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Legend has it that a servant of a Chinese
Emperor was carrying a very expensive

square ceramic tray and when he tripped and
fell it was shattered into seven pieces (called
tans). He was not able to arrange the pieces
back into the proper shape but he did realise
that there were many other shapes that could
be built from the pieces

Tangrams have sometimes been used as an
extension activity intended only to keep faster
students busy while others finished essential
desk-work. Without adequate introduction,
many find that tangrams are just an open-
ended form of jigsaw puzzle. Happily teachers
have discovered that games provide an effective
introduction to a new topic. In the case of
tangrams, students are likely to learn more
from their construction than from playing with
the finished product.

This article describes how students can
construct tangrams within a constraint-based
geometric (CBG) environment, thereby learning
much more than might be gained using scissors
and cardboard, while at the same time learning
to use the CBG system. The examples used here
were constructed using a ClassPad 300 but
might just as easily be developed using the
Windows-based software package Geometry
Expressions.

A major hurdle is one of definition. We may
not expect too much trouble with student recog-
nition of the parallelogram, square and three
different sizes of right-angled isosceles triangles.

However, if we revise these shapes within the
context of the rest of the triangles and quadri-
laterals, there are some very strange ideas out
there. While looking for suitable Christmas
presents for my grand-children I learned that a
kite has a rhombus shape and a picture of a
rhombus was described as a diamond. 

This is only part of the price we have paid for
neglecting a generation. Almost 2000 years after
Euclid systematised geometry we now have
some teachers who have never been taught
Euclidean Geometry. We should not be
surprised if such folk think that geometry defi-
nitions are arbitrary—a matter of taste. A new
textbook claims that an isosceles triangle has
only two sides equal. The glossary in the back of
the book contradicts the text and the worked
examples correctly assume that an isosceles
triangle has at least two sides equal. The lack of
logic and consistency remains undetected by
both author and proof-readers. We have not
only discarded a knowledge system but we have
failed to adopt an alternative geometry within
which to teach the logical thinking Euclid once
inspired.

Many mathematics teachers are familiar with
the Venn Diagram classification of triangles that
shows clearly that the set of equilateral trian-
gles (E) is a proper sub-set of the isosceles
triangles (I). In the case of tangrams we are
specifically interested in those triangles which
are both isosceles (I) and right-angled (R). 

Tangrams and constraint-based geometry
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If students have learned the Theorem attrib-
uted to Pythagoras, this is an excellent
opportunity to reconsider the 1:1:√2 triangle
that Hippasus used to discover the existence of
irrational numbers. Students love the story of
how this led to his murder.

Open the Geometry application of a ClassPad
and switch on the Integer Grid. Join three
points, A, B and C as shown here.

If you construct three more triangles, one for
each condition of congruency, you can compare
them for ease of manoeuvrability. For example,
when I constrained the right-angle and the two
equal sides (SAS), an attempt to fix the attitude
of the triangle by constraining the slope of the
hypotenuse was too much for the system. I
found that the (ASA) tan was the most manoeu-
vrable in the ClassPad environment and so I
used (ASA) for all of the triangles.

Triangles are particularly rigid shapes. Metal
towers and cranes are made up of triangles.
Quadrilaterals are not like that. They very easily
flex to give a variety of shapes. 

There is an important difference between
dictionary style definitions that simply list the
properties of a figure and the minimalist type
definitions that can be used to solve problems
in geometry. Here are the traditional quadrilat-
eral definitions:
• a quadrilateral (Q) is a four-sided polygon.
• a parallelogram (P) is a quadrilateral with two

pairs of opposite sides parallel.
• a rectangle (Re) is a parallelogram with at

least one pair of sides perpendicular.
• a square (S) is a rectangle with at least one

pair of adjacent sides equal.
• a rhombus (Rh) is a parallelogram with at

least one pair of adjacent sides equal. 
All the rest of the properties can be proved

from this minimal amount of information. These
definitions are usually supported by the
following Venn Diagram. 

Select the line segment AB and from the
Measurement Bar fasten the length at 8 units
by tapping the tick near the right hand end. If
we attempt to move the triangle, the length AB
will always have this fixed length of 8 units until
such time as we remove the constraint on the
length of AB. There are now several ways to
fasten the size and shape of the whole triangle—
what a wonderful opportunity to revise the
conditions of congruency. For example, you
could now select both AB and AC and from the
Measurement Bar and constrain the angle BAC
to 45°. If you do the same to angle ABC the size
and shape of the triangle is fixed by the ASA
condition. If you switch off the integer grid you
will find that this first tan is easily rotated and
moved.

Using these definitions, the necessary condi-
tions for a parallelogram are:
• opposite sides parallel;
• opposite sides equal in length;
• opposite angles equal;
• diagonals bisect each other;
• one pair of sides equal and parallel.

Even though these conditions determine that
a quadrilateral is also a parallelogram, they do
not fix its shape. Opposite angles may be equal
but that does not determine the size. Opposite
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sides may be equal but that does not determine
the shape. Suppose we switch on the integer
grid and build a square and then constrain the
length of every side. As soon as we switch the
integer grid off, the square is free to slop around
as a variable shaped rhombus. 

We can add one more constraint to stabilise
the figure, such as fixing the length of a diag-
onal, but if we try to fix the length of both
diagonals a CBG system will recognise that
there is too much information and will ask
which constraint you wish to remove so as to
avoid contradictions. However, if you constrain
only one diagonal the two free vertices can snap
together forming a V-shape that does not
contradict the constraints.

It is unwise to constrain the slopes of sides
because this may make the shape more difficult
to rotate. When later you come to build tangram
pictures you will want to constrain some slopes
and points after placement, so as to stabilise
the growing picture. You may become confused
if some of the figures have been defined using a
constrained slope.

The strategy used here, for both the square
and the parallelogram, is to constrain all the
sides to the lengths defined by the grid and then
to constrain one angle. In the case of the paral-

lelogram, constrain the angle IHG (as shown
below) because the resulting figure is less likely
to be pulled out of shape. After finishing each
shape, push it into place and save your work.

So we finally have a set of tangrams forming
the original square pattern. Using a stylus each
tan can be rotated or moved across the screen
to form a variety of pictures and patterns. Some
students will prefer to create their own shapes
while more convergent thinkers may need
outlines which they can attempt to match as
shown below. You can obtain many extra exam-
ples from
http://www.tangrams.ca/Inner/down.htm
Use of material from this excellent site is free for
non-profit use and education.

You will find that students learn much about
the CBG environment by manipulating the tans
to form different shapes. It is a more demanding
process than the corresponding manipulation of
cardboard pieces.

I found that the most successful technique is
to rotate a tan by constraining one side to a
particular slope and then to move the tan into
position by constraining the distance between
two matching points to zero.

This exercise introduces several key strate-
gies when using CBG systems and prepares
students for further use of this environment.

Editor’s note: Years ago I found a delightful book titled A Tangram
Tale that tells the story of the Willow pattern plate, using
tangram-figures. I still use it with students to illustrate John
Gough’s point (in this issue) about using literature to teach math-
ematics.


