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Learning mathematics may seem to students a

tedious process of memorising algorithms that

have little meaning or value. It may involve

countless hours practising computations with little

focus on why the procedures work and when to use

them. Students may, therefore, forget these procedures

over time. Accessing and executing procedural knowl-

edge is easy with today’s technologies. Understanding

it well enough to use it in varied contexts is another

matter.

Teachers who believe “practice makes perfect” may

engage students in repetitive, perhaps timed, compu-

tational exercises. If we teach students to understand

the procedures they practice, however, they will not

need as much drill and they will have more flexible

use of the computations they perform. Three-quarters

of a century ago, William Brownell began arguing for

meaningful arithmetic. In this article we describe some

of Brownell’s ideas about children’s understanding of

school arithmetic. We include transcripts of Brownell-

inspired individual interviews with two second-grade

students that illustrate one method for assessing

computational understanding.

Brownell’s meaning theory

Brownell’s work was first published in 1928 and

continued for more than four decades. His theories

relate directly to the issues we face today. Most of his

HEIDI J. HIGGINS

and LYNDA R. WIEST

illustrate the 

meaning of 

computational

understanding. 

INDIVIDUAL
INTERVIEWS

as insight into 
children’s computational thinking



26 APMC 11 (1) 2006

Individual interviews as insight into children’s computational thinking

work (e.g., Brownell, 1945; 1956)

pertained to the teaching and

learning of arithmetic but can

easily apply to other mathematics

content areas. Brownell’s theory

involved arithmetic having both a

mathematical aim and a social aim.

He believed that both aims are

essential to a functional

curriculum. Instruction should be

organised around the ideas and

relations inherent in arithmetic

within a context that is both math-

ematical and practical. Students

should both make sense of the

mathematics itself and know how

it applies to the real world.

Mathematics experiences,

Brownell said, must be meaningful

to students at the time of learning.

Accordingly, he named his theory

the meaning theory.

Students have different levels of

mathematics understanding.

Rather than being either present or

absent, understanding falls along a

continuum. A student may give a

low-level response to 18 + 8 by

counting out 18 cubes and then 8

more before re-counting all of

them starting with one. Another

student may put 18 in her head

and count on 8 more. Another

strategy is to break the problem

into two steps using a “make-ten”

strategy: 18 + 2 = 20 and add the

remaining 6 (from the 8) to get 26.

Still another student may add the

ones (8 + 8 = 16) and then the tens

(16 + 10 = 26). A student with

much computation experience

may at once know that the sum of

18 and 8 is 26.

Clearly, these sample responses

show varied levels of under-

standing. Instruction should be

organised so that the students will ascend to the level

of “meaningful habituation,” in which students’

responses in mathematical situations are automatic but

have a firm basis in understanding (Brownell 1935).

Students’ understanding of mathematics is based on

the amount and kinds of experiences they have.

Understanding a mathematics concept fully means

knowing its function, structure, and relationships. We

might infer understanding by what students say and

do, but we should also look at what students do not

say or do.

Assessing student thinking

It is easy to assume that students have a higher level

of understanding than they actually do when — for

instance — a child immediately answers 28 + 13

correctly. Having students explain and support their

solution methods for problems gives a window into

their thinking. One student may rapidly count up 13

from 28 to give the answer of 44, whereas another

may decompose the numbers into 28 +10 = 38 and

38 + 3 = 41. The second student’s strategy may take

longer, but it demonstrates better number sense.

Another assessment technique is to see what

students do in the presence of error (Brownell, 1956).

Looking at students’ work is not very useful here.

Instead, teachers can note what students do when

confronted with perceived error by posing questions

while students are discussing their work with peers.

However, individual conferences with students can be

more useful and informative in gauging under-

standing.

Interviews with second graders

Heidi Higgins noticed during classroom discussions

that one of her second graders usually carried out

computation correctly but offered justifications that

did not support her solutions. She knew she was not

getting enough information through classroom obser-

vations and questions. So, Heidi decided to meet with

her student one-on-one.

Heidi began the interview by asking the student to
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Assessment questions Student’s responses

What is the sum of 14 and 3? [Student writes 14 + 3 on paper.]
14 plus 3 equals 17.

How did you come up with that
answer?

Because 4 and 3 is 7, and there’s a one on the
front, so it makes it 17.

What is the sum of 17 and 9? [Student writes 17 + 9 on paper. She puts up 7
fingers and counts on her fingers.] 15. [She looks
down at the paper and says that 15 does not
make sense.] 17 [puts up 9 fingers and counts
them], 18, 19, 20… 26.

What is the sum of 24 and 17? [Student repeats the same procedure of putting the
number in her head and counting 17 more
fingers.] The answer is 41.

Could you solve this same problem
using a different strategy?

I usually do it this way. 
24

+17
52

[She starts with 7 + 4, putting 7 in her head and
adding 4 more to get 12, and placing the 2 in the
ones column and the 1 in the tens column. She
then adds the tens and got 5.]

Do you notice that you have two
different answers?

Oh, I added 7 plus 5 instead of 4, and I counted
wrong over here [pointing to the tens column].

What is the sum of 56 and 38? [Student writes 56 + 38 on her paper, uses the
counting on procedure for the ones column, gets
14, places the 1 above the tens column, adds the
tens column and gets 94.]

No, I think the answer is 84. [Student rewrites the problem again and goes
through the same procedure. She comes up with
94 again. She looks at Heidi and smiles and says
that she was only 10 off and she was really close.]

Do you have any other way to
check and see if the answer is 84 or
94?

No, I did it this way but I don’t know what I did
wrong. [The student tries the procedure again but
cannot tell Heidi if she has the right answer.]

Interview 1
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Assessment questions Student’s responses

What is the sum of 26 and 8? It is 34.

How did you come up with that? Well, you add 4 to 26, which would give me 30,
and add the last 4 from the 8, and it would give
me 34.

What is the sum of 54 and 38? If you take the 4 from the 54 and give it to 38,
you would have 42, and then you’d add 50. You
would get 92.

What is the sum of 67 and 84? [The student forgets the problem so Heidi tells
him again and asks him to write it on the paper.]
71. I took the 4 from the 84 and gave it to 67.
And then add the 80. You would get 151.

What is the sum of 77 and 28? [Student writes 78 + 27.] Oops, I wrote the wrong
problem. It doesn’t matter. I’ll still get the same
answer.

How do you know? Because all I did is switch the number in the ones
column. 8 and 7 is 15 no matter which way you
write it. Therefore, the answer to this problem and
your problem is 105.

The sum of 39 and 46 is 84. I don’t see how. You’re wrong, because if you
take the 6 from 46 and give it to 39, you’d have
45, and 40 more is 85. You added your ones
wrong. I’ll even show you on paper. [The student
writes the problem on paper and tells Heidi she
can also check this using her fingers if needed.]

What is the sum of 554 and 128? I know that it is in the 600s. Because if you take
554 and add 100 to it, you would have 654. With
8 more you would get 672, and 20 more would be
682.

No, the answer is 672. I know that you’re wrong. When you were adding
your tens together, you missed a group.

How so? For one thing, 8 plus 4 is 12, not 2. Somewhere in
your addition you forgot to put that 10 back in.

Interview 2
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add two numbers (see Interview 1). She noticed that

the girl was most comfortable with the method of

counting on. Asked if she knew how to use a different

strategy, the student opted for the traditional algorithm

of adding the ones column, regrouping, and then

adding the tens. However, when Heidi intentionally

disagreed with her answer, the girl repeated the algo-

rithm but seemed convinced that she had done

something wrong that she could not identify. (Shortly

thereafter, Heidi told her that her answer was correct.)

This child could perform the standard addition algo-

rithm but had not developed meaning for it. Here,

counting on characterised the student’s level of

computational understanding.

During another individual interview (see

Interview 2), Heidi found that a male student

displayed no confusion when faced with error. The

boy did not hesitate to tell his teacher (Heidi) that she

was wrong and even went so far as to say she could

use her fingers to check her answer if needed. (Heidi’s

students work in a respectful classroom climate where

they feel free to question and disagree with ideas, as

long as they explain why.) The boy was able to break

the numbers apart and recombine them accurately. He

did not need to count his fingers or rely on a memo-

rised method. This student appeared to have a higher

level of understanding — and accompanying confi-

dence — than the first student interviewed.

Implications for instruction

William Brownell’s meaning theory promotes under-

standing of mathematical procedures. As teachers plan

instruction, they should consider how to help students

make meaning of computation. Instruction should start

slowly using varied concrete materials and move

increasingly toward symbols or other abstractions.

Number relationships can be explored and discussed.

Teachers should also structure opportunities for

students to apply mathematics concepts in real-world

contexts (Brownell, 1935).

The meaning theory does not suggest that students

should never engage in repetitive practice. However,

drill should only be introduced after students have

achieved understanding of a concept or skill. It should

be used to increase proficiency

and make the learning permanent,

leading to “meaningful habitua-

tion” (Brownell, 1956).

Conducting one-on-one inter-

views is one way to assess student

understanding of and confidence

with computational procedures.

The two individual interviews

discussed in this article illustrate

sample questions teachers might

use and provide possible student

responses. The insights into

students’ thinking that this tech-

nique affords are a great way to

inform both whole-class and indi-

vidualised instruction.
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