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Drawing upon research, theory, classroom and
personal experiences, this paper focuses on
the development of primary-aged children’s

computational fluency with multi-digit multiplication.
Getting children from “here” (current strategy use) to
“there” (a more efficient strategy) is often not a
straight-forward path. The critical links between
number sense and a child’s ability to perform mental
and written computation with ease are examined.

Many readers will know the story of the famous
mathematician Johann Carl Friedrich Gauss
(1777–1855). As a young boy he was prone to
daydream in class. One day his teacher decided to
punish him for not paying attention. He was asked to
add all the numbers from 1 to 100. Much to the annoy-
ance of the teacher, young Carl was able to derive the
correct answer in seconds. Fortunately for Carl, he
knew a short-cut. He realised that adding pairs of
numbers (e.g., 1 + 100, 2 + 99, etc.) all equalled the
same number: 101. He figured that there were 50 such
pairs, so calculated the total to equal 50 × 101 or 5050. 

Recently I related this story to a group of primary
school teachers. One teacher immediately asked, “But
who taught him that?” This question sparked a discus-
sion about the critical relationship between a person’s
understanding of mathematics and their computational
fluency. The teachers agreed that Carl’s in-depth
understanding of mathematics enabled him to see
patterns and relationships that made the computation
more manageable, but that his knowledge of basic
facts and the fluency with which he could compute
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were equally important. The teachers concluded that
understanding without fluency can inhibit the problem
solving process.

This paper focuses on the development of primary-
aged children’s computational fluency. It emphasises
the critical links between number sense and a child’s
ability to perform mental and written computation.
The case of multi-digit multiplication is used to illus-
trate these important links. 

Computational fluency: 
Number sense and the standard algorithm 
The idea of teaching mathematics for understanding
and for meaningful learning to occur has been advo-
cated for over half a century (Brownell, 1935).
However, it was not until the 1980s that the term
“number sense” was first used to refer to those who
had a deep understanding of numbers. The focus on
number sense is manifested in the recent and ongoing
emphasis in international curriculum and policy docu-
ments on mental computation (e.g., Australian
Education Council, 1991; National Council of Teachers
of Mathematics, 2000). Research has shown that those
who are good at mental computation possess a well-
developed sense of number (McIntosh & Dole, 2000). 

The increased emphasis on mental computation
and number sense has seen a corresponding de-
emphasis in curricula on standard algorithms. An
algorithm is a specified multi-step procedure that
produces an answer for any given set of problems and
is characterised by long-term practice. While still
recognised as important, some Australian state
syllabus documents have delayed the introduction of
standard algorithms for around two years to allow a
focus on mental strategies for as long as possible (e.g.,
Board of Studies, New South Wales [BOSNSW], 2002).
The worry with an early emphasis on standard algo-
rithms is that students will shift their focus to
executing convenient procedures rather than on
understanding the mathematics. 

A concern is that educators will view the develop-
ment of number sense and fluency in written and
mental computation as separate bodies of knowledge
requiring separate instruction. In fact, computational

fluency, whether employing
mental or written methods, and
number sense are intertwined and
should be developed together.
The aim of the following sections
is to examine how children
develop proficiency in their
computational methods while
instruction remains focused on
learning with understanding. 

Understanding the
development of children’s
strategies
While a number of research-based
“frameworks” provide excellent
descriptions of learning pathways
by which children’s computational
strategies develop, they fail to tell
us about how children progress to
use a more efficient strategy in
preference to another less efficient
one. It is imperative that teachers
understand how children make
this shift. 

As children become more
competent mathematicians, they
develop a variety of thinking
strategies for solving mathematical
problems. Generally, children
initially apply basic counting
strategies to help them solve
simple numerical problems before
moving onto using more complex
non-counting strategies. While the
strategies that develop usually
become more sophisticated as
children learn more efficient ways
of doing mathematics, it is now
well acknowledged that at any
one time, a child will use a multi-
plicity of strategies and that often
these strategies will not be the
most efficient ones a child is
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capable of performing. Such ineffi-
cient strategies persist because
while they may be slow, they
eventually yield the correct answer
(Gould, 2000). When a child is
placed under some form of cogni-
tive demand, such as an imposed
time limit, mental fatigue or even
boredom, they will often revert to
a less sophisticated strategy that
they know well and can perform
with minimal effort. A nine year-
old explained this to me once
while I questioned her about her
strategies for addition:

I know when I just have to add

a small number — say five or

less — then its fast for me to

count by ones. But if it’s 20 or

30 to add, then I will stop and

think of a better way that does

not use just ones because I

know it will take me too long

to count that many. Sometimes

I just want to count by ones

because it’s too hard to think of

another way.

I learnt from this little girl that
children modify their strategy use
according to at least two things:
the demands of the mathematical
problem and the limitations of
their knowledge. Another influ-
ence on children’s choice of
strategy that I have observed
during my time in schools is that
of textbooks or even teachers
themselves. In the attempt to intro-
duce students to a variety of
mental and written methods,
instructional material may overem-
phasise or specify the use of a
particular strategy or scaffold (e.g.,
the empty number line) when

students are already working beyond what is specified
(see Bobis & Bobis, 2005). The challenge for teachers
is to encourage the development of, and consistent
use of, more efficient and appropriate strategies for
solving mathematical problems without it being “too
hard” for children. To do this, it is imperative that
teachers not only understand what these strategies are,
but how a more efficient strategy becomes a student’s
preferred strategy even when placed in a stressful situ-
ation. The diagrammatic representation of Siegler’s
(2000) overlapping wave theory has helped further my
own understanding of how this can be achieved (see
Figure 1). I have shared Siegler’s theory with prac-
ticing and prospective teachers and found it beneficial
in explaining how a more efficient strategy can
become a child’s preferred strategy.

Siegler’s (2000) overlapping wave theory is based
on three assumptions: (1) children typically use a
multiplicity of strategies to solve a single problem; (2)
less and more efficient strategies may coexist over
prolonged periods of time and not just for short
periods of transition; and (3) the relative reliance on
existing and more efficient strategies can be changed
given appropriate experiences. The first two assump-
tions are represented diagrammatically in Figure 1.
The third assumption is addressed later in this paper.

It can be seen from Figure 1 that at any one point
in time, a student may use a range of strategies.
However, the relative frequency with which particular

Figure 1. Diagram representing 
Siegler’s overlapping waves model.
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strategies are used over time may vary continuously,
with new strategies becoming more prevalent and
some more inefficient strategies stopping. By
following the path of a single strategy, it can illustrate
how some strategies will often be used for a
prolonged period of time even after more efficient
strategies have been introduced. This can be exempli-
fied by a student who uses counting-on by ones to
solve simple addition problems such as 7 + 2 as a
5 year-old, and who continues to use the same
strategy to solve 47 + 12 as a 10 year-old. Siegler
suggests that as a child progressively learns more effi-
cient strategies they pass through four dimensions or
components of change. These components range from
the initial use of the strategy, which in some cases may
at first be used at an unconscious level, to a stable,
precise and efficient use of the strategy. The four
dimensions along which learning occurs include: 
1. the acquisition or introduction of a more

advanced strategy;
2. an increased reliance or frequency of use of the

new strategy within the set of the child’s existing
strategies;

3. an increased appropriate choice of the strategy;
and

4. an improved execution of the more advanced
strategy that can lead to it becoming increasingly
automated.

While this model for strategy development is based
on the assumption that children learn by doing, it is
important to emphasise that simply drilling the strate-
gies is not enough. Understanding is also crucial. We
know that the greater the degree of understanding, the
less practice that is required to obtain fluency and to
sustain the change in strategy use. Additionally, each
new strategy competes for a long time with more
familiar strategies, so it may not be used consistently
as their preferred strategy for some time and there may
be occasions when a child seems to regress in their
strategy use. In other words, getting children to move
from their current array of preferred strategies (the
“here” strategies) to a more efficient strategy (the
“there” strategies) is not a straightforward process. 

The case of Crystal and
multi-digit multiplication

I first met Crystal when her Year 6
teacher asked me to assist with the
development of an intervention
program for a small group of
students in her class. These
students were experiencing diffi-
culty with the algorithm for
multi-digit multiplication and the
teacher was unsure what remedia-
tion was needed. This section
details the journey to computa-
tional fluency of one child from
that group. 

Frameworks describing devel-
opmental pathways of children’s
thinking strategies for addition,
subtraction and single digit multi-
plication are now quite common
(see, Bobis, Clarke, Clarke,
Thomas, Young-Loveridge, Wright
& Gould, 2005) and some are actu-
ally embedded into curricula (e.g.,
BOSNSW, 2002; Van den Heuvel-
Panhuizen, 2001). However, much
less is known about multi-digit
multiplication. Fuson (2003)
reports preliminary research that
reveals children use a progression
of strategies from (a) direct model-
ling with concrete materials or
semi-abstract drawings, to (b)
methods involving repeated addi-
tion, such as doubling, to (c)
partitioning methods. Partitioning
strategies normally include the
partitioning of one number or
both numbers into tens and ones
or partitioning by a number other
than 10. 

The standard algorithm for
multi-digit multiplication most
commonly used in NSW primary
schools requires a number of steps
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involving multiplication and addition. It also relies on
the answers at each step being properly aligned
according to their correct place value. Such alignments
can be accomplished without any understanding of a
number’s true value. In Crystal’s case, errors in her
multi-digit multiplication were the result of a range of
factors. The single-digit multiplication work samples in
Figure 2 indicate that Crystal could efficiently solve
single-digit computations when multiplying by
numbers less than 7. However, she did not know all
her multiplication facts from 7 onwards, thus
hindering her computational fluency. This was later
confirmed in an interview with Crystal. She had
memorised most facts to 6×10, but seemed unaware of
the commutative property of multiplication. Hence,
she was unable to see that 6×8 was the same as 8×6.
In addition, the work samples indicate that Crystal was
not only making procedural errors when carrying, but
that she had little understanding of place value when
multiplying by tens. This is a very common error in
students’ execution of the algorithm for multi-digit
multiplication and is generally a result of learning the
procedure by rote. To overcome these procedural and
conceptual errors, Crystal needed to understand the
distributive property of multiplication. 

A program of work starting with Crystal’s under-
standing of the commutative property of multiplication
was implemented by the classroom teacher. It was
decided to strengthen Crystal’s knowledge base of
single-digit multiplication before moving to the more
difficult multi-digit multiplication computations. While
this initial instruction spanned a few weeks, it is the
understanding of the mathematics underlying multi-
digit multiplication that is my focus here. It was during
our search for a strategy to help Crystal understand the
underlying mathematics that the classroom teacher
and I learnt most about Crystal’s mathematical abilities
and about teaching multi-digit multiplication via a
number sense approach.

We soon learnt that if Crystal was going to develop
an understanding of the distributive property of multi-
plication, it needed to be presented in a visual form.
Early attempts to explain this property through purely
abstract means (e.g., 14 × 5 = 10 × 5 + 4 × 5) had little
success. Visual representations of double-digit
numbers became very cumbersome and messy for

Figure 2. Examples of Crystal’s single digit 
and multi-digit multiplication.

Figure 4. Array structures used to model all combinations in
multi-digit multiplication.

Figure 5. The distributive property is emphasised to assist
understanding of the algorithm.
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Crystal, thus making the learning and teaching
tedious. It was at this point that we encountered a
method involving partitioning of numbers according
to their place value and a convenient visual model
(Fuson, 2003). We started by introducing Crystal to
array’s incorporating tens and ones (see Figure 3 for
an expanded and abbreviated model of an array). The
visual representation supported Crystal’s under-
standing of multiplying all the combinations in two
double-digit numbers.

The array models scaffolded the introduction of
mental strategies involving partitioning, and at the
same time provided a convenient representation of the
distributive property of multiplication. Within two
weeks of instruction, the visual representation of the
array was unnecessary and Crystal was able to record
her thinking numerically (see Figure 4). As she gained
more confidence with this process, Crystal eventually
took short-cuts and discarded recordings to the right
of the algorithm. 

While this sequence of instruction was first intro-
duced to cater for the needs of Crystal and a few other
students in the class, the teacher decided to integrate
the array model into her regular classroom teaching of
multi-digit multiplication. After witnessing the benefits
of this process of instruction the teacher interviewed
more students from her class to determine their level
of understanding of multi-digit multiplication. She was
alarmed to find many other students implementing the
standard algorithm correctly, but without under-
standing the underlying mathematics.

Conclusion

High levels of efficiency in computation remain a goal
of our mathematics curricula; the process by which it
is achieved needs to take account of how students
develop a sense of number. The path to computational
fluency is not a straight-forward one for most students.
However, it is clear that the promotion of number
sense is critical to a basic understanding of mathe-
matics and to a child’s ability to compute easily. 
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