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Ithink that sometimes starting from a position of

relative ignorance can be an advantage. I once

heard an interview with a man who rode a bicycle

around Australia. When asked whether he did a lot of

training in preparation for the ride he said that he had

rarely been on a bicycle before he set out around

Australia. He claimed that if he had known how hard

it was going to be he probably would never have

started. I mention this by way of explaining spending

the past three years of my life somewhat obsessed

with the teaching of fractions. It is not as if I had never

thought about the teaching of fractions before. Indeed,

I must confess to having taught fractions many times

since the late 1970s. My fascination with fractions grew

out of the revision of the Mathematics syllabus in

NSW, from Kindergarten to Year 10. I knew that many

students had difficulty dealing with fractions. I also

knew that the revised syllabus had increased the

expectations of what students could do with fractions

as well as introducing them to fractions earlier.

What went wrong?

For a long time we have known that many students

experience difficulties in working with fractions

(Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981;

Mack, 1995). Beyond the algorithmic manipulation of

fractions lie the related difficulties of the underpinning

concept. A student may be able to “invert and
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multiply” to divide by a fraction and yet not be able to

determine how many times you can make a recipe

needing three-quarters of a cup of milk if you have

three cups of milk. For many people, the concept of a

fraction is not connected to the algorithmic manipula-

tion of number pairs used to record fractions. As

Kirkpatrick et al. (2001) state, “Rules for manipulating

symbols are being memorized, but students are not

connecting those rules to their conceptual under-

standing, nor are they reasoning about those rules.”

(p. 234)

The interpretation of fractions as parts of a whole

is commonly used in teaching fractions. For example,

three-eighths is frequently described in class as three

parts out of eight equal parts. Experienced teachers

always stress the word “equal” when talking about

fractions. Students are then expected to demonstrate

their understanding of three-eighths by shading in

parts of a shape. For example, shade three-eighths (3
8)

of each shape in Figure 1:

one-third, presumably losing the

sense of the whole. 

This process of carrying out

double counts with part-whole

models of fractions has some

drawbacks. Kieren (1988, p. 177)

clearly describes the limits of part-

whole models in teaching

fractions.

Because part-whole models of

fractions conveniently help

produce fractional language,

the school mathematics fraction

language of teacher and texts

alike tend to orient a student to

a static double count image and

knowledge of fractions. The

child, while being able to

produce “correct” answers to

questions, develops a mental

model which is inappropriately

inclusive (parts of a whole),

rather than a powerful measure

of inclusion (comparison to a

unit)…

In the dominant teaching

method used to introduce frac-

tions, students learn to divide

objects into equal parts. Next, they

learn to count the number of parts

of interest and place the result of

this count above the count of the

total number of parts. This part-

whole model of recording is used

to introduce the tool of fraction

Figure 1. Shading three-eighths.

If you think about this type of question, which I

claim is quite common, it is not unusual for students

to come to see fractions as a kind of “double count”.

You count the total number of parts (just to be sure it

is not a trick question) and you count and shade three

of the parts. You do indeed make two whole number

counts.

In a practical fraction task used to assess 11-year-

old students in England, reported in Dickson, Brown

and Gibson (1984), students were presented with 4

square tiles, 3 yellow and 1 red and asked, “What frac-

tion of these squares are red?” (see Figure 2).

Only 64% of the students assessed were successful.

Many of those who were incorrect gave the answer

R Y

Y Y

Figure 2. Discrete parts of a whole.
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symbols. This in turn is followed

by the traditional algorithmic

manipulation of whole numbers,

known as operations with frac-

tions.

We could blame our students

for being somewhat deficient in

their learning of fractions, yet I am

confident that students often do

learn what they have been taught.

A friend of mine while working

with a Year 4 class told me of the

following exchange. The students

were shown a circle (Figure 3) and

asked what fractions they could

see.

Figure 3. Divided circle.

The whole class agreed when

one student said, “You have to

have equal parts to have fractions,

so there aren’t any fractions in this

circle”.

The symbol system used to

record fractions may be very

powerful yet it is counter-intuitive.

The symbol system emphasises

“two whole numbers”, the numer-

ator and the denominator. For

example, many students under-

stand “a/b” as denoting a

part-whole relationship, for

example that “3/7” means “three

out of seven” (Brown, 1993). This

interpretation means that “7/3”

does not make sense (Mack,

1995). 

Understanding fractions
One of the most commonly stated aims of teaching

mathematics is to have students “understand”. Yet

what do we mean when we speak of the need to

understand?

Suppose that a teacher reminds a class that to find

an equivalent fraction you multiply the numerator and

the denominator by the same number. A student who

has been absent says he does not understand, so the

teacher gives him an explanation as follows: 

“Say you had one-half and you wanted to find

another fraction equal to one-half. If you multiply the

numerator by three and the denominator by three you

work out that three-sixths is the same as one-half.”

Soon after watching the explanation, the student is

completing an exercise. Should you ask this student if

he now understands, he would most likely say that he

did. Indeed, he would justify his understanding by

referring to all the questions he has answered

correctly. For this student, and possibly his teacher, to

understand is to have a rule and to be able to use it.

This type of understanding was described by

Richard Skemp (1978) as instrumental understanding.

Many students can and do learn the algorithmic skill

of operating with fractions, while being unsure of

what fractions are. 

In contrast to instrumental understanding is the

broader notion of relational understanding: knowing

both what to do and why. The limitations of instru-

mental understanding, sometimes referred to as “rules

without reasons”, are readily demonstrated. 

Developing an instrumental understanding of math-

ematics is often quicker and less demanding

cognitively than developing a relational under-

standing. Consequently, the rewards of instrumental

learning are more immediate and more apparent. It

will clearly result in a page of correct answers in a

shorter time. Why then should we attempt to develop

a relational understanding of fractions?

Emphasising only the algorithms for operating with

fractions works as long as each step is correctly

remembered. It is like following instructions on how

to get to a certain destination, when the instructions

are given in terms of left and right turns. If you follow

all of the instructions correctly you will get to your

destination but if you need to make even a small
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detour you will soon be hopelessly lost. One false step

off the instrumental path and your chances of finding

the path again are slim.

The algorithms with fractions are really algorithms

with whole number — you multiply, add or subtract

whole numbers. It is not surprising then that many

children appear to see fractions as two whole numbers

— three-quarters is the whole number three written

over the whole number four. When viewed this way,

it is not uncommon for children to apply whole

number strategies to fraction problems (Lamon, 1999;

Mack, 1995; Streefland, 1993).

Look at the responses that the students chose as

answers to the following task.

Estimate the answer to . 

You will not have time to solve the problem using

paper and pencil.

(Carpenter et al., 1981) p. 36

The responses to this item suggest that 55% and

36% respectively of 13 and 17 year-olds appear to be

using a whole number approach. These choices do

not make sense if students understand what the

symbols mean and are reasoning about the quantities

represented by the symbols. A further 14% and 16%

appear to have no knowledge of how to answer the

question.

Partition fractions or
quantity fractions

The research into fractions has

described a range of different

ways of thinking about fractions

(Behr, Lesh, Post & Silver, 1983;

Kieren, 1976; Mack, 1990;

Ohlsson, 1988). The descriptions

of the characteristics or sub-

constructs of fractions have

included ideas such as fractions as

operators (stretching and

shrinking), quotients, measures,

part-whole relationships, rates,

and ratios. Perhaps not surpris-

ingly, the diversity of approaches

to describing fractions within the

research literature has not been

helpful to improving the learning

of fractions. Indeed, it has been

described as unsatisfactory in

regard to designing instruction for

an integrative understanding of

fractions (Thompson & Saldanha,

2003). 

Rather than canvassing the

range of descriptions of fractions

available in the research, I will

describe a simpler way of thinking

about the teaching of fractions.

The Japanese approach (Yoshida,

2004) looks at partition fractions

and quantity fractions. If you

partition (separate or divide)

objects into b parts equally and

select a out of b, the amount a
b is

defined as a partition fraction (see

Figure 4). Therefore, 3
8 (of a

pikelet) is a type of partition frac-

tion. On the other hand, quantity

fractions are defined as fractions

that have a universal unit. In

dealing with fractions as mathe-

matical objects, this idea of a

universal unit is very useful.

Percentage choosing answer

Answer Age 13 Age 17

1 7 8

2 14 37

19 28 21

21 27 15

I don’t know 24 16
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Asking the question, which is larger, one-half or three-

eighths, only makes sense if the question is one of

quantity fractions. The quantity fractions access a

universal unit, a unique unit-whole, which is inde-

pendent of any situations. If one-half and

three-eighths do not refer to a universal whole, we

cannot compare them. We must identify the objects

that are being compared. Is one-half of a small pizza

larger than three-eighths of a large pizza?

as they provide both a support to their thinking and

access to the strategies and partitioning students use

with fractions. Look at the responses to the following

question. 

Draw what would happen if I have 6 cups of milk

and a recipe needs three-quarters of a cup of milk.

How many times can I make the recipe before I run

out of milk?

This student (Figure 5) has partitioned each cup

into four pieces and has identified (by numbering) the

three quarters that belong to each recipe.

Figure 5

This student (Figure 6) has identified the three-

quarters in each of the six cups and has numbered the

three-quarter units. The fourth three-quarter unit has

been formed by accumulating the remaining one-

quarter out of each of the first three cups. Similarly,

the eighth three-quarter unit is formed from the

remaining one-quarter in each of the final three cups.

The diagram suggests that the student knows that

three-quarters plus one-quarter is one whole.

Figure 6

Figure 4. Partition fractions.

Part-whole relationships are characterised by parti-

tion fractions. For both discrete and continuous

quantities, the unit-whole is often implied. It is difficult

for students to become aware of a unit-whole when

the unit-whole is often implicit in everyday situations.

The essential idea of quantity fractions is that fractions

themselves can express quantities.

Sharing diagrams

If the symbol system and algorithms with fractions

emphasise whole numbers rather than fractions as

quantities, what can we do to develop a quantitative

sense of fractions? We can involve students in equi-

partitioning (breaking into equal parts). I like paper

folding activities because the unit-whole is not lost.

Counting and colouring in pre-partitioned shapes

many be a useful activity in counting, but it does

nothing to significantly develop the fraction concept.

We can also help students to link fractions to the

process of sharing or division. The best way that I

know of to tap into students’ thinking about fractions

is through the use of sharing diagrams. Students’

recordings with “sharing diagrams” are very important
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This student’s sharing diagram (Figure 7) shows a

successive accumulation of the three-quarter units. It

also suggests that this student knows that three-quar-

ters is the same as one-half and one-quarter.

Figure 7

Using students’ drawings is not a new idea. My use

of sharing diagrams with fractions was influenced by

the work of Marilyn Burns (1987) and Susan Empson

(1995).

Contradictory beliefs
One of the things that I find fascinating arising from

my work with students, is the capacity for students to

hold contradictory beliefs about fractions. In looking

at the answers of thousands of students in NSW, I was

surprised by the ability of students to hold what I

would describe as contradictory ideas about fractions.

A Year 6 student when asked to shade one-third and

one-sixth of a circle responded as in Figure 8.

By itself, you might consider this answer a little

disconcerting. I must admit that from a broad cross-

section of students in Years 4, 5, 6, 7 and 8 it is not all

that uncommon. Looking at this response you would

feel confident that you knew this student’s miscon-

ception. However, Figure 9 shows the same student’s

response when asked to indicate

which is the larger of two quantity

fractions and to explain her

reasoning. The surprising

response to three of these ques-

tions involving thirds and sixths is

shown in Figure 9.

Although all of the questions

have the correct answers, ques-

tions 24 and 25 make no use of an

equal-whole in comparing the two

fractions. Perhaps even more star-

tling is that the student is now

accessing a correct image of one-

third and in question 26 she now

also displays a correct representa-
Figure 8. A Year 6 student’s response.

Figure 9. The same student’s images of thirds and sixths.
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tion of sixths and the relationship to thirds.

I take this to be an example of the difference

between a consistent concept image of fractions and

an evoked concept image. Tall and Vinner (1981)

described a concept image as all of the cognitive struc-

ture in the individual’s mind that is associated with a

given concept, “which includes all of the mental

pictures and associated properties and processes”

(p. 152). The evoked concept image is the portion of

the concept image activated at a particular time. In this

way, seemingly conflicting images may be evoked at

different times without necessarily producing any

sense of conflict in a child.

The word fraction is from the Latin frangere (to

break) and so fractions are sometimes referred to as

“broken numbers”. It appears that even the concept of

fractions as quantities is itself broken or fractured. The

concept image of fractions can hold contradictory

ideas that are not in tension because they are infre-

quently evoked at the same time.

The fraction concept is not a single idea. Students

may be proficient in one area of fractions while also

holding contradictory beliefs. Consequently, the frac-

tion concept does not respond to simple remediation

methods. Students’ explanations are critical in deter-

mining what they understand of fractions. The

recordings students make as they reason with fractions

provide us with insights into their thinking.
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