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This paper focuses on the construction, development, and use of mathematical
models by prospective science and mathematics teachers enrolled in a university
physics course. By studying their involvement in an inquiry-based, experimental
approach to learning kinematics, we address a fundamental question about the
meaning and role of abstraction in modelling when such approaches involve
students encountering and resolving experimental error. We use a “tensions”
framework to explore the capability of learners to make necessary connections
between abstract mathematical models and physical phenomena.

In recent years the use of models in teaching and learning science has been given
serious consideration by science education researchers (Halloun, 1996; Hestenes,
1992, 1993; Wells, Hestenes, & Swackhamer, 1995). Likewise, research on the role
of models and modelling in mathematics education has also surfaced (Confrey &
Doerr, 1994; Doerr & English, 2003; Doerr & Tripp, 1999; Lesh & Doerr, 2003).
Support for educational research involving modelling promises to continue
(Blum, Galbraith, Henn, & Niss, 2007) and will likely answer many important
questions related to student learning of mathematics and science through
inquiry. For example, some current research has focused on modelling that
supports student learning of statistics in highly contextual and meaningful ways
(Lehrer & Schauble, 2002). Most recently, international research communities
presented studies of modelling approaches in mathematics classrooms on a
global scale and emphasised their impact on learning mathematics (Blum,
Galbraith, Henn, & Niss, 2007; Matos, Blum, Houston, & Carreira, 2001). 

This paper focuses on what we call “mathematical models”; their
construction, development, and use in the classroom through an inquiry-based
approach to teaching and learning kinematics. We rely on the view that a
scientific model becomes a mathematical model if the model describes or
represents a real-world situation with a mathematical construct (or constructs)
involving mathematical concepts and tools (Pollak, 2003). A mathematical model
is resident in certain domains of mathematics (such as algebra, geometry, and
statistics) because of their algorithms and formulae; however, the mathematics
involved in the model must be made reasonable in two ways, not only in its
mathematical “correctness” with regard to the domain in which it is resident, but
also in the real-world situation which it represents (Pollak, 2003). The transfer
from scientific to mathematical model also involves identifying and using
mathematical constructs such as space and measure as well as other constructs
that bring insight to solving a problem or understanding a situation (Lehrer &
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Schauble, 2000). We claim that learning with mathematical models not only has
practical applications, but also has philosophical and historical relevance in the
construction of mathematical and scientific knowledge (Dear, 1995; Sepkoski,
2005).

When reading the literature on modelling, one may ask if mathematical
modelling should be considered a proficiency or a competency in learning
mathematics. These are two seemingly distinct views of the subject, each with its
own related set of research questions (International Commission on Mathematics
Instruction (ICMI), 2003) and research paradigms. Consequently, these
paradigms lead to different suggestions for instructional methods and the
reconciliation of those methods with established instructional goals. We argue
that reconciling those methods becomes more complex when one considers the
national calls to integrate mathematics and science at the classroom level through
authentic activities so that the learning of one subject domain can enhance the
learning of the other (National Research Council, 1996, 2000). In actual
mathematical and scientific practice, the development and acceptance of
mathematical models is complex; yet, national standards call for students to
connect mathematics and science to real world phenomena and learn both
subjects through authentic activities.

Such an integrated approach reveals the complexities of mathematical
modelling based on one key (and related) question posed about mathematical
modelling “What is the meaning and role of abstraction, formalization and
generalization in applications and modelling?” (ICMI, 2003, p. 11) This question
addresses epistemological considerations of why more traditional mathematics
and science typically value abstract “truths” over the relationship between
mathematics and real phenomena. It may also be interpreted as a need to
examine not only cognitive processes and student thinking but also social
practice in the classroom. In both cases, the role of abstraction plays a
fundamental role and is the focus of investigation.

Does formal, abstract mathematics play a large role in learning with
mathematical models? If so, one key question concerns the ways in which
students make connections between a formal mathematical model and the
phenomenon that they are studying. This issue has been addressed in prior
writings. For example, within the body of statistics learning literature, delMas
(2004) points out that:

In the practice of statistics, model abstraction always begins with a context.
When this practice is taught in the statistics classroom, the student is dependent
on the characteristics of the context to guide model selection and development.
In some respects, this may be a more difficult task than the purely mental
activity required in mathematical reasoning. During model selection and
construction, the student faces some of the same cognitive demands that are
required by abstract reasoning while having to check the model’s validity
against the context. (p. 91)

Another example highlights the importance of learners being required to “fit”
their observations to an abstract model in mathematics and physics. Giere (1999)
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claims that a “technically correct” equation for linear motion can be written – one
that involves margin of error (Figure 1). However, he claims “this is not
necessarily the best way of interpreting the actual use of abstract models in the
sciences” (p. 50).

The use of symbolic language can disassociate the model from observed
phenomena since symbolic language bears its own structure and requires its own
rules of use. A similarity between the model and the world must be drawn, but
the abstract nature of the model must remain intact. In Giere’s view (and perhaps
in the view of other scientists), “Mathematical modelling is a matter of
constructing an idealized, abstract model which may then be compared for its
degree of similarity with a real system” (p. 50). The crux of Giere’s claims can be
analysed in the context of how that abstraction takes place, especially in light of
pre-conceptions, prior knowledge, and experience, which students will not easily
dismiss. Furthermore, the realm of physics acknowledges error more readily
than mathematics, yet the presentation and use of abstract models in the physics
curriculum are common and expected. One may even propose that learning
formal, decontextualised mathematical structures is the ultimate goal of
mathematical modelling in science. The aforementioned conflicts can make it
difficult for classroom interactions to satisfy the goals of the various sciences
(including mathematics), which may be in conflict with each other. Another
conflict may exist between instructional goals of the education system and goals
for robust learning. For example, developing appreciation for experimental error
and uncertainty may be a goal in physics and statistics, but not be an important
goal in algebra. The theory of reification put forward by Sfard and Linchevski
(1994) contends that objectification of symbols is the necessary process for
learning algebra; however, others contend that reification is only one view of
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Figure 1. Giere’s equation for linear motion (p. 49).



mathematical reasoning and development. It tends to ignore the historical
development of mathematical knowledge and stands in opposition to relevant
issues of school reform in mathematics including learning through inquiry
(Confrey & Costa, 1996). 

In order to help students obtain learning goals, teachers must be able to
create and strengthen links between more formal, abstract mathematical
concepts and real-world situations where mathematics plays a more applied role.
As teachers immersed in a modelling environment move within the realms of
personal experience, mathematics, and science (e.g., physics), emerging tensions
in student learning (and their own) could become apparent to them. If teachers
are to move effectively between these realms, they must make choices on how to
relieve resulting tensions within themselves and their students; such choices
have a profound impact on the use of modelling approaches in the classroom.
For example, teachers who disregard variation in real-time motion data may not
be aware that they are failing to meet one of the goals in physics – to account for
experimental error. Likewise, teachers who do not advance their students’
conceptual development of purely linear (i.e., error-free) models for position and
time in force-free situations may lose some critical mathematics and physics
understanding for their students. Therefore, teachers immersed in a modelling
environment require support and professional development in both content and
pedagogical content knowledge (Lehrer & Schauble, 2000; Petrosino, 2003).
Otherwise, many teachers may resolve the issue by circumventing the tensions
through direct instruction methods that do not facilitate conceptual
understanding or abstraction. In some cases, teachers may possibly abandon an
inquiry-based approach altogether. 

Theoretical Perspective on Learning Motion 
Through Modelling 

The critical theme of comprehending and resolving experimental error as it
relates to making a connection between an abstract model and learner experience
with physical phenomena is highlighted in this paper. Error can be discussed in
abstract terms (e.g., the symbolic combined with reliance on formal
mathematical systems or structures) or in terms consistent with physical
experience (observations and experiments combined with data interpretation).
One hypothetical example that highlights these issues involves a simple
experiment where students examine a bowling ball rolling down a hall. The
students are given the task of predicting how long it would take the ball to travel
10m if it were not blocked by the end of the hall. They decide to mark the times
as the ball passes given locations. One student releases the ball and yells, “Go!”
At this signal all the others, spaced at equal distances along the path they expect
the ball to take, start their stop-watches. Each one stops her or his watch as the
ball passes. Sample data for this hypothetical experiment are shown in Table 1.

First, students create both the table and the related graph of position versus
time (see Figure 2).
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Table 1
Sample Data from a Hypothetical Experiment Investigating Motion

Time (s) Position (m)

0 0.0

1 0.5

2 1.1

3 1.6

4 2.0

5 2.3

6 2.5

Figure 2. Plot of sample data from hypothetical experiment.

Based on prior knowledge, the students believe that the speed of the ball
“should” be constant in this situation. From science classes they have learned
that the laws of physics treat real situations as ideal and neglect friction. That
leads them to believe that the ball should cover equal distances in equal times. In
order to predict the time for the ball to travel 10 metres, they realise that they
need to calculate a representative rate of distance per time (or time per distance).
They argue that this rate can be found by taking the total distance travelled and
dividing it by the time it took to travel that distance. 

Other students, however, remember their science laboratory reports and
believe that they need to take possible sources of error into account. They argue
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that the last timer might not have been accurate, and that a better way to find the
representative rate would be to calculate it for each consecutive second, and take
an average. Yet another group of students recognises that the rate is
systematically decreasing. From the graph they can see that the data are not
really linear at all, but they still believe that position versus time “should” be a
straight line. These students argue that the graph can be replaced by a series of
lines from the origin (Figure 3) and that the slope of the middle line will be the
characteristic rate.

Figure 3. Establishing a characteristic rate for the hypothetical experiment.

They want to extend this line out to 10 metres and predict the time. One of
the students in the first group argues that this will not work, though, because the
ball’s speed will continue to get slower as it rolls further down the hall; it has
never yet been as slow as it will be at the 10 metre mark. 

The students are at a loss as to how to proceed. Those who believe that
sources of error such as friction and human reaction time should be ignored still
want to average the rates of change and create one model line. Others suspect
that these data really do not fit a linear model, but do not know how to show that
the fit is not “good enough,” that is, that they need a different model. The data
appear to be quadratic (some of them have even made a quadratic fit using their
calculators) but the students do not know how to prove this is the right way to
go and cannot see why friction should cause the relationship between distance
and time to be quadratic in the first place.

Based on student discussions and students’ engagement with the task, a
teacher might respond to these conflicts by emphasising any one of the following
different perspectives on the modelling of physical events:

• No motion in nature truly exhibits constant velocity and it is impossible
to measure any physical quantity with infinite precision. A model should
reflect these variations and limitations to the greatest extent possible,
but all models are limited in their capability to truly describe and predict.
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• A mathematical model should never reflect error. Its mathematical
structure and nature allows it to describe and predict motion in a way
that is generalisable to many situations. Thus, experimental error
should be ignored.

• A mathematical model would not reflect error had the students
conducted a “perfect” experiment explaining how motion should
behave under “ideal” circumstances. Students’ personal experience
with the experiment limits “true” understanding. Thus, constructing
the most ideal situations is the focus of learning.

This hypothetical modelling episode illustrates opportunities for students to
consider accuracy and what measurements are “good enough” to use in order to
answer a prediction question or generate an abstract mathematical model. In this
example, student experience with the phenomenon, along with their prior,
formal knowledge of both mathematics and physics, could lead to deeper
investigation of tensions among all three areas.

Inherent Tensions in Learning With and Through Models
The tension between scientists’ personal experience in conducting motion
experiments and mathematical modelling of motion such as free-fall has also
been in evidence historically. For example, Dear (1995) outlines a criticism of
Galileo’s rule of free fall presented by Honoré Fabri, theologian and philosopher.
Fabri claimed that Galileo’s rule of odd numbers treats physics as mathematics,
which Fabri believed was not possible. Dear, explaining Fabri’s contention,
writes: “The essential problem with Galileo’s odd-number rule was that it could
not be based on experience, or ‘experiences,’ because sensory data could never
provide sufficient precision to guarantee it” (p. 141). Tensions between a
learner’s personal experience and the branches of mathematics and physics
cannot easily be dismissed especially in the context of constructing mathematical
models. For example, personal experience can influence perceptions of what is
“concrete” or “real” and what is “abstract.” Historically, this perception was a
key consideration in the development of critical areas of modern mathematics
and was based on nominalism and several views of constructivism. For example,
Sepkoski (2005) writes:

Newton’s mathematical methodology, particularly in the Principia, has been
much discussed by historians. I. B. Cohen has described what he calls the
“Newtonian style,” which involves “the possibility of working out the
mathematical consequences of assumptions that are related to possible physical
conditions, without having to discuss the physical reality of those conditions at
the earliest stages” [1980, p. 30]. This “style” relied heavily on modelling nature
mathematically, but the final relationship of those models to physical reality
remained a sticky issue for Newton (p. 19). Sepkoski also writes that Sir Isaac
Newton “wanted a genuine correspondence between mathematical models and
nature” (p. 19).

Based on concerns about learning and teaching, it is important to highlight
conflicts that may exist for a learner immersed in the process of constructing a
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mathematical model. Epistemological tensions or cognitive conflicts may emerge
among a learner’s real-world experience in contextual inquiry, learning standard
concepts in mathematics, and learning standard concepts in a realm such as
physics (Figure 4). All three will play a role in the mathematical modelling
process since students will not only encounter instruction in both content
domains but will also have perceptions, based on prior experience or from the
modelling process itself that may not necessarily resemble standard concepts
taught in either mathematics or physics.

Figure 4. Tensions during the mathematical modelling process.

Similar tensions are identified and discussed by Woolnough (2000) who
states, “We would contend that most students, even those who perform well in
math and physics, fail to make substantial links between these contexts, largely
because of conflicts between the different belief systems” (p. 265). To view and
analyse mathematical themes through a constructivist “lens” and with regard to
learner goals, we rely on the tensions model in Figure 4. For example, in Figure
5, we view the results of student interaction and learning in the hypothetical
experiment presented previously.

Figure 5. Summary of tensions from hypothetical experiment.
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Pollak (2003) states that the crucial problem related to the use of models and
modelling in formal classrooms is how to connect mathematics to the “rest of the
world.” He claims: “What is usually missing is the understanding of the original
situation, the process of deciding what to keep and what to throw away, and the
verification that the results make sense in the real world” (p. 650).

The researchers’ goal, by examining learning through mathematical
modelling, is to determine characteristics of epistemological tensions that arise
when teachers are immersed in a modelling process to describe and predict a
physical phenomenon. Our chief concern is seeing how learners immersed in a
modelling environment can make connections between symbolic statements and
their apparent physical referent and, particularly, what role experimental error
plays in strengthening or preventing that connection. Identification and analysis
of this theme could help further understanding about the process of abstraction
in modelling: How can a learner make a connection between experience and
accepted, abstract models given considerations based on learner experience? 

Kinematics as a Learning Context
We examine kinematics (the study of motion) as a content domain. Kinematics is
considered a rich topic for investigation as a context for modelling primarily for
three reasons:

1. Kinematics provides a very natural context in which to place teachers
and students in a familiar activity. A substantial amount of research has
been conducted involving motion and the mathematics of change
(Stroup, 2002) and further research is needed. 

2. Kinematics is a fundamental area of study that links mathematics and
physics. Modelling experiments in this domain can foster the development
of mathematical concepts such as function while at the same time build
understanding of critical ideas such as velocity and acceleration.

3. Kinematics emphasises an important aspect of modelling and creating
models – the ability of such a model to describe observed behavior and
predict future behaviour.

From a mathematical standpoint, functional reasoning (or cognitive reasoning
involving a function concept), may involve a complementarity between
representations. Otte (1994) claims: “A mathematical concept, such as the concept
of function, does not exist independently of the totality of its possible
representations, but it is not to be confused with any such representation, either”
(p. 55). Furthermore, a robust understanding of function, presumably, involves a
grasp of three distinct representations (equation, graph, data table) and the
connections between them (Kaput, 1998). Kinematics, through reliance on a
function concept to model motion, provides an opportunity to examine the
possible tensions present when learners rely on function representations and
attempt to make connections between them during the modelling process.
Furthermore, kinematics emphasises an important aspect of modelling and
creating models-the ability of such a model to describe observed behaviour and
predict future behaviour.
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Critical Concepts in Kinematics
Our initial research question (Carrejo, 2004) concerned the depths of
understanding that in-service physical science teachers have of two fundamental
equations related to kinematics and how that understanding evolves during
modelling activities. More specifically, the researchers wished to probe
participant understanding of the formulas describing: (a) uniform motion
(constant velocity or zero acceleration) and (b) uniformly accelerating motion
(constantly changing velocity or constant acceleration). The first formula can be
discussed and represented (in a mathematical sense) as a linear relationship
between two variables, namely, position (p) and time (t). The latter formula can
be represented as a quadratic relationship between the same two variables.
Given an understanding (in a physical sense) of position, time, velocity, and
acceleration, participants’ mathematical background knowledge would allow
them to see how these pertinent concepts could be related via the formulas
involving standard mathematical symbols.

a) p(t) = vt + p0

b) p(t) = 1 at2 + v0t + p0

where v is the average velocity, v0 is the velocity at t = 0 and p0 is the position at
t = 0

These formulas are part of the standard physics curriculum. In many cases,
the formulas are written without the function notation, that is using p rather than
p(t). Furthermore, these mathematical equations (or functions) are typically
introduced through direct instruction, with derivations requiring algebraic
manipulation. This is especially true for equation (b) where, arguably, learners
may not have an intuitive understanding of certain features of the equation such
as   and t2. Learner understanding usually rests on more procedure-driven
exercises with the equations. A-priori knowledge of linear and quadratic
equations, as well as average velocity and instantaneous velocity (key calculus
concepts) and/or geometric structures, are often used to justify the equations in
formal ways, yet the relevance of the equations to learner experience could often
be overlooked.

Equation (a) may be familiar to students from prior instruction, although it
is likely to have been in the form of distance = rate x time, which does not
consider the possibility of a non-zero initial position. Most students will have
used the concept of average velocity (albeit perhaps unconsciously) to calculate
how long it would take to travel a given distance by car given an average speed,
or what the average speed was given a distance and a time of travel. There is a
subtle difference between this familiar average velocity construct and the one in
equation (a) in that the distance is replaced by a difference in positions. In
moving to equation (b), even more complex mathematical manipulations
obscure the connection to the average velocity. Most students fail to see how the
second equation relates to that fundamental, and generally familiar if not
intuitive, construct.
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Method
Setting
The study took place in the context of a 14-week semester course in physics
designed for preservice teachers. The physics course was offered during the fall
term at a university in Texas. The course was taught by the university professor
using the circuit and optics units from Physics by InquiryTM (McDermott, 1996)
as well as a kinematics unit, developed independently and introduced separately
from the Physics by Inquiry approach to the same topic. 

Participants enrolled in the course studied kinematics for a five-week period
scheduled near the end of the course. Class meetings were two days per week,
and participants met for a minimum of three hours each week within the two-
day period. The course was designed to serve as a relevant domain (or content)
course for university students seeking careers in mathematics and science
education. The fundamental goals of the course as outlined for participants in the
course syllabus included the following:

• Developing a deeper conceptual understanding of targeted physical
science concepts and creating a coherent conceptual model of the
concepts,

• Experiencing physics content through a process of guided inquiry and
developing an understanding of how the process of inquiry interacts
with student learning,

• Developing an understanding of what is meant by pedagogical content
knowledge, and

• Becoming familiar with potential difficulties experienced by students in
learning particular topics in physical science, and the effectiveness of
various modes of teaching and learning to overcome such difficulties.

Participants
Fifteen prospective teachers, five graduate (masters students) and ten
undergraduate (standard four-year college students seeking a bachelor degree),
enrolled in the physics course. Majors (disciplines) varied within the group as
shown in Table 2.

All mathematics and science education majors were graduate students. One
of the science education graduate students held a masters degree in physics. Of
the remaining ten undergraduate students, one was a senior (fourth year), five
were juniors (third year), and four were sophomores (second year). Six of the
fifteen students enrolled held teacher certification.

Design
Physics by Inquiry provides modules in kinematics that involve some laboratory
experiments with activities such as rolling a ball on a track and observing a fan
belt attached to two pulleys. However, these experiments do not involve
collection and analysis of real-time data as an integral part of the construction of
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the mathematical models for motion. Quantitative descriptions of position and
time are only briefly discussed while more emphasis is placed on qualitative
graphing (position-time and velocity-time graphs). Furthermore, the
experiments can more aptly be described as demonstrations that are followed
immediately by introduction of formal (symbolic) mathematics, including
precise definitions (e.g., instantaneous velocity) and procedures (e.g., finding the
area under a graph). In these modules, the learner is given more guidance
through the experiments, which require direct instruction from the facilitator or
teacher. There is less emphasis on an inquiry process that might allow a learner
to formulate his or her own mathematical models of the physical phenomena.

Table 2
Subject Majors of Participants in the Study

Major/Discipline Number of Participants

Mathematics Education 1

Science Education 4

Biology 1

Biology (education concentration) 1

Chemistry (education concentration) 1

Mathematics 1

Government 1

Elementary Education 5

In a pilot study (Carrejo, 2004) conducted the previous summer with in-
service teachers, the university professor and a Master Teacher developed a
kinematics unit based on activities that the researcher had used in college physics
courses for preservice teachers and that the Master Teacher had used for
Advanced Placement Physics classes. This unit presented a classroom
environment for studying mathematical modelling from a constructivist point of
view. Building on the assumption that the teachers’ prior knowledge might
include only a procedural understanding of the equations, the primary goal of
the implementation was to facilitate a more conceptual understanding of both
equations (a) and (b).

The kinematics unit facilitated a classroom environment for studying
mathematical modelling through the tensions lens. The primary goal of the
implementation focused on the construction of feasible mathematical models
regardless of their resemblance (exact or not) to the standard equations. The
university professor and the researcher came to the conclusion that learners from
the pilot study possessed sound mathematical constructs and beliefs about
mathematical models, but that an evident conflict existed between teachers’ prior
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knowledge of the standard linear and quadratic models and their constructed
mathematical models. The professor and the researcher felt confident to use the
same approach to modelling in the present study in order to explore the conflict
further. Participants were allowed to examine, modify, and re-examine their own
models rather than rely on direct instruction techniques to learn the standard
models and develop some, if not necessarily full, conceptual understanding. By
having participants focus on their own models, we hoped to identify possible
sources of conflict between formal models and a real-world phenomenon.

Procedure
The key activities and their objectives resembled those of the pilot study and are
shown in Table 3. The preservice teachers worked in groups of two to four
members for all activities. Group presentations were required and became the
focus of whole class discussions. The course took place in a classroom laboratory
equipped with various tools and instruments at the preservice teachers’ disposal.
Special requests for equipment were considered. At the end of activities three
and five, participants worked through problem sets consisting of more “standard”
problems based on their experiments. Supplementary problems involved the
presentation of similar phenomenon (contexts) and discrete, tabular data, which
participants were asked to analyse. Participant’s engagement with these problems
(both in small and whole group meetings) provided further opportunities for the
researcher to analyse and understand their thinking about mathematical
modelling and the type of phenomenon they studied in their experiments.

Data Collection
Data collection typically involved whole class and group observations. All
sessions were videotaped extensively. Qualitative notes, including researcher
reflections, were compiled from this analysis. Classroom artifacts, including
representations from individual groups, as well as representations created from
whole class discussions were kept and analysed. Participants were interviewed
individually upon their completion of the unit. The interview relied on an
instrument developed by the researcher. The main goal of the instrument was to
probe participants’ perceptions of the modelling process they encountered in the
course as well as their mathematical conceptions of working with a data set. All
questions on the instrument were within the context of modelling motion. All
interviews were recorded using a hand-held tape recorder and were transcribed.
Artifacts created during the interviewing process were also included in the data
analysis.

Data Analysis
Originally conceived by Glaser and Strauss (1967) for social research, a grounded
theory approach to qualitative research is similar to other types of qualitative
research in that a general area of interest is determined, followed by the
formation of a question that is both credible and relevant to the researcher. Mann
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(1993) states that grounded theory is a research approach whose goal “is to
transform the experiences of one setting into a model that accurately reflects that
setting” and yet “be general enough to apply to a range of situations in the
context” (p. 134) (the context in this case being a classroom setting). Furthermore,
a grounded theory approach does not require a significant change in the setting
to “trigger a study” (p. 134). Data can be collected from the normal flow of
activity in the classroom while still leaving room for the possibility of making
slight changes in the direction of the research based on classroom outcomes.

Table 3
Key Activities for Kinematics Unit

Activity Objectives

Describing motion Invent and describe a motion for an object. Create a 
description of the motion that is detailed enough so 
that another group could reproduce the motion 
exactly. Identify the important elements of a 
complete description.

Measuring constant Each group must suggest a procedure for describing 
velocity and predicting what they consider to be constant 

motion. 

Developing a The instructor facilitates class discussion on the 
mathematical model proposed ideas and the class determines a common 
for constant velocity (standard) procedure. 

Acceleration with a Use a spark timer, a ramp, and a cart to gather 
spark timer position-time data for accelerated motion. Each 

group must suggest a procedure for describing and 
predicting what they consider to be “changing” 
motion, i.e., motion in which the velocity was not 
constant.

Developing a The instructor facilitates class discussion on the 
mathematical model proposed ideas and the class determines a common 
for accelerated motion (standard) procedure.

The researchers utilised a grounded theory approach similar to that
described by Cobb, Stephan, McClain, and Gravemeijer (2001) in their analysis of
transcripts from classroom mathematical practices. The first phase of analysis
involved examining the video and transcripts chronologically to identify
episodes. An episode was characterised as a segment in which a mathematical
theme (or perhaps themes) is (are) the focus of activity and discourse (p. 128).
Observations and conjectures were developed about reasoning and the context in
which the reasoning takes place. As described by Cobb et al. (2001), “the result of
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this first phase of the analysis is a chain of conjectures, refutations, and revisions
that is grounded in the details of the specific episodes” (p. 128).

In grounded theory, three types of coding are typically involved in data analysis:
• Open coding (creating categories for data),
• Axial coding (using open codes and researchers’ catalogue of data to

determine characteristics or dimensions of categories and create a core
category or categories),

• Selective coding (data collection and analysis focuses on the core
category and supporting categories).

Representative episodes for the study are presented in the Results section.
Through open and axial coding, patterns in thinking as well as emerging
mathematical constructs were identified throughout the implementation of the
kinematics unit. Selective coding of the results will benefit the researchers for
further study. Given the creation of core categories from this study, we will
attempt to identify these categories with other learners in different environments
who are involved in the same implementation of the unit. For this study, the key
episodes need not be interpreted as isolated incidents to support certain claims;
rather, they highlight the emergent patterns and constructs that are reflected
throughout the data and reflect thinking throughout the modelling process. 

The approach to coding data in these studies fits well with constructivist
views on learning whereby learners rely on prior knowledge or what pre-
conceptions they may have regarding certain phenomena. The focus is on the
learners’ construction of ideas, rather than their attainment of established ways of
thinking. Learners in general, as with the participants in this study, have time and
space to make sense of their experiences. In this sense, the “core” of a grounded
theory will remain the same across classroom settings while approaches to data
collection and interpretation will reasonably change not only to reflect the setting
but also be useful enough to apply to other classroom settings.

One other important aspect of grounded theory that guided the analysis is
theoretical sensitivity (Glaser, 1978). Taber (2000) defines theoretical sensitivity as
commencing research “with an open mind, so that observations are coloured as
little as possible by expectations based on existing theories” (p. 470). For these
studies, a constructivist lens supports the necessary theoretical sensitivity. The
researchers understand that student construction of knowledge involves more
than direct instruction and memorisation of facts (Von Glasersfeld, 2001).
Furthermore, an understanding of a “voice and perspective” paradigm (Confrey,
1998) plays a crucial role in interpreting and understanding students’ scientific
and mathematical views. Voice refers to a student’s articulation of a model that
may be operating in his/her mind. An observer recognising and acknowledging
this articulation makes an interpretation based on his/her own perspective.
Interactions with students in this way allow an observer to “rethink”
mathematical content and place value on the realisation that the observer
(teacher or researcher) is also a learner. By utilising this paradigm, a researcher
becomes more “theoretically sensitive” to the study being undertaken without bias
and without neglecting emerging categories or themes that are creating a story.
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Results
In the pilot study, after using open and axial coding schemes based on the
grounded theory approach, the researchers then developed the tensions
framework shown in Figure 4. The framework became a “lens” or a means of
looking at the main themes or topics discussed by participants and the learning
processes involved. We were able to ask: “What tensions exist and why?” In the
next phase of the investigation, the present study, these characteristics (codes)
became the focus of selective coding and became highly relevant for the
researcher examining possible tensions that learners confront when relating
physical experience to a mathematical model. Although code names remained
the same from study to study, two code descriptions altered slightly to reveal
more dimensions of a particular code based on the qualitative data.

• Position – Considering the “location” of an object in motion with more
consideration given to thoughts about the initial position of the object. 

• Scale – Considering the size of an interval on a coordinate axis. Involved
in such considerations are “finer scales” and interpolating data.

• Average – Considering some sort of statistical or numerical average of
data points when calculating velocity over an interval.

In summary, the researchers hoped to utilise these codes to develop a grounded
theory or be able to identify a core theme that emerged from the analysis. The
researcher concentrated on these codes when the unit was implemented again,
over a more prolonged period of time and bearing some modifications based on
the first implementation.

Upon choosing a motion to create, participants were to perform their
experiment, justify that the motion created was constant, and predict where the
object would be one, five, and ten seconds after the observed motion stopped
(assuming that the motion would continue indefinitely). Table 4 summarises the
motions created by the participants.

Table 4
Motions Performed and Considered Constant by Participants

Motion Experiment Number of Participants

Describing/predicting the motion of a metronome 2

Rolling a wooden ball in a round lid 1

Walking at a steady pace 3

Rolling a bowling ball down the hallway 4

Rolling a small wooden ball down the hallway 2

Moving a book in front of a motion detector 2

Describing/predicting a fixed pendulum swing 1
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Students performed their experiments in separate groups, collected data on
their experiment and analysed them. They were required to present the motion
experiment, the experiment data, and the procedure for answering the prediction
question to the class during the following meeting period. Table 5 highlights major
areas of concern for participants as they presented and discussed their motions.

Table 5
Student Concerns about Motions Performed and Considered Constant

Motion Experiment Concern(s)

Describing/predicting the Direction reversals, perceived by some to 
motion of a metronome include a slight pause in the motion, do not 

allow for motion to be described as constant.

What’s happening in-between swings  
(or in-between the time interval of interest)
is not constant.

Rolling a wooden ball An average time may or may not be good 
in a round lid enough to use to describe and predict a 

constant motion or find a general procedure 
for finding an absolute position.

Walking at a steady pace Best to ignore motion variation between time 
intervals (e.g., swinging of arms, “jerky” motion).

Rolling a bowling ball Friction, affecting the ball’s position over time, 
is a physical consideration that may or may 
not be resolved by calculating average velocity.
If actual calculations are not matching 
theoretical values, then the motion is not 
constant.
Calculating a velocity over longer distance 
and longer time interval makes more sense.

Rolling a small wooden ball Larger time intervals are better for describing 
and predicting motion because physical 
instances over larger time periods make more
sense.

Moving a book in front What’s happening in-between time intervals
of a motion detector may or may not be constant.

An infinite number of time intervals may be 
used to better describe a constant motion.

Describing/predicting Despite variation, time values are close enough
a fixed pendulum swing to each other to pick one of the values that 

represents the “correct” time. 
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Following participant presentations, the university professor wanted the
class to reach a consensus about how to determine whether or not a motion is
constant. The class agreed that for describing and predicting constant motion,
using the equation d = rt seemed a feasible approach. Some participants argued
that r must be the same for any (arbitrarily small) time interval, but others argued
that only the total distance and the time of travel were pertinent, despite
variations within the interval. Calculating the rate (the value of r) remained an
open issue. Experience with variation in data influenced participants’ thinking
about the best rate to use when describing and predicting motion. More
specifically, conflicting beliefs about using an average rate, a rate based on
average measurements, or a “good enough” rate, influenced their construction of
a mathematical model. Their beliefs were further tested when presented with
more formal physics questions regarding constant velocity and involving data
tables. Relying on d = rt as their agreed upon mathematical model, participants,
working in groups, approached each problem and presented their results to the
class. Presentation and discussion of three critical episodes exemplify the
influence the core categories of “scale”, “averaging data”, and “(initial) position”
had on participants’ mathematical modelling of uniform motion. Underlying the
influence of the core categories were participants’ perceptions of what is “good
enough” to use for a rate when constructing a mathematical model to describe
motion – their direct encounter with the theme of “error” and how to resolve it.

Representative Episodes
Three representative episodes are presented along with interpretation and
discussion of each episode. One purpose in presenting these data is to provide a
strong indication of the scope of analysis. Furthermore, the episodes along with
supporting discussion highlight the open categories assigned to the full set of
data and the open categories’ relationship to each other as indicated by axial
coding and determined core categories.

Episode 1. The first episode involves a simple experiment where prospective
teachers examined the motion of a bowling ball rolling down a hallway. As the
ball rolled, group members tracked its position over time using metre sticks and
stopwatches. For each given moment in time, the members associate a measured
position from an accepted starting point. Stephen explained the set up of the chair
and the ramp and how the bowling ball is 30 centimetres up the ramp as follows:

Stephen: What we did is when we first started, our start point was where the
ball first initially touched the ground and we would start the timers.
And we had metre sticks lined up all along the hall there. The timer
would start [at the bottom of the ramp] and then at an arbitrary point,
say 200 centimetres, we would say “stop” and the timer would be
stopped. We repeated this numerous times. We took each distance...so,
say we did 200 centimetres...divided by each time. So distance divided
by time would give us a rate that the ball was rolling, was moving
along. What we found was...if we did this at 200 centimetres...it didn’t
apply...we would get a different rate out here at 400 centimetres. 
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John: We were getting ... so if the average speed is the slope of this line, we
were getting the average speed slowing down as it went farther. And
our first concern was that what we were looking at was rolling friction
– that the further the bowling ball went the more it would slow down.

John drew a graph on the board to answer this question (Figure 7). He made the
marks arbitrary (not related to the actual data) but he was merely trying to prove
his point. Stephen continued the presentation.

Stephen: We went to 800 centimetres and we got a rate. Then we compared it
to 900 centimetres and we got a rate and those rates were equal. So in
actuality...If the ball was rolling at a constant rate that we initially
measured this is what the graph should look like. [Stephen draws a
straight line graph (almost y = x) and uses the same axis labels as
John.] That’s without friction, without anything. We would always
get the same rate. And what we were finding was instead of getting
a linear graph like that we were getting something that was leveling
off [He draws a curve like John’s]. And so we thought maybe friction
was really coming into play down here, slowing down the ball,
slowing down its rate of speed.

The group then explained how they conducted more trials at 600 centimetres
away and at 1000 centimetres. At the end of “numerous trials”, they felt they
were able to get the same rate.

Jimmy: Of course there was some tape standing right here. We stuck some
tape up so we could tell when the ball...we wouldn’t measure where
the edge of the ball passed the point but where the bowling ball was
actually touching the ground, so there’s both of us [he and John]
standing there and we kind of had to guess when it crossed, but we
were getting pretty close.

Professor: What do you mean by pretty close?

Jimmy: Well, within 5/100ths or so?
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John: Yeah, 5/100ths.

Jimmy: And that’s as fast as you could like start and stop a watch on your own.

Professor: So you figure if the numbers are the same to within the amount of
time it takes you to start and stop the watch then you’re going to say
that that’s ... you’re getting a constant rate?

Jimmy: Well, if somebody else tries to duplicate this, it depends on when
they stop it, too.

In actuality, the group determined two different rates, but ones they felt were
“pretty close”: 135.3 cm/s and 135.0 cm/s. The professor asked the class what
they thought about these results.

Dave: Especially when you’re doing it by hand with the time and the fact
that you all had said, yes, there’s friction that is gonna slow this ball
down.

Stephen: I think what we did to get away from the friction was use a heavier
ball. You see it come into play a lot less from what we observed to the
10 metre mark. It came into play a lot less. If we had let the ball go 20
metres we would have seen probably a lot more friction come into
play. But using something that’s very dense and very heavy we
didn’t notice it as much.

Jimmy: Oh, we used the 135.0.

Professor: Why did you use that one instead of the 135.3.

Jimmy: ‘Cause when it travels this far it seems a little more accurate.

Dave: Is there really any difference in accuracy? 

Jimmy: I think the longer away, the more accurate it would be.

Dave: But he [Stephen] even said that if you had gone out to 20 metres that
would have been a lot less accurate. So, why is the longer one more
accurate in this case?

Stephen: I think if you try and differentiate between the 135.3 and the 135.0
with our model, you really can’t differentiate between the two
because we have sources of error in there – the stopping. And the
thing is that they were starting at the starting point; both of the timers
were starting at the starting point. I was telling them when to stop so
I had inaccuracy also come into play when I had to judge when the
centre of the ball would pass the stop point. Then they would have
to re-click. The two numbers are never going to be exactly the same. 

The professor asked Veronica to write their procedure for finding the position of
the ball t seconds after their observed motion stopped. The class suggested that
Veronica should use 135.15.

Professor: Would that be better and why would it be better?
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Lee: It’s an average.

Dave: It’s just an average of the two numbers you use.

Stephen: But those numbers themselves are averages.

Lee: Well, average some averages and it’ll be even closer.

John: I think it would make things worse, actually. I don’t think we should
use that.

Veronica. It applies [to] something that wasn’t really smooth [the roll?].

Stephen: If we could generalise it, it would be better.

Elizabeth: Okay, use the 135.3.

John: No, 135.

Veronica wrote t = 135 x d. It is interesting to note the non-issue of the starting
point here. The formal equation could indicate a starting point of 0, although the
reference they had was two metres from the end of the ramp. Over time, a
consensus for a final answer is difficult to achieve. The participants claimed the
motion was not linear, but wanted to come to a consensus on how they would
justify such a claim, attempting to make a “fit” with a standard linear model,
since they recognised that experimental error is involved. 

Episode 2. The second episode involves two consecutive presentations from
prospective teachers (in groups of two) after working on a problem given to them
on a worksheet:

Some students are studying the motion of a bowling ball rolling down a lane at
the bowling alley. A student with a stopwatch is positioned at the start of the
lane, and every two metres after that. Each student stops her watch as the ball
passes her. They want to predict how long it will take the ball to reach the pins,
1 metre beyond the last student. Explain how you would help them figure this
out, first in words, and then with an equation. Explain why the equation is the
right equation to use.

Student  1 0.27 s
Student  2 0.75 s
Student  3 1.25 s
Student  4 1.77 s
Student  5 2.25 s
Student  6 2.74 s
Student  7 3.25 s
Student  8 3.76 s
Student  9 4.24 s
Student 10 4.75 s

Students encountering this problem held discussions related to average, scale,
and starting position of the object – originally open codes in the data set that
were determined to be dimensions of the larger, core theme of “error”. The first
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group presented its ideas on how to solve the problem. They tried two
approaches because they did not know which would be more accurate. The first
was to take the time difference between each student, sum the differences and
divide by 9 to get an average time between each student. Both group members
agreed on an average time value of .4977 seconds when using this approach. The
associated rate, thus, became 4.0184 metres per second. Using this rate, both
members obtained a value of 5.22 seconds as the final answer to the question.
After checking their procedure using their calculated rate to obtain other known
values in the table, they encountered what they called “discrepancies:”

Lee: So there’s kind of...we were like, ‘Maybe, this isn’t the right way to
go.’ So the other way we tried was taking student 10’s measurement
of 4.75 seconds and subtracting that from student one’s and
finding...that gave us 4.48. So, then we divided that by 20 and we
came up with a rate of 4.46 [meaning 4.46 = 20 m/4.48]. Then using
that rate, our time we came up with 4.708. That doesn’t make sense
because student 10 is set at 4.75 seconds.

Linda: But, using the average, like, there was too far of a distance. It was like
over a 1 second...no...it was like a 1 second distance, wasn’t it?

Professor: So, what do you mean?

Lee: Like coming up with this 5.22, it’s saying that it took whatever the
difference between 5.22 and 4.75 seconds for it to go one metre.
Which doesn’t make sense to us because on the other ones, the
differences, it took 2 metres in a half second. It went two metres in a
half second. We’re kind of lost.

Professor: So, you’re still not happy with your....

Lee: Not happy with either way we went because we found
discrepancies.

Following Lee and Linda’s presentation, the next group of participants
encountered a similar situation calculating average, yet they were explicit in
connecting the calculation of average to initial position. They compared their
procedure to the previous group’s procedure by stating there was a discrepancy
in choice of starting point. Stephen’s group decided that student one is “at point 0.”

Stephen: So you can do this two ways. You can throw out student one’s
number or you can keep it and say between student one and student
two you have approximately .5 seconds. Then in between student
two and student three there’s .5 seconds. The distance the ball
travelled is the same for each, so it’s approximately...the numbers
aren’t exact, but it’s approximately 4.02 metres per second. And
that’s what they [Linda and Lee] got the first time.

Lee: 4.0184. Yeah, same thing.

Stephen and Veronica continued their presentation by outlining their second
method of calculating the final answer and the viability of another approach.
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Stephen: They’re about the same thing. We went back and we saw if you took
the initial time, which is .27, and the final time, 4.75, and then the
distance in between those, you get the same exact thing. Well, it’s a
4.0187. But the thing is...for each student getting a different time and
a rate between each student is different....like, between student one
and student two, we got a rate of 4 metres per second. Between
student three and student four I’ve got a rate of 3.85 metres per
second. So, that’s a big difference. But the thing is we’re talking
students hitting stopwatches and we’re talking about a bowling ball
that has no internal, like, motor or anything. So, we’re assuming
acceleration is zero. We can assume that this velocity, or this speed, is
the same. So 19 metres divided by 4.02 metres per second, we...gives
you 4.72 seconds, but you have to also take into account the first
student’s time, .27 seconds. We got 4.99 seconds on a stopwatch, if
you stopped it at the 19-metre mark.

Linda: We just didn’t think that ours was very, like, accurate.

Stephen: But I think you gotta look at where your data’s coming from. Ours is
coming from a lot of uncertainty. So, if we were gonna do a
prediction it’s only gonna be an estimation.

Lee: Well, doing it either way is gets us within .03, .04, give or take, plus
or minus.

Observing both methods, Lee wondered which procedure was most beneficial.
Students showed differing opinions about this as exemplified in the following
vignette.

Lee: You know how we did it both ways, like, taking the average between
each second? Then taking like just from the end to the beginning?
Well, we’re wondering which way you think could be more accurate.
Because, like taking from the beginning to the end just kind of auto
corrects that average, y’know ‘cause the students, as we’ve seen
through the numbers...like one stops a little sooner, one a little later...

Stephen: I think with a lot more data points...I think by doing the average in-
between would end up canceling out the error. If you think ...Okay,
student one to student two to student three...student one stops his
stopwatch early which means the rate between him or.... student one
to student two to student three...student two stops his stopwatch
early which means the rate between student one to student two is
going to be small. But, the rate between student two and student
three is already now larger. So, it’s adding out. They’re canceling
each other out.

Dave: I like looking at each one of the intervals. I mean as long as we have
these intervals, we might as well look at ‘em. And not take the big
leap from student one to student ten. If you got the data, look at it.

Adrian: Might as well use it.
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Professor: So you look at it, and we’ve seen some variation.

Adrian: Slight.

Dave: That’s what averages are for. Well, that’s not all. You have to define
your acceptable losses.

Neither Dave nor other members of the class explained what “acceptable losses”
implied or how to resolve the issue of using an average over a finite number of
points or an undetermined, larger number of points.

Episode 3. The third and final episode came from a class period in which the
university professor reviewed what the class had decided upon as a procedure
(or model) to describe and predict constant motion. Paul pointed out that
calculating the rate or velocity should be done by interval (e.g., a final position
minus an initial position divided by total time for each time period). The
professor pointed out that there are two cases in her mind based on what the
class did: where the change in positions between intervals is exact (as shown in
some of the problems on the handout) and where the change is not exact, but
includes error (as shown in the class experiments). Stephen believed that Paul’s
method of rate was still valid to use despite error and variation in the data. He
believed it to be a good procedure that could come close to modelling a “perfect”
experiment.

Stephen: If our equipment was perfect and our timing was perfect, and if our
measurements were perfect, I think we would boil it down to
something like that. Say the bowling ball goes ten metres. We can
find the distance versus time from 2 to 4 metres and divide that by
time. That should be the same rate if we did it from 6 to 8 metres and
divided it by that time also.

Lee: Yeah, if it’s truly constant you don’t have to worry about the time in
between, like, all that’s important is the final and the initial.

Based on this argument, the question asked of the class was: How do you judge
a motion to be “truly constant?” 

Stephen: So this is like defining constant motion?

John: Is the question what do you do when you have constant motion or
how do you know you have constant motion?

This brief exchange highlighted a tension between the mathematics and science
realms. One may argue that someone may see a distinction between the model as
descriptive (or as a representation) and the model as a calculational tool. Paul
argued that the “average of a sum” is the same as “the sum of the averages.” The
professor disagreed because what happens in each of the intervals may not be the
same. She brought up the bowling ball example where the roll is much faster at
the beginning. Paul disagreed although the professor believed it depended on
how you measure time intervals.
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Dave: Adding up all the little averages is the same thing as taking one big
average. You’re adding up to the same thing.

Paul: Because if one has a larger velocity then the next time interval will
have a smaller one.

John: But in the bowling ball example that we worked in class last time,
what you were looking at was not the actual speed, but a lot of what
seemed to be like a lot of error in the way the stopwatches were going
and if you just looked at the last guy, and the last guy was very bad
with the stopwatch, he would throw off the whole. So, in that
example, you’re better off looking at all the intervals.

Professor: But what Paul is saying is if you include that last interval, you’ve got
that bad set of data for the last interval, too, and it’s going to drag
down your whole average.

John: Yeah, but it doesn’t have the whole weight. It doesn’t have the same
weight as... 

Professor: I think it depends upon how your data are sampled.

John: I have to think about that.

The professor asked: “When is it good to rely on Paul’s method and when is it
good to rely on Lee’s method (averaging)?” Lee felt that if there was no pattern
in the data, you must rule out constant motion. The professor reminded them
that they did not rule out constant motion with the bowling ball experiment
despite variation in the data. However, Lee said that’s all they had to perform
calculations and that it was extremely hard to find constant motion in any of the
experiments because of other factors. However, the professor reminded them
they had discussions of “good enough” regarding other constant motion
experiments such as the ball rolling along the rim of a lid.

Dave: Is that change in there really significant? How do you look at your
data and say, ‘Well, this is a significant difference or not?’ compared
to those students who are each two metres apart (referring to the
worksheet problem), but I guarantee you they’re not two metres
apart. They may be 2.004 or 2.02 metres apart, but the problem
doesn’t care about that small difference. So, if that’s already your
limiting factor, saying that you’re exactly two metres apart...if that’s
a limiting factor, then your rate should also only be looked at to that
limiting factor. Like, if it’s 4.282 versus 4.284, well that little
difference doesn’t compare to the thing that is not looked at with the
2 metres apart. So, that’s when we can tell, ‘Is there a pattern or not?’
‘Is this constant or not?’

Lee: But that’s compounded by the fact that people are sitting there trying
to stop it as close as they can. 

Dave: But then there’s always...you can’t always do that either. You can’t
say, ‘This is 2. This one’s 6. I’m just gonna call that 4.’ There’s gotta
be some way to limit that as well. 
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Stephen: If you knew a theoretical, what the speed should be, then you can
compare it using statistical analysis.

Dave: If this is just a problem, you don’t wanna say, ‘I’ve got this data that
already has what...I already have the answer.’ That’s not what
physics ... we don’t want to find an answer we already know.

Summary. In summary, all episodes helped support a conjecture with regard to
average, scale, and, to a lesser degree, initial position. Figure 8 outlines the
tensions more fully and provides a more concrete view that average and scale
were more prominent issues than initial position. Therefore, selective coding
proved fruitful in identifying similar tensions seen in the pilot study.

Participants working with the constant motion problem(s) encountered
these tensions and attempted to resolve them. Examining all learners’ modelling
processes through the tensions lens resulted in the emergence of a critical theme:
Construction of a model that is “good enough” based on human and
experimental error and what the definition of “good enough” encompasses.

Furthermore, results also indicate that the participants possessed the
capability of constructing and developing powerful mathematical models (e.g., d
= rt, p = rt + po) using a constructivist approach based on inquiry rather than
direct instruction. Within the process of constructing these models, learners
attempted to reconcile conflicts or tensions among their personal experience with
the phenomenon, learning standard mathematical concepts, and learning
standard physics concepts.

Discussion
The results of the study reveal the complexity involved when constructing a
mathematical model to describe and predict the motion of an object. When
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immersed in a set of modelling activities that do not rely on direct instruction
methods or procedures, learners become engaged in an authentic process that is
both mathematical and scientific in nature. Such engagement aligns closely with
expectations outlined by national standards and by national science and
mathematics organisations and norms within the science and mathematics
communities themselves. Within the process of constructing a mathematical
model, learners attempt to reconcile conflicts or tensions among their personal
experience with the phenomenon, learning standard mathematical concepts, and
learning standard physics concepts. Analysis of efforts to link all three realms
results in the emergence of critical themes highly relevant to both learners and
teachers as they are engaged in the mathematical modelling process. The
researcher examined the episodes identified as typical in the grounded theory
coding using the tensions framework shown in Figure 4. 

Constructing a Model that is “Good Enough”
Considerations of what makes a model “good enough” to use rest on deeply held
convictions of how a mathematical model should or should not accurately and
precisely describe and explain a real world phenomenon. While such a theme
may seem obvious or trite, it is of profound significance for two reasons. First,
the demand that learners make connections between mathematics and the real
world has been, and will continue to be, at the forefront of most major reform
efforts. Both teachers and students will often question the nature of mathematics
and the reasons for learning mathematics as they try to meet educational goals.
Such questions deserve to be answered and need to be addressed to support
reform efforts. Secondly, learners’ questions of what is “good enough” could rest
on the development (or lack of development) of certain mathematical constructs.
Exploring the nature of student thinking regarding these constructs could
provide rich learning trajectories that could help students link the real world
with more abstract, mathematical models in a far more conceptual way. It would
also provide for them another facet of the nature of mathematical thinking and
learning and provide mathematical empowerment they otherwise would not
obtain through direct instruction (e.g., being told that the model is already
accepted and they must learn it as such). 

Limitations of the Study
Methodology. Given the use of the Grounded Theory approach to data collection,
certain limitations of the method are evident. Taber (2000) warns of a researcher
relying too formally on the “algorithm” for grounded theory. What appears to
outline a procedure for making clear-cut decisions actually indicates that the
development of a theory is never complete. According to Glaser (1978),
“Grounded theory...makes [the analyst] humble to the fact that no matter how far
he goes in generating theory, it appears as merely ‘openers’ to what he sees that
could lie beyond” (p. 6). Given the implications of certain findings while
conducting classroom research, there is always a concern that certain factors or
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thought processes could initially be overlooked or considered trivial. It is only
through repeated implementations relying on sound conjectures that other
factors can either be brought to the fore or determined irrelevant. 

To discuss other limitations, the researchers rely on the framework
presented by Cobb et al. (2001) and their work on analysing classroom
mathematical practices using a modified Grounded Theory approach.
Specifically, Cobb and his colleagues analyse their methodology in terms of
trustworthines, replicability and commensurability, and usefulness. 

Trustworthiness. The difficulty of presenting critical episodes in isolation
cannot be overlooked. Episodes indicating certain mathematical threads of
reasoning make sense only within the context of the entire study, and the reader
must rely on the researcher’s claim that presented inferences or themes span the
entire data set. Furthermore, isolating certain episodes immediately leads to a
tendency on the part of the reader to present alternative interpretations of
reasoning exhibited in the vignette. This may be done without the reader
realising the full scope of the analysis undertaken to choose the episodes as
examples of an identified pattern of reasoning evident throughout the entire data
set. The researchers hope that this issue can be addressed by selective coding and
focusing on identifying core categories for future studies. The process of using
more studies allows for development and refinement of initial conjectures as the
researcher moves from one study to the next. The researchers also concede that
conjectures developed from a grounded theory approach are always open to
refutation and alternative interpretation. However, given the possibility of
conducting further studies, the researcher feels confident that the validity of
inferences and conjectures can become more firmly established. 

Replicability and commensurability. Cobb et al. (2001) claim that mathematics
education research is “replete with more than its share of disparate and
irreconcilable findings” (p. 153). The researcher must answer the question of
whether or not implementation of the same unit in a different classroom would
yield the same findings and conclusions. The possibility of answering such a
question stems from the importance of considering classroom context and setting
not only when implementing the unit but also when analysing data. The
advantage of the researcher’s approach is that students’ learning outcomes can
be related to a learning situation, a desirable goal established by school reformers
that the researcher feels would not be contested by professional teachers or
mathematics and science education researchers. 

Naturally, there are other limitations related to typical classroom practice
that inhibit the implementation (though not the validity) of such an approach.
One consideration is time constraints of the typical school schedule. A second
limitation is the difficulty of analysing and documenting individual student
learning. The interviews conducted in this study, for example, played a dual role
in not only probing student thinking, but also evaluating how much the students
had learned throughout the course of the unit. Analysis of these interviews is
complex in that both roles may be used to develop conjectures and
recommendations for further study and future implementations. Thirdly, while a
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grounded theory approach is context-based, the study presented does not
account for either gender differences or other issues related to equity. For many
schools, these are considerable factors for analysis and debate. Finally, one
crucial factor is that the study was heavily concerned with mathematical
meaning of critical concepts in kinematics. The researchers assume a certain level
of content knowledge on the part of the teacher and his or her concern about
whether or not such an approach will help teachers and students realise certain
education goals.

During the pilot study and the present study, learners alluded to the
significant role the teacher plays in inquiry-based learning and the importance of
content knowledge:

Joan: I just realised how much content knowledge that science and maths
teachers have to have to get these kinds of discourse patterns in a
classroom. To look at these relationships, the level of content
knowledge that somebody needs is...well, that’s my observation. But
your strategy, though, to get people to see these relationships which
has really moved away from just the procedural was to create these
discourse patterns, and I look at the level of knowledge you have to
have in order to really create that and to have people who are making
sense of it all along the way. I was watching the pedagogy as much
as trying to get the [ideas].

The researchers feel that the study makes a contribution by providing an
indication, at least, of the type of content knowledge necessary or desirable for
teachers to implement such an approach to studying kinematics (e.g., function
and average) given calls for reform and guidelines presented by both national
and state standards for mathematics and science.

Usefulness. The study presented provides a means to support discussions
regarding professional development of teachers. Given that the study links
classroom setting and learning, the opportunity for teachers to link context and
instructional practice is evident. Through such studies, teachers can learn how to
test, adapt, and modify certain approaches in the classroom based on student
learning and desired outcomes. The complexity of such an approach, however,
necessarily requires change to be a more time-consuming, and continuous,
process of learning and implementing on the part of the classroom teacher. 

Recommendations for Further Research
Critical themes embed epistemological considerations and cognitive conflict
within an inquiry-based approach: “What is the meaning and role of abstraction,
formalisation and generalisation in applications and modelling?” The following
questions merit further study. If students are able to study, conceptualise, and
understand possible approaches to resolving experimental error, will this allow
them to accept and understand connections made between a formal model and
their real-world experiences more readily? What makes a model “good enough”
for students? Further implementations of the unit would provide more specific
answers to this question. 
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Finally, teachers’ beliefs and perceptions of models in science and science
education have an effect on students’ learning outcomes. The impact or
implications on instruction or classroom practice requires further investigation to
support implementation of modelling approaches. Such studies in this vein are
rare (Justi & Gilbert, 2002; Van Driel & Verloop, 1999, 2002). Other specific issues,
also raised by ICMI (2003, pp. 12-13) and related to epistemology, are also
informed by our results: (1) How do teachers set up authentic applications and
modelling tasks? and (2) What is essential in teacher education programs to
prepare prospective teachers to teach applications and modelling?

Learners’ involvement with the unit on kinematics highlights the need to
bridge a gap between mathematics and physics concepts and the practices of
experimentation, data gathering, and analysis of real world data. Woolnough
(2000) emphasises that students must see “links between the mathematical
processes they are using and the physics they are studying” (p. 259). In order to
help students obtain learning goals, teachers must also be able to create and
strengthen such links. A difficult, though notable, goal is to have teachers link not
only the mathematics and physics worlds through critical concepts, but also link
the mathematics and science realms to learners’ experience. A model-based or
inquiry-based approach appears to be the best means to reach this goal, though
much work must be done in terms of teacher preparation and re-evaluating
certain educational goals before substantial, worthwhile benefits are realised.
Furthermore, establishing a uniform theory of modelling in mathematics and
science classrooms can support efforts to reach the goal and maximise benefits
for both teachers and students.
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