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Introduction

Student teachers’ usual feedback after teaching practicum revolves
around issues of what to teach, and how to teach it. While the former

emphasises knowledge and skills to be developed, the latter is a pedagog-
ical issue of teaching strategies and student activities. Of equal importance
are assessment questions which typically follow such class discussions
such as, “How do you assess what you teach?” and, “How would you know
students are really getting it?” often asked with an air of perplexity espe-
cially when describing classroom experiences in which previous lessons
were perceived to be “reasonably well-taught.” Later they find, much to their
disbelief, that some students are still not “getting it.” Subsequent discus-
sions eventually converge onto another equally relevant question about
lesson objectives. For example, if one of the objectives is developing
students’ understanding of concepts, how do you assess this conceptual
understanding? Certainly, there are well-established ways that experienced
teachers have refined over the years (Ollerton, 2003; Zevenbergen, Dole &
Wright, 2004). One example is through appropriately designed problems
and investigative activities that challenge students’ knowledge of the
conceptual ideas (conceptual understanding) as well as test their ability to
critically analyse and apply ideas in the context of problems (critical
thinking). 

Traditionally, to assess students’ understanding of concepts (language),
students express the meanings in their own words perhaps with some illus-
trative examples or initiate a class discussion around the concepts.
Relevant terminology for topics are usually lists in syllabus documents
such as those in the New South Wales Board of Studies syllabus (2002). In
this paper, I present an argument for the potential use of two meta-cogni-
tive tools, concept maps and vee-diagrams, as viable means of assessing
students’ conceptual understanding, fluency with the language of mathe-

Students’ 
conceptual understanding 
and critical thinking

* This article was originally published in: Anderson, J., Coupland, M. & Spencer, T. (Eds) (2004). Making
Mathematics Vital (Proceedings of the Twentieth Biennial Conference of The Australian Association of
Mathematics Teachers Inc.). Adelaide: AAMT.

A case for concept maps and vee-diagrams 
in mathematics problem solving



amt 64 (2) 2008 9

matics and critical thinking in problem solving. While students’ under-
standing of the topic’s mathematical language may be illustrated on a
concept map in which nodes are concept names with linking words
describing interconnections, student’s higher-order problem solving skills
such as critical thinking may be assessed using vee-diagrams.
Supplementary to established methods (Ollerton, 2003; Zevenbergen, Dole
& Wright, 2004), I propose that vee-diagrams provide a systematic guide to
scaffold students’ reasoning and conjecturing as they contemplate ways of
solving a problem. However, before presenting examples from research
conducted with mathematics students and teachers, I will describe the two
meta-cognitive tools.

Concept maps and vee-diagrams

The literature refers to different types and uses of concept maps (Liyanage
& Thomas, 2002; Williams, 1998; Ruiz-Primo & Shavelson, 1996), however
this paper focusses on the Novak-type concept maps in which concepts are
arranged in a hierarchical order of generality with respect to the main topic
and including linking words (Novak, 1998; 2002; 2004; Novak & Gowin,
1984; Minztes, Wandersee & Novak, 1998; 2000). Novak defines a proposi-
tion as a statement formed by a (node – linking words – node) triad or
strings of triads. By joining selected nodes, and describing links, students
demonstrate their knowledge and understanding of concepts embedded
hierarchically within the network of interconnecting concepts. This
constructive activity provides the teacher with an idea of the state and level
of students’ understanding of the mathematics involved.

A vee-diagram, on the other hand, is a heuristic for analysing the knowl-
edge structure of a problem (adapted from Gowin’s epistemological vee
(Novak & Gowin, 1984); Novak, 2002, 1998) in terms of its conceptual
framework (left-hand side) and methodological information (right-hand
side). Figure 1 shows the vee-diagram structure with its telling questions to
guide the reasoning and thinking process as students analyse a mathe-
matics problem (Afamasaga-Fuata’i, 1998; 2004). The curved arrow
indicates the constant interplay between the two sides as students reflect
upon given information and critically analyse the knowledge structure of
the problem and relevant mathematics while simultaneously searching for

Figure 1. Problem solving vee diagram of mathematics problems 
(Afamasaga-Fuatai, 2004, 1998).
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suitable mathematical principles that suggest methods of transforming
given information to generate potential solutions. If, instead, students have
already obtained a solution then the challenge is to think in the reverse
direction, in identifying principles underpinning their methods. Specifically,
students should be encouraged to provide conceptual justifications for their
solution’s main steps to overtly make connections between procedures and
concepts. This is similar to asking students to explain “why” a problem is
solved a particular way as, “[l]earning to ask why is discovering that there
are reasons not just facts, that statements can be justified, not just
asserted loudly and slowly in order to persuade through intimidation”
(Mason, 2001, p. 8). For that reason, establishing classroom practices of
students justifying solution steps in terms of mathematical principles and
displaying the conceptual and methodological information side by side on a
vee-diagram overtly focus students’ attention on the dynamic interplay
between concepts and procedures. Mason (2002) further argues that, “[b]y
supporting learners in developing and refining their powers to think math-
ematically it is possible to go some way to, if not guarantee, at least make
more likely that learners will construe through doing, know through
construing, and know to act (to do) through knowing to use their developing
powers to think mathematically (p. 6).” If sustained over time, students can
begin to raise their awareness of their own powers to reason, make connec-
tions, and think analytically and mathematically (Mason, 2002). Spending
sufficient time on a problem to ensure that students are not only learning
about methods of solving problems but are routinely providing justifica-
tions, posing and solving challenging problems, have been identified as
significant features of Japanese mathematics classrooms (Hollingsworth,
2003; Stigler & Hiebert, 1999, as cited in Anderson, 2003). 

In the following sections, examples of concept maps and vee-diagrams
are presented to illustrate their potential as tools to assess, monitor, teach
and develop students’ conceptual understanding, fluency with the language
of mathematics and scaffold their critical thinking and reasoning in
problem solving.

Concept map examples

Dora, a mathematics teacher who participated in the study, was asked to
construct a concept map to illustrate functions. The recommended proce-
dure is compiling an initial list of 8 to 10 relevant concepts, ranking
concepts from most general to most specific and then arranging them in a
meaningful hierarchy. After ranking and positioning her concepts hierar-
chically, interconnecting nodes and describing links, Dora produced her
first concept map as redrawn in Figure 2. Choosing to place the main
concept “Functions or Mappings” at Level 1, the rest were strategically
placed to facilitate valid interconnections distributed over five more levels.
Reading vertically from top to bottom, it is possible to identify about 22
meaningful, complete propositions as listed in Table 1. The first column
(Table 1) indicates level connections. For example, Proposition 7 is formed
from relevant nodes at Levels 1, 3, 4, and 5 whilst Proposition 22 is a
crosslink from Level 6 back to Level 1. By inspection, Table 1 indicates that
the propositions are typical statements students make when articulating
their understanding of functions. 

Pedagogically, a concept map such as in Figure 2 can be used as a focus
for a discussion or a means of implementing the working mathematically
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Table 1. Proposition list from the first concept map.

Level# Level# Propositions from Dora’s concept map 1
1 → 2 1 Functions or mappings are relations.
1 → 3 2 Functions or mappings are determined by a rule of correspondence.
1 → 3 3 Functions or mappings have various representations.
3 → 4 4 Representations which can be diagrams and algebraic representations.
1 → 2 → 3 5 Functions or mappings are relations which use variables.
1 → 2 → 3 → 3 6 Functions or mappings are relations which use variables to represent set of

ordered pairs.
1 → 3 → 4 → 5 7 Functions or mappings have various representations which can be diagrams such

as arrow diagrams, mapping diagrams, graphs.
3→4→5→6→1 8 Representations which can be diagrams such as graphs if cut once by the vertical

line test determines functions or mappings.
3 → 4 → 5 9 Representations which can be algebraic representations such as equations, nota-

tions.
3 → 4 → 5 → 6 10 Representations which can be algebraic representations such as notations; for

example, set builder notation, image notation, mapping notation.
3 → 5 11 Variables can form equations.
3 → 5 → 6 12 Variables are letters such as x, y.
3 → 4 → 4 13 Set of ordered pairs can be used to determine domain and range.
4 → 5 14 Domain represents the set of first elements.
4 → 5 15 Range represents the set of second elements.
5 → 6 16 Set of first elements is represented by x.
5 → 6 17 Set of second elements is represented by y.
1 → 3 → 4 18 Functions or mappings are determined by a rule of correspondence such as 1:1,

m:1.
1 → 3 → 4 → 6 19 Functions or mappings are determined by a rule of correspondence such as 1:1;

for example, arrow diagram example 1.
1 → 3 → 4 → 6 20 Functions or mappings are determined by a rule of correspondence such as m:1;

for example, arrow diagram example 2.
4 → 4 → 3 21 Domain and range use variables.
6 → 1 22 Vertical line test determines functions or mappings.

Figure 2. Dora’s first concept map.
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process strand particularly the processes of questioning, applying strate-
gies, communicating, reasoning and reflecting (NSW, 2002). If propositions
are mathematically incorrect or vague then it provides an opportunity for
the teacher and student to negotiate for an acceptable re-statement of
linking words and/or possible re-organisation of the hierarchy. This
teacher–student interaction can also take place between students them-
selves if working in pairs or collaboratively in small groups. Alternatively,
the teacher can design more effective tasks that specifically redress the
misconceptions. Thirdly, if propositions are all correct, the teacher can re-
assign it as an enrichment task to be extended as new concepts are learnt
over subsequent lessons. A variation would be for the teacher to delete links
and linking words and ask students to construct individualised concept
maps (or work in pairs or small groups). An exploratory option is to give
students the opportunity to examine their own conceptual understandings
in-depth at the completion of a topic, then construct individual concept
maps using their own lists (or if preferred, one given by the teacher such as
those in syllabus documents). Since student-constructed concept maps
indicate their level of conceptual understanding and fluency with the topic’s
mathematical language, they can be presented in class to initiate mathe-
matical dialogues, communications and discussions amongst the students
as they learn collaboratively from each others’ work and share ideas.

Whereas Figure 2 visually depicts Dora’s perception of the integrated,
hierarchical, network of interconnecting nodes, these extra dimensions are
not easily discernible in the linear list of Table 1. I propose in this paper
that the multi-dimensional aspects of the diagrammatic concept map “offer
a wider scope for multiplicity of interpretation” (Mason, 2001), and organi-
sation particularly as the task of concept mapping demands much cognitive
processing of information and reflective critical thinking whilst arranging
the same concepts in a meaningful hierarchy, linking and describing inter-
connections. In practice, constructing a hierarchical concept map explicitly
pushes students to a higher level of thinking and reflection, which are desir-
able skills to cultivate and develop for effective problem solving and an
essential part of working and thinking mathematically. In contrast, solving
a problem by simply executing a procedure or applying a formulas such as
finding the derivative using the power rule without fully comprehending the
meanings of underlying concepts is to miss out on an aesthetic apprecia-
tion of calculus and indicative of a procedural, limited view of derivatives.

After presenting her first attempt in class (consisting of myself and her
peers), Dora continued to revise her concept map for the second and third
time by adding nodes, revising some labels and including illustrative exam-
ples. Her peers also took turns in presenting their concept maps for
critique. Subsequent discussions and social interactions (student–student
and teacher–student) focussed on critiquing whether or not displayed inter-
connections and linking words were mathematically sound and correct. As
an extension, all of them were asked to expand their first maps to include
more relevant nodes and illustrative examples. Dora’s fourth attempt is
redrawn in Figure 3 with a proposition list in Table 2. A comparison of
Figures 2 and 3, and Tables 1 and 2 shows an increase in meaningful
propositions (from 22 to 30) with the inclusion of more nodes (from 28 to
39) and links (from 34 to 51), an extra hierarchical level (from 6 to 7) and 5
more illustrative examples and 3 graphs. The final concept map had
evidently expanded, becoming more complex with more integration and
differentiation between concepts resulting in more meaningful propositions.
Dora had also reversed the ranking of concepts “Functions” and “Relations”
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Table 2. Proposition list from the final concept map.

Level# Level# Propositions from Dora’s concept map 1
1 → 2 1 Relations are functions. 
1 → 1 2 Vertical line test may be used on relations.
2 → 2 → 3 3 Functions or mappings are determined by a rule of correspondence.
2 → 3 → 3 4 Functions use variables to represent a set of ordered pairs. 
2 → 3 5 Functions have various representations.
3→ 4 → 4 6 Representations which can be diagrams and algebraic representations
2 → 3 → 4→ 5 7 Functions have various representations which can be diagrams such as arrow

diagrams, mapping diagrams, graphs. 
2 → 3 → 4→ 5 → 6 8 Functions have various representations which can be diagrams such as graphs;

for example, linear graph1, parabola graph 2, cubic graph 3.
2 → 3 → 4→ 5 → 7 9 Functions have various representations which can be diagrams such as arrow

diagrams; for example, arrow diagram example1 , arrow diagram example 2.
2 → 3 → 4→ 5 10 Functions have various representations which can be algebraic representations

such as notations, equations.
5 → 6 11 Notations; for example, set builder notation, image notation, mapping notation. 
5 → 6 12 Equations are used in set builder notation, image notation, mapping notation.
6 → 7 13 Set builder notation; for example, S = {(x, y): y = x + 1}.
6 → 7 14 Image notation, for example, f(x) = x + 1.
6 → 7 15 Mapping notation; for example, f(x) → x + 1.
3 → 5 → 6 16 Variables are letters such as x, y.
3 → 5 17 Variables can form equations.
3 → 5 18 Variables use notations.
3 → 4 19 Set of ordered pairs can be used to determine domain and range.
3 → 4 20 Set of ordered pairs for example {(1,2), (2, 3), … (x, y)}.
4 → 5 21 Domain represents the set of first elements.
4 → 5 22 Range represents the set of second elements.
5 → 6 23 Set of first elements is represented by x.
5 → 6 24 Set of first elements for example {1, 3, … x}.
5 → 6 25 Set of second elements is represented by y.
5 → 6 26 Set of second elements for example {2, 4, … y}.
3 → 5 → 6 27 Rule of correspondence in which first elements appear only once such as 1:1, m:1.
5 → 6 → 7 28 First elements appear only once such as 1:1; for example, arrow diagram example 1.
5 → 6 → 7 29 First elements appear only once such as m:1; for example, arrow diagram example 2.
6 → 1 30 Linear graph 1, parabola graph 2, cubic graph 3 supported by the vertical line test.

Figure 3. Dora’s final concept map.
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and included concept “First elements appear only once.” Given her back-
ground as a teacher, her final concept map attempted to capture the typical
“functions” terminology at early secondary level.

Vee-diagram examples

To introduce vee-diagrams in problem solving to a Year 10 class, I used the
following problem: 

Find the equation(s) of the line(s) which pass through (3,-3) and forms with
the coordinate axes a triangle of area 6 square units. Find equation(s) of the
line(s) in general form.

Guided by the telling questions in Figure 1, I explained how the problem
statement can be used to complete the sections: Object/Event, Focus
Question, Records and Concepts by asking questions such as, “What are
the mathematical concepts used in stating the problem?”, “What are you
asked to find?”, “What is the given information?” which is also consistent
with Polya’s first principle for problem solving namely “understanding the

FOCUS QUESTION

What are the equations
of the lines passing

through
(3, -3)

in general
form?             TRANSFORMATIONS

        Area of triangle:  =   base x height
    =  ab = 6 sq. units;

b
a

=
12

……….…(i)

Using Principle 2; equation of the line is
x

a

y

b
+ = 1…………..(ii)

  gives:           
x

a

ay
+ =
12

1………...(iii).

  But lines pass through (3, -3), therefore
substituting for the values of x and y in (iii)
should give

3 3

12
1

a

a
� =   ……..…(iv).

Rearranging and simplifying (iv) gives a  = -6 and
a  = 2.  Substituting the values of a  in (i) and (ii)
gives the equations of the lines:

x + 3y + 6 = 0  and   3x + y - 6 = 0.

THEORIES
Set Theory

- relations & functions
               - coordinate geometry

 KNOWLEDGE CLAIMS
Lines passing through point (3, -3) and
making triangles of area 6square units
with the coordinate axes have equations:
  x + 3y + 6 = 0      &  3x + y -  6 = 0.

RECORDS                                            CONCEPTS

Equation, coordinate axes, lines, point,
area,  triangle, base, height, square units

                                  PRINCIPLES

1. The general form of equations of a
straight line is:

Ax + By + C = 0.

2. The intercept form of equations of
straight lines is:

x

a

y

b
+ = 1 ,

       where
    a = x-intercept, and

                     b = y- intercept.

3.  Area of triangle is:  1
2

(base x height).

EVENT/OBJECT

Find the equation(s) of the line(s) which pass through (3,-3) and forms
with the coordinate axes a triangle of area 6 square units.  Find
equation(s) of the line(s).

a

Area = 6 square
               units

b

    (3,-3)

CONCEPTUAL SIDE METHODOLOGICAL SIDE

Figure 4. Vee map of problem (method 1).



amt 64 (2) 2008 15

problem.” The other three principles are: (2) devising a plan; (3) carrying out
the plan; and (4) looking back (Polya, 1973). Polya’s four principles provide
an overview of the process of completing a vee-diagram with more specific-
section questions in Figure 1. Of fundamental importance is the
enculturation of students to the “thinking part of the problem solving
process (which) is typically suppressed” in textbooks by “embedding
conceptualisation directly in the flow of the problem solving process”
(McAllister, 1994). Accordingly, the teacher should initiate a brainstorming
session in which students are asked to make suggestions, conjectures and
pose questions to “crack the code,” interpret and analyse the problem state-
ment for the intended meaning, relevant concepts and principles as they
explore potential solutions whilst simultaneously slotting emerging infor-
mation into the relevant sections of the vee-diagram. By overtly drawing
students’ attention to the different sections, connections between displayed
conceptual and methodological information are reinforced and consoli-
dated. Shown in Figures 4 and 5 are vee-diagrams illustrating two methods
of solution. Subsequent discussions can focus on clarifying, confirming and
articulating connections between sections. Extension work may include
explorations for more methods and relevant underlying principles with
students using vee-diagrams to record findings and in subsequent class

        TRANSFORMATIONS
       From the diagram, a and b are the intercepts,

        giving the points (a, 0) & (0, b) where
x1 = a,  y1 = 0, x2 = 0, y2 = b

       �  equation of line is:

  ( )

( )

( )

( )

y

x a

b

a

�

�
=

�

�

0 0

0

                   y

(x � a)
=
�b

a
     ……(i)

    Using Principle 3,    b =
12

a
,

Substituting b  in (i)  gives:  y

x a a( )�
=
� 12

2
 ….(ii)

THEORIES

Set theory, Number theory
  ---relations & functions
  ---coordinate geometry

KNOWLEDGE CLAIM
The same answers as in Method 1

RECORDSCONCEPTS

equations, coordinate axes, point, area,
triangle, base, height, square units,

                                          PRINCIPLES

1.   The general form of equations of a straight
line is:       Ax + By + C = 0.

2. The point-point form equations of straight
lines is:    ( )

( )

( )

( )

y y

x x

y y

x x

�

�
=

�

�

1

1

2 1

2 1

    where

( , )x y1 1
and  ( , )x y2 2

are points on the line.

3.  Area of triangle is: 1
2

(base x height).

EVENT/OBJECT

Find the equation(s) of the line(s) which pass through (3,-3) and forms
with the coordinate axes a triangle of area 6 square units.  Find
equation(s) of the line(s).

FOCUS QUESTION

What are the
equations of the

lines passing
through (3,-3)

in general
form?

Substituting the values of x and y from point
(3, -3) in (ii) will give the same values of a as in
Method 1 above and consequently the same
answers.

METHODOLOGICAL SIDECONCEPTUAL SIDE

a

Area = 6 square
               units

b

    (3,-3)

Figure 5. Vee map of problem (method 2)
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presentations, effectively communicate their ideas. Alternatively, students
may be asked to identify other relevant principles missing from the
“Principles” lists of Figures 4 and 5. Another option will be to ask students
to pose their own problems and then construct vee-diagrams to display rele-
vant conceptual and methodological information.

Earlier on, I presented two examples of concept maps to illustrate the
knowledge structure of some concepts on “functions.” Another use of
concept maps in association with problems is to display the conceptual frame-
work on the LHS of vee-diagrams to effectively communicate the connections
between concepts, mathematical language, and procedures as shown in
Figure 6. This problem concept map can be extended further to incorporate
students’ findings from their own investigative and exploratory activities as
suggested above. Resulting concept maps will reveal connections between
concepts and procedures that cross multiple topics.

Summary

With the current focus in mathematics education on the importance of
developing students’ conceptual understanding, fluency with the language
of mathematics, critical thinking, and working mathematically, teachers are
constantly expected to design challenging and investigative tasks that can
engage and motivate students in their learning of mathematics. An integral
part of creating exemplary and conducive learning environments in mathe-
matics classrooms is for teachers to be innovative and creative in the ways
they teach and assess students. In this paper I have demonstrated how the
Novak-type concept maps and Gowin’s vee-diagrams can be used in math-
ematics classrooms as learning, teaching and assessment tools as they
have been found to be quite effective in many international classrooms

General Form
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y y m x x� = �1 1( )
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1
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2 2
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Figure 6. Concept map of the problem.
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across many disciplinary areas as evident by the number of presentations
(approximately 150 papers and posters) accepted for the First International
Conference on Concept Mapping held on 14–17 September 2004 in Spain,
see http://www.cmc.ihmc.us.
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I do regret leaving school so early, especially when I
can’t do my kid’s homework. The other day my daughter
was looking for the square root of the hypotenuse. 
Hell. I didn’t even know it was lost!
Kathy Lette, author (2005)


