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Iread with interest the article on teaching trigonometry recently published
in The Australian Mathematics Teacher (Quinlan, 2004). The article

reports on a lesson given by a student-teacher in which the pupils were
involved in a practical activity designed to introduce the tangent ratio and
demonstrate its utility in some real-life contexts. Quinlan (2004) concludes
with some general principles for introducing new mathematical concepts,
ideas which he was fortunate enough to have learned when he completed
his teacher training in the 1950s. The author also suggests that teachers
begin by allowing students to explore concrete examples of a concept before
presenting its definition, and that the formal terminology and symbolism
associated with the concept should be introduced much later, after
students have developed a sound grasp of the basic ideas.

Re-thinking classroom practices

My recollections of the mathematics methodology subjects I undertook in
the early 1980s are quite different. I remember being encouraged to adopt
a very expository style of teaching in which each new concept is introduced
by its formal definition. The teacher should then explain a few carefully
chosen examples for students to copy into their books, and then provide
plenty of graded practice exercises from the textbook for students to
complete. It is what Mitchelmore (2000) calls the ABC approach: where
abstract definitions are taught before any concrete examples are consid-
ered. So, for many years, my teaching of trigonometry in Year 9 began with
exercises in identifying opposite and adjacent sides in right-angled trian-
gles, definitions of the trigonometric ratios and the mnemonic
SOHCAHTOA, then lots of work on calculating unknown sides and angles,
all devoid of any realistic context. Finally, right at the end of the topic, I gave
the class some word problems involving applications like angles of elevation
and compass bearings.

It was only when I undertook further study some years later and was
exposed to alternative ways of thinking about the nature of mathematics
and its pedagogy that I began to reassess my classroom practice. There was
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no blinding light or sudden conversion but, over time, I did make some
significant changes in my teaching. In my trigonometry lessons this meant
not following the textbook so slavishly, changing the order in which
students tackled the basic ideas associated with right-angled triangles, and
reconsidering the kinds of classroom activities I provided for students. I was
also mindful of the Standards for Excellence in Teaching Mathematics in
Australian Schools (AAMT, 2002) and the advice on professional practice in
Domain 3. In particular, I wanted to use a variety of teaching strategies and
try to take account of students’ prior mathematical knowledge. The purpose
of this article is to outline briefly some of the elements of my new approach
and how I developed them. 

Introducing the ratios

First, I thought it important for my Year 9 students to understand that
“sine”, “cosine” and “tangent” are ratios whose value depends on the rela-
tive size of the sides in a right triangle. I used a diagram like Figure 1, found
in many textbooks, and asked the students to measure BF, CG, DH, and EI,
the lengths of the sides opposite the marked acute angle, θ. Then the
students measured AF, AG, AH and AI, the lengths of the hypotenuse in
each triangle. Finally, I asked the students to divide the values for each of
the opposite sides by the hypotenuse in ΔABF, ΔACG and so on, until they
obtained approximately the same value in each case, and so I was able to
explain that they had found the sine ratio! This was not a very auspicious
beginning at all and the students were unconvinced by my explanation but
they accepted it and we moved on to repeat the process for the two
remaining ratios. In hindsight, this approach was still too abstract and
provided no rationale for measuring those particular sides to obtain the
three ratios. In fact, I am not even sure that students actually see a series
of separate triangles (ΔABF, ΔACG, ΔADH and ΔAEI) in a diagram like Figure
1 because the shapes are superimposed on each other. I needed to find
another way.

Figure 1. Diagram to show constant values for the sine ratio.

Trigonometry and coordinate geometry

Before teaching trigonometry the next year with my next Year 9 class, I
started to think about other ratio contexts familiar to students and began
to focus on gradients of straight lines. Prior to learning about trigonometry,
students have typically done some basic work on coordinate geometry and
are familiar with gradient as the ratio of “rise over run”. They also know that
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the gradient of a straight line is constant, so any two points on the line can
be used to determine the gradient ratio and the result will always simplify
to the same value. This appeared promising, but first the students needed
to link the gradient of a line and its angle of inclination. So I prepared a
worksheet on 2 mm grid paper showing various straight lines, all leaning to
the right, and in the first trigonometry lesson I asked the students to find
the gradient of each line and to measure the angle it made with the direc-
tion of the positive x-axis as another way to describe the steepness of the
line. At this stage, I just wanted the class to notice that the value of the
gradient and the size of the angle increased and decreased together and that
each measure provided a reasonable way of expressing the slope of the line.
Figure 2 shows a diagram that summarises the elements of this approach.
Most students measured the angle θ in the position where it is shown in
Figure 2, though some chose the corresponding angle formed between the
straight line and the x-axis.

Figure 2. Relating trigonometry and coordinate geometry.

Next lesson I asked students to work in small groups and think about
whether they could find the gradient of a line if they knew only its angle of
inclination. Students soon recognised that the size of the angle would be
sufficient information to draw a line on grid paper and choose a couple of
points from which the gradient could be calculated. But could such a line
be drawn uniquely? Some students were unsure that any line with the
required slope would do so I reminded them about the constant nature of
linear gradients and we had a discussion about the equal gradients of
parallel lines. 

The fact that any number of lines with the same slope could be drawn
led nicely to another discussion about how the size of the angle between the
line and the horizontal is the same no matter where it is measured and I
asked the groups to think about the gradients of various lines inclined at
45° to confirm this. I noticed that the students in one group had started to
draw lines without bothering to construct the coordinate axes—they were
drawing right-angled triangles! It was provident that the group had this
insight because it saved me from having to suggest it and ideas that come
from the students themselves are more satisfying and sometimes more
influential in shaping the thinking of their peers. So I asked this group to
present their findings to the class and we discussed how the right-angled
isosceles triangles they drew could be used to represent a straight line
inclined at 45° to the positive direction of the x-axis. 
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The other students were now happy to draw triangles to represent
straight lines and gradients as it saved having to rule up axes all the time
and so the process of abstracting the underlying mathematical ideas and
linking them to trigonometry had begun. We discussed how the gradient of
a line could be greater or less than 1 depending on whether the angle of
inclination was more or less than 45°. I provided the groups with more grid
paper and asked them to investigate gradients of lines inclined at 10°, 20°,
30° and so on up to 80°. It was only after the class were nearly finished this
activity that one student commented that we did not need to draw all those
triangles because the 10° triangle also included 80° as its complement—
something I probably should have foreseen.

Now the students compiled all of their results on the board and decided
that taking the average value for each angle would be a good way of dealing
with any inaccuracies that might have occurred in the measurements or
calculations. The class had thus developed a primitive table of tangent
ratios for multiples of 10° and I asked the students to think about why the
gradient of a vertical line could not be calculated in order to anticipate a
much later discussion about the tangent of 90° being undefined. But, for
now, it was time to think about how to use this new found table of values.

The height of the flagpole

In the following lesson, I asked the students to work in small groups to
devise a method for finding the height of the flagpole in the school play-
ground and I encouraged them to think about using the table of values from
the previous lesson. Some students were unsure about how to measure
angles in a practical context like this so I also had to show them how to
operate a clinometer. All of the groups eventually concluded that if they
could measure a distance from the base of the flagpole to a point where the
angle of elevation to the top was close to a multiple of 10° then they could
use the values in the table to calculate the height of the pole. It was inter-
esting that some groups recognised that their own height would need to be
accounted for (or that they would need to measure the angle while lying
down) while other groups were completely unaware of this potential
problem. 

The students went to the playground and took their measurements.
Then we returned to class and the groups performed the calculations
required to obtain a value for the height of the flagpole which they wrote up,
together with an explanation of the methods they had used and a justifica-
tion for their result. There was a large spread of values from the sublime to
the ridiculous, but I think it was a worthwhile activity to show the students
a practical application of the work they had been doing.

I returned the students’ work in the following lesson and we talked about
the difficulties associated with having only a small number of ratio values
to work with—some groups took quite a while to find a place where they
were satisfied that the angle of elevation was close to the nearest 10°. If only
we had more values to choose from! Now was the time to reveal that all
along we had been working on a branch of mathematics known as
trigonometry and that the values we had calculated in our table were called
the tangent ratios of the angle. Not only that, but if the students looked
closely at their calculators they would see a button labeled “tan” and they
could use this key to generate tangent ratios of angles more quickly and
reliably than by hand. I asked the students to check the accuracy of the
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ratios in our table using their calculators and we discussed likely reasons
why a couple of our values were slightly astray. Then I showed the students
how we might have solved the flagpole problem using a calculator and
stressed the kind of setting out that I wanted in their working. Finally, they
tried a worksheet containing similar problems where the angle of elevation
and horizontal distance were known and the height of various objects
needed to be found.

A rationale for learning about sine and cosine ratios

In the following lesson, the students worked on more word problems based
on realistic situations. However, this time the height of the object was given
and we needed to calculate the distance from the base. Then we considered
a circumstance where the height and the distance from the base were
known to see if we might be able to find the angle of elevation. This required
the students to learn a new sequence of calculator keystrokes and some
new ways of setting out their working, but they were quite comfortable with
this. Some practice exercises followed and then I proposed a new problem
for the students to consider: “A ladder, 3.5 metres long, is leaning against a
wall. The ladder makes an angle of 60° with the ground. How can we use
trigonometry to find how far the ladder reaches up the wall?” The situation
is shown in an abstract diagram in Figure 3 and it is clear that the tangent
ratio will not help here, hence the need to introduce the sine and cosine
ratios.

Figure 3. A schematic diagram to represent a ladder leaning against a wall.

Conclusion

The introduction to the topic took slightly longer than I had planned but I
felt it was important to proceed slowly and give the students time to think
about what they were doing. Linking the tangent ratio to the familiar
concept of the gradient of a straight line was successful and provided a
useful starting point for teaching about trigonometry. Beginning only with
the tangent ratio rather than all three ratios together was particularly bene-
ficial because it avoided the need for the SOHCAHTOA rule until after
students had plenty of time to think about the concepts. In the past, I have
often felt that students switch off once they have learned the mnemonic and
they stop trying to make sense of the work because they have a simple rule
they can follow almost without thinking.



I was able to gain back some of the extra time spent at the beginning of
the unit when I introduced the other ratios because students did not need
as much practice with them. I had already covered angles of elevation in
some detail so that work did not need to be done again. I also spent less
time dealing with errors and misconceptions from students because they
had a solid grounding in the concepts. I have a hunch they might even
remember their work in trigonometry over the long term as well. 

The journey from my early “ABC” teaching days is ongoing and I continue
to look for new ways to help students think more deeply about concepts and
see the applications of the mathematics they study. I agree with Quinlan
(2004) that such an approach is far more meaningful and productive than
starting with a definition. 
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Born of man’s primitive urge to seek order in

his world, mathematics is an ever-evolving

language for the study of structure and

pattern. Grounded in and renewed by

physical reality, mathematics rises through

sheer intellectual curiosity to levels of

abstraction and generality where

unexpected, beautiful, and often extremely

useful connections and patterns emerge.

Mathematics is the natural home of both

abstract thought and the laws of nature. It is

at once pure logic and creative art.

Calvin Clawson in his book 

Mathematical Mysteries (1996)

[upon losing the use
of his right eye]“Now I will have less

distraction.”(Leonhard Euler,
1707–1783)In H. Eves, 1969, 

“In Mathematical
Circles”, Boston:

Prindle, Weber and 
Schmidt.

“Do not worry about your difficulties in
Mathematics. I can assure you mine are still
greater.” (Albert Einstein)


