.2 29.2
96 3/1 19.5 29.9
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Levene’s test and the F-test were not influenced by either total sample sizes 
or unequal group sizes. 

When the distribution had a skewness of one, two, or three, (i.e., the 
non-normal distributions) the Type I error rate of both the SPSS Levene’s 
test and the F-test were inflated above the nominal level of 0.05. In fact, one 
finds that the skewness and sample size inequalities lead to even further Type 
I error rate inflation. Although both are quite inflated above their nominal 
Type I error rates, SPSS Levene’s test appears to be less effected by unequal 
group sizes.
	 The statistical power results of the SPSS Levene’s test and F-test under 
zero skewness (symmetric distribution) conditions are presented in Table 2. 
Note that power was only reported for those cells in the simulation design for 
which the nominal Type I error rate was protected. Table 2 is structured so 
that the first column lists the two statistical tests, either SPSS Levene’s test 
or the F-test. Furthermore, columns two and three list the total sizes and the 

ratio of sample sizes, respectively. The ratio of samples sizes, �
�

n
n

: 1/1, 2/1, 

and 3/1, are also paired with the ratio of population variances,         , resulting 
in 1/2, 1/3, 1/4, 1/5 being inversely paired, and 5/1, 4/1, 3/1, 2/1 are directly 
paired. Therefore, as an example, in the case of a total sample size of 24, with 
16 in group one and 8 in group two (i.e., a 2/1 sample size ratio), the statistical 
power of the SPSS Levene’s test is 62.0% and the F-test 67.5% in the variance 
ratio of one to five (group one to group 2, hence an inverse pairing).

It is evident from Table 2  that when comparing the SPSS Levene’s 
test to the corresponding F-test, in 66 of the possible 72 such comparisons 
in Table 2 the F-test is more powerful than the SPSS Levene’s test. In fact, 
the F-test is more powerful than the corresponding SPSS Levene’s test for 
all cases of direct pairings (i.e., when the larger sample size comes from a 
population with the larger variance). The power superiority of the F-test for 
normal distributions is expected from mathematical statistics (i.e., the F-test 
is most powerful for the normal population distribution).

Sample Sizes. Three different sample sizes, , were 
investigated: 24, 48, and 96. Three levels of ratio of group sizes (

21 nnN 

2
1

n
n :

1/1, 2/1, and 3/1) were also investigated.  
Population variance ratios. Nine levels of variance ratios were 

investigated ( 2
2

2
1


 : 5/1, 4/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/4, 1/5). The design 

was created so that there were direct pairing and inverse pairing in 
relation to unbalanced groups and direction of variance imbalance. 
Direct pairing occurs when the larger sample sizes are paired with the 
larger variance and inverse pairing occurs when the smaller sample size 
is paired with the larger variance (Tomarken & Serlin, 1986). This was 
done to investigate a more complete range of data possibilities. In 
addition, Keyes and Levy (1997) drew our attention to concern with 
unequal sample sizes, particularly in the case of factorial designs – see 
also O’Brien (1978, 1979) for discussion of Levene’s test in additive 
models for variances.

As a whole, the complex multivariate variable space represented 
by our simulation design captures many of the possibilities found in day-
to-day research practice. 

Determining Type I Error Rates & Power 
 The frequency of Type I errors was tabulated for each cell in the 
design. In all there were 324 cells in the simulation design. As a 
description of our methodology, the following will describe the 
procedure for completing the steps for one cell in the design. First, two 
similarly distributed populations are produced; for this example it is two 
normally distributed populations that are sampled to create two groups. 
In this case each group has twelve members, and the population 
variances of the two groups are equal. An independent samples t-test 
using SPSS is then performed on the two groups; a Levene’s test for 
equality of variances, by which we mean (T2), is reported in this 
procedure as a default test to determine if the variances are significantly 
different at the nominal alpha value of 0.05. Again, note, that we intend 
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Table 2 
Statistical Power for SPSS Levene’s Test and the F-Test for Varying Sample 
Size

Population Variance Ratio, 2
2

2
1




Test N n1/n2 1/5 1/4 1/3 1/2 2/1 3/1 4/1 5/1

Inverse Pairings Direct Pairings 

Levene 24 1/1 60.6 50.7 35.7 18.2 18.2 35.7 50.7 60.6

F 24 1/1 81.0 73.1 54.4 29.3 29.3 54.4 73.1 81.0

Levene 24 2/1 62.0 50.8 36.1 17.7 13.8 26.0 40.1 49.7

F 24 2/1 67.5 54.6 38.5 17.3 35.5 58.2 75.6 84.0

Levene 24 3/1 57.0 45.7 33.3 16.4 11.7 19.5 28.4 36.6

F 24 3/1 49.1 37.0 23.0 9.0 37.9 57.5 73.4 83.7

Levene 48 1/1 92.4 84.3 64.9 31.3 31.3 64.9 84.3 92.4

F 48 1/1 98.6 95.0 81.2 48.5 48.5 81.2 95.0 98.6

Levene 48 2/1 90.3 80.3 63.1 31.9 27.1 55.3 76.4 87.7

F 48 2/1 95.1 88.2 72.2 37.7 51.7 82.8 94.7 98.3

Levene 48 3/1 85.2 75.0 57.3 29.4 21.4 45.7 66.2 78.0

F 48 3/1 88.0 78.8 60.2 27.8 51.0 80.2 93.2 97.6

Levene 96 1/1 99.9 98.9 92.4 58.6 58.6 92.4 98.9 99.9

F 96 1/1 100.0 99.8 97.8 76.4 76.4 97.8 99.8 100.0

Levene 96 2/1 99.5 98.0 89.4 56.9 51.0 89.0 98.4 99.8

F 96 2/1 99.8 99.4 94.8 68.3 74.6 97.8 99.9 100.0

Levene 96 3/1 98.7 96.1 85.9 48.4 41.0 81.9 96.1 99.1

F 96 3/1 99.4 98.2 90.7 56.2 70.6 97.0 99.8 100.0
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Discussion

Several points are important to take away from this study.
1.	When speaking of “Levene’s” test it is important to be precise about which 

of the family of possible Levene tests one is referring to. Furthermore, 
most elementary textbooks in the social and behavioral sciences, as well 
as some of the widely used statistical software packages, are referring to 
the original test proposed by Levene in 1960, (T2), based on means.

2.	The widely discussed Levene’s test, (T2), has been shown to be sensitive 
to non-normality of the population distribution (e.g., Carroll & Schneider, 
1985). Not surprisingly our simulation study also showed this inflation 
in Type I error rate. However, it should be noted that the inflation is 
not minimal and depends, to some degree, on degree of skewness and 
sample size ratio. In fact, what is interesting is that the Levene’s test, 
(T2), actually performs on par, in terms of invalidity, with the notorious 
F-test of (T1), known widely since 1950 to be problematic. However, 
although both are quite inflated above their nominal Type I error rates, 
Levene’s test, (T2), appears to be less affected by unequal group sizes 
– hardly a consolation when the Type I error rates tend to be between 
two to four times the nominal alpha!

3.	 In those situations wherein the Levene’s test (and hence the F-test) 
maintain their nominal alpha, as expected from results in mathematical 
statistics, the statistical power findings show that in most situations the 
F-test is more powerful than the Levene’s test, (T2).

4.	Given the current state of knowledge, following Brown and Forsythe 
(1974) and Conover, Johnson, and Johnson (1981) we recommend 
that day-to-day researchers use the median-based Levene’s test, (T3). 
Unfortunately, this median-based Levene test is not currently available in 
the widely used software packages such as SPSS.  An easily implemented 
new statistical technique we have developed entitled the ‘nonparametric 
Levene test’ is, however, showing very promising results in terms 
of maintaining its nominal Type I error rate and having substantial 
statistical power in all the conditions studied in this current paper. This 
nonparametric Levene test uses Conover and Iman’s (1981) notion of the 
rank transformation as a bridge between parametric and nonparametric 
statistics and simply involves (i) pooling the data and replacing the 
original scores by their ranks and then (ii) separating the data back into 
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their groups and (iii) applying the mean-based Levene test (T2) to the 
ranks. This can be easily accomplished using widely available software 
such as SPSS. 

In closing, this paper, therefore, is a cautionary tale about Levene’s test 
for homogeneity of variances. If one is using the original variation of Levene’s 
test, a mean-based test, (T2), such as that found in SPSS, one may be doing as 
poorly (or worse) than the notorious F test of equal variances. We hope that 
Carroll and Schneider’s caution about the Levene’s test will soon become as 
widely recognized, and adopted in textbooks and statistical software, as was 
Box’s tale in 1953 about the F-test, and that the median-based Levene’s test 
will be more widely used. In closing, then, one needs to keep in mind Ted 
Micceri’s observation that in real data situations the normal curve appears 
nearly as often as the mythical unicorn (Micceri, 1989). Therefore, to George 
Box’s well-known quip in his influential paper on tests on variances that the 
preliminary test on variances is rather like putting to sea in a row boat to find 
out whether conditions are sufficiently calm for an ocean liner to leave port, 
we would add that using the mean-based Levene’s, (T2), is akin to sending 
out a dinghy instead.
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