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Mathematics is like a language, although technically it is not a natural

or informal human language, but a formal, that is, artificially

constructed language. Importantly, we use our natural everyday language to

teach the formal language of mathematics. Sometimes we encounter prob-

lems when the technical words we use, as formal parts of mathematics,

conflict with an everyday understanding or

use of the same word, or related words. This

article discusses this problem, including

some examples, and offers some sugges-

tions for handling the difficulties. 

The first example arises in discussion of

changes of gradient, and rates of change of

gradient, of continuous functions. The

AAMT list community (aamt-l@edna.edu.au)

recently posted a message asking about

particular functions that decrease at an

increasing rate, or decrease at a decreasing

rate, or are combinations of increasing and

decreasing.

For example: “Would y = e–x be classified as

decreasing at an increasing rate or decreasing

at a decreasing rate?” (see Figure 1).

A reply was posted, saying that y = e–x

can be described as decreasing at a

decreasing rate, because the curve is defi-

nitely decreasing, and its rate of decrease is

also decreasing (i.e., it is going down, but

the rate at which it goes down becomes

slower and slower as values of the indepen-

dent variable x increase — it is the classic

“exponential decay” function).

It was also noted that the function y = –ex

is an example of a curve which is decreasing
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Figure 1. y = e–x.

Figure 2. y = –ex.
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Figure 3. y = ex.

Figure 4. y = –e–x.

at an increasing rate (see Figure 2). 

By contrast, y = ex increases at an

increasing rate, (this is the classic “expo-

nential growth” function; see Figure 3), and

y = –e–x increases at a decreasing rate (see

Figure 4).

Having got this far, the respondent

ended, remarking: “Now I just need to go

and lie down to stop my head spinning.”

Indeed. 

The unusual combinations and close

juxtapositions of words for up and down or

increasing and decreasing are conceptually

equivalent to feeling sea-sick. We read or

hear the words “increase” or “decrease” and

cannot prevent ourselves feeling some

sensory version of the meaning of the words.

Technically, in calculus, the issue is one

of comparing overall decrease or increase of

the y-value of the function, and overall

decrease or increase in the first derivative; is

the second derivative:

• positive?

• negative? or

• variable (as in the gradient of a cubic)?

What becomes conceptually tricky is the conceptual strength or

metaphorical power of the words being used. We hear these dynamic

metaphorical words and find it difficult to stop our imaginations inter-

preting them instantly — but there are conflicting imaginative pulls in

words that are conceptual opposites, that appear so close to one another in

the flow of discussion. (Also see Kristina Juter’s (2004, p. 230) discussion

of limits in functions: “everyday language can have a slightly different

meaning compared to the language used in mathematics… [such as]

convergence, arbitrarily close, tend to, and limit”.)

Similar conceptual conflicts arise when we consider “least upper-

bounds” and “greatest lower-bounds” in discussing sequences and series,

convergence, and limits. I recently came across a similar conceptual word

confusion in a television news Bureau of Meteorology weather report:

“Today’s maximum temperature was up to 5 degrees below the average

minimum…” What struck me as odd, in this calculus-free everyday

example, was the mixed conceptual implications of “up to” conflicting with

“below”.

Another oddity I have encountered occurs sometimes in accounts of

sailing ships in the South Atlantic and South Pacific, for example in

Geoffrey Blainey’s The Tyranny of Distance (1966, p. 7), and Alan Villier’s

Captain Cook: The Seamen's Seaman (1967, p. 209): the further south the

sailing ships go into the Roaring Forties, and further towards Antarctica,

the stronger the prevailing winds blowing from west to east around the

globe, across oceans unbroken by continental land. The odd expression is

that of the ships sailing into “higher latitudes,” where it is taken for granted
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that the context is the southern hemisphere. In my mind, at least, there is

a conceptual-lexical clash between “higher” (numerically higher, as ships

pass into latitude 40 degrees south, and move further towards 50 degrees

south), conflicting with my concept of “high” relative to the Earth as a phys-

ical globe, orientated, visually and spatially (and arbitrarily but

conventionally) with the North Pole at the “top”. In my spatially-challenged

mind the North Pole is “high”, but the South Pole is “low”. So the further

south the ships sail, the “lower” (spatially, on the surface of my mentally

imagined globe) they are going. Similarly Arctic explorers, in my thinking,

trek up to the North Pole, and Antarctic explorers trek down to the South

Pole. (This is further confused, in this latter case, because I also know that

the South Pole is on a high central ice-covered plateau, so the trek is also

“up” in terms of altitude above sea-level — another spatial concept!)

I am not alone in this way of thinking about the Earth, spatially. For

example, discussing global warming, Fen Montaigne (2004) refers to a “sub-

Antarctic system” (p. 39), meaning oceanic islands such as Heard, South

Georgia and the Falklands, which are in geographic proximity to the

Antarctic continent. Yet oddly, here, “sub-Antarctic” literally combines Latin

roots meaning under, opposite and Arctic; or more simply, “below” the

“Antarctic”. But what is “below” or “under” the Antarctic? The atmosphere

vertically over the South Pole — “lower” than the Earth’s globe, within the

plane of the Solar System? The Earth’s crust or magma beneath the tectonic

continental plate? Note, too, that Montaigne also speaks of the “high Arctic”

(p. 48), when speaking of polar bears in Canada’s Hudson Bay, where the

bay-ice is diminishing, and the bears may need to change their hunting and

breeding range if they are to survive loss of habitat. In this case, Montaigne

imagines the globe with the North Pole at the “top”, but with the ocean

fringing Antarctica being “sub-Antarctic” — literally “below” the Antarctic

(whatever that denotes). Implicitly, the meaning of “below” makes sense

only in terms of numerical magnitude of latitude, not in spatial or global

terms, in the way 30 is (numerically) “below” 40. 

A similar conceptual difficulty arises when we read, for example, of

someone saying, “I’d like to go up the Nile, wouldn’t you?” (Christie, 1937,

Chapter One: Part 8), and then mentally imagining the map of North Africa,

with the mouth of the Nile at the Mediterranean coast, the northern top of

the continent, and the mysterious origins of the river lost below, under-

neath, in the southwards African hinterland near the Mountains of the

Moon. Where is “up” on the Nile? 

This is perhaps more easily untangled, conceptually, because we also

know that water flows downwards, downhill, and sea-level is a kind of “zero”

towards which most rivers flow. Hence the convention is to speak of moving,

physically, upwards, uphill, or “upstream” (towards the higher altitudes

where rivers have their source) or “downstream” towards the sea. Hence we

also speak of going “up the airy mountain” (and “down the rushy glen”), and

going “down to the beach” (where “sea-level” is usually a notional “zero”).

Here, in the case of the Nile, the implied meaning of “up” is relative to the

flow of the water (and, implicitly, the lie of the land), rather than to compass

bearings, latitude, or the globe.

In all four cases (graphed functions, temperature variations, south-

bound sailing ships, and flowing rivers), on examination, we can find
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nothing literally wrong with the words, or with the concepts. The concepts

are correct, and the words are being correctly used. Despite this, my brain

usually teeters or registers a kind of mental jolt when I encounter these

verbal-conceptual clashes.

These examples would be trivial, especially for secondary teachers,

except for two factors. First, it is through the secondary years that mathe-

matics teachers formalise trigonometric and spherical calculations based

on latitude and longitude. Second, when students, even at advanced levels

of curriculum, are confronted by cognitive conflict, they are likely to revert

to much earlier ideas and conceptual-experiential metaphors (e.g., Davis

1984; Lakoff & Nunez, 2000).

Consider the less trivial, more problematic examples, such as what

happens when students encounter fractions and negative numbers. We

learn that fractions, such as one-quarter, one-fifth, one-sixth, and beyond,

get (numerically) smaller and smaller (as the denominator gets larger and

larger — and later we also encounter the idea of sequences and limits). We

also grasp the idea that zero is a kind of full-stop to this process. However,

we learn that, before reaching zero, the number-line contains an infinite or

unending succession of numerically (and spatially) smaller and smaller

(positive) fractions.

Incidentally, on the topic of fractions and misleading word use, John

Allen Paulos (1988) remarks wickedly that when he hears that something is

“selling for a fraction of its normal cost” he (mentally) comments “that the

fraction is probably 4/3” (p. 122). Our initial, and unhelpfully prolonged

exposure to fractions as not-quite-numbers and as parts-of-a-whole, and

hence as, preponderantly, less than 1, does not help us later when we need

to think far more flexibly about “fractions” as numbers of a particular kind,

and possibly of any numerical size. Fractions re-expressed as wholes (i.e.,

percentages) compound this. 

Then we encounter negative numbers! For example:

Which is “smaller”: –1000 or 0.000001?

We know 0.000001 is very small, compared with years of experience of posi-

tive whole numbers, some of which are very large. We also learn to see

negative numbers becoming “larger” (if only in absolute magnitude), in the

left-hand-side of the number-line, extending left past the zero-full-stop of

diminishing smallness for positive numbers. The mental shift across the

boundary of zero, from positive to negative (or from AD dates to BC dates)

can remain occasionally difficult for adults.

Zero causes other difficulties. Consider this example: 

A fence needs a fence post every 10 metres. We have a fence that is 1000
metres long: how many fence posts are needed? 

Having grown up counting from 1, and having learned multiplication and

division facts and processes that tend to neglect the zero-times multiplica-

tion table, we are more likely just to divide 1000 by 10 and reach the wrong

answer, neglecting the first fence-post that stands at the zero-starting point

of the fence.

Relationships, interactions and possible conflicts between language and

mathematics have been extensively discussed (e.g., Durkin & Shire, 1991;
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MacNeal, 1994). More recently, the discussion continues under the synony-

mous terms “literacy” and “numeracy” (although so called “literacy” is also

often taken as including, oddly, “oracy” — I prefer to distinguish “spoken”

from “written” language skills).

In particular, regarding the conceptual difficulties arising over “zero”,

MacNeal (1994, pp. 83–84) suggests that we:

• put a 0 at the left end of every ruler; 

• start counting with zero, in print and orally, from the beginning of

counting experiences (Sesame Street scriptwriters, take note!);

• put “zero is a number” into school policy; 

• display in every classroom a large dummy thermometer with a promi-

nent zero and a moveable degrees-pointer; and 

• speak of children younger than 1 as zero-year olds.

R. C. Ablewhite (1969, p. 32) gives an interesting way to regularise

counting and place-value: 

One, two, three… eight, nine, one-ty, 
one-ty one, one-ty two… one-ty eight, one-ty nine, two-ty, 
two-ty one, two-ty two…

We might also consider starting oral counting with, “none-ty, none-ty-

one, none-ty-two…” if only as a helpful step in remedial intervention with

students who are struggling with early place-value concepts.

As noted, mathematics is not a natural human language, but artificial,

supported by special alphanumeric characters and usages, non-alphanu-

meric symbols, special written formats within a single line, the clever use of

two or more lines at a time, and set-theoretic logical connectives. Also, in

important non-verbal ways, this “language” is supported crucially by

spatial-textual formatting devices and non-verbal images (see Barling’s

(2005) challenging discussion of specialised mathematical text and

symbolic formatting in our computer-keyboard and CAS era).

Importantly, as a deliberately constructed language where it does not

invent new terms (this is a rare event), mathematics borrows words that

already exist, with everyday meanings, and reshapes or redefines the

intended, specialist technical meaning. The result is that in classrooms we

speak to our students using our everyday language as the medium of

instruction, while trying to teach them how to speak and think in terms of

new, often different, technical meanings, using words that overlap with lay-

talk. It is valuable to discuss this overlap, and explore any possible

confusions arising from the tensions between language-of-instruction

versus subject-language.

Consider the potential conflicts between everyday and mathematical

meanings of common mathematical words such as: identity, axis (and axes),

volume, root, segment, power, exponent, cycle, etc.

Familiarity, as we know, breeds proverbial content: but this can be a

danger for teachers. Once we have learned the specialist technical mean-

ings, we are likely to forget that we might have ever ourselves have been

uncertain what the new meanings were about. It is valuable to develop a

heightened sensitivity to the vocabulary, the tools of our trade, regarding

our students as both practitioners and novices, thus helping them move

towards our own familiar multilingual expertise.
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How do our non-English speaking students cope with technical terms

that exist in the language of instruction, but which do not have effective

equivalents in their mother-tongue? When non-English mother-tongue-

speaking students talk about mathematics, for example, do they use their

mother tongue to do this? To some extent, this may occur with arithmetic

and numerical ideas, where the mother tongue’s almost-everyday words for

counting and numbers (and days of the week, etc.) can be used. Apart from

this mother-tongue translation of arithmetic, and some almost-everyday

measurement situations such as in shopping, other mathematical words

(such as hypotenuse, diagonal, rectangle, hexagon, triangle, circle, sine,

logarithm, area, surface, volume, length, mass and weight) may not have a

mother-tongue equivalent that is useful. You will only know if you ask your

students.

We should encourage our students to talk with each other, and with us,

about what we are trying to teach and they are trying to learn.

There is more at stake in learning mathematics as an abstract set of

concepts and technical processes than clarifying clashes between alterna-

tive meanings of words. Forming a conception, as we have seen, is itself

problematic. 

Edward MacNeal (1994) explores some of Piaget’s ideas about young chil-

dren’s thinking, combined with some of Alfred Korzybski’s theory of

semantics, the science of meanings in language. Korzybski’s key argument is

that our language, through different stages of our learning development from

child to autonomous adult, shapes the way we think in subtle ways usually

beyond our everyday awareness. Even the very structure of the language we

use influences how we think and how we use our thinking to learn.

Consider this statement: “Here is the number, 4.” According to

Korzybski, this is not actually the number 4; it is not even the numeral 4;

it is simply an example of something we call the numeral 4. Four strokes

|||| can be represented as Roman IV, in Base-ten Hindu-Arabic as or 

or , in French as “quatre”, in German “vier”, in Base-two as 100, in Base-

three as 11, using Dienes MAB blocks as four “minis”, on a hand as four

extended fingers and a closed thumb, and so on. Yet beneath the symbols,

the intended concept-object (a mental construct abstracted out of real

distinct individual events) remains the same, and unique.

Despite possible semantic confusions, we hope to communicate shared

meaning with our students, building ideas we think we understand, on

what seem to us to be ideas our students already possess, using deceptive

examples and slippery words whose ambiguity and incorrectness we are

unaware of, failing to recognise the fundamental difficulties that may arise,

and, instead, talking about our students’ “learning difficulties,” cognitive

confusion, attention deficits, (and in the face of a sentence such as this,

how is your attention?) and so on. 

Related issues arise when we are tempted to confuse a measurement

(which is a Korzybskian symbolic statement) with the thing being measured

(which Korzybski refers to as an “event”), compounded by the need to accept

the approximation (due to “experimental error”) unavoidably entailed in any

attempt to measure, and the need to be clear about what unit is being used

(which Korzybski calls an “object,” a mental construct). These issues are

forced on us when we try to teach students to round figures, to work real-
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istically with numbers, to approximate and then report the approximation

sensibly (pp. 140–143). 

Similar issues also arise when we confront the idea of a variable, and its

value. The letter C may represent some varying number of cheesecakes, in

a pre-algebra context. We may have 3 cheesecakes — in which case C = 3.

Students will often accept an initial letter interpretation of the C as an

abbreviation of the word “cheesecake”, and hence write 3C to represent

“three cheesecakes” — a valid approach in vectors, but flawed in simple

algebra (I have discussed this, and other algebra “traps” in Gough, 2004).

MacNeal gives a valuable self-diagnostic test of maths-semantic compe-

tence, including: round 0.098 to the nearest whole number. Many people

have difficulty rounding to zero. Why? Confusing “nothing” with “zero”, they

feel that zero is not a number, because a number is “something”. As an

example of MacNeal’s wit and constructive analysis, consider one of his

many summary points: “Nothing is a maths-semantic problem” (p 84). Nice

pun! Consider this: “How many polka-dotted zebras are in the staffroom?”

Or consider these possible replies to a typical mathematics question 

Q: Does the equation have a number of solutions? 
A: No, only one; or, 
A: No, there is no solution. 

These examples of language usage (there is one solution, or the number

of solutions is zero) suggest that 1 and 0 are not “numbers”. The point is

Korzybskian: language is slippery — so are the concepts intended by the

language.

Recommendations

1. Be alert for possible confusion in word meanings and usage.

This is one of the major problems. By the nature of learning, once we have

learned something we tend to forget what it was like not to know what has

now been learned. Hence, as we become familiar with technical terminology

and specialist concepts, we lose sight of earlier, vaguer alternatives. Those

teachers who can remember themselves struggling, as students, or recall

helpful advice from their own teachers, are well placed to be sensitive to the

potential struggles of their own students. Otherwise, we should listen to

what our students are saying, and respond constructively to things that are

wrong, only partly right, or confused.

2. Use student talking to negotiate and construct correct 

understanding.

It is essential that students become familiar with technical terminology and

specialist concepts; they need to learn to “speak” and “do” and “think”

mathematics in the way trained mathematicians do. This partly depends on

students working through earlier stages of being able to put their new ideas

into their own words. Sometimes this will be faulty. Sometimes the words

chosen will be imprecise or unhelpful slang. In middle primary school,

students often get into the wicked habit of talking about multiplying as

“times-ing.” One extremely clever undergraduate friend of mine used to talk

about “hitting” something with a function, when he meant substituting a
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value. His mathematical thinking was always correct but his explanations

to less able friends were not always clear or helpful. What is needed is a

progressive shaping or refining of initially rough approximations to correct

usage.

3. Examine new terms, symbols, techniques, diagrams, and 

technical “apparatus”.

• Is the new item clearly defined? Strong mathematical thinking and

learning depends crucially on clear, consecutive definitions, supported

by vivid experiences of what is defined, as well as learning what the defi-

nition does not mean.

• Is it accompanied by simple, sensible examples, alternatives, and

counter-examples? This can be problematic. It is hard to introduce (or

review) fractions, and present convincing examples of numbers that are

not fractions, namely, irrationals. At successive stages through the

developing curriculum we need to keep the curriculum as rich and

honest as our students can stand.

• Does the new item depend on possibly weakly grasped sub-concepts or

skills? If so, review and clarify these in direct association with the new

material.

• Can simple sketch diagrams be used to show the idea(s)? If so, draw and

discuss them. Verbal and symbolic learning of mathematics is greatly

strengthened by visual imagery, and sometimes by concrete three-

dimensional manipulatives.

• Does the new item have potentially confusing non-technical alternative

meanings? For example, the mathematical distinction between

“sequence” and “series” is not observed in these everyday synonyms:

emphasise crucial differences.

• Are there potentially confusing similar but different concepts? For

example, “volume” and “capacity.” If so, examine and clarify these.

• Can the new item be directly related to existing concepts or skills? For

example, is there a numerical counterpart to an algebraic expression or

process? Does a three-dimensional situation have a two-dimensional

counterpart? Does a verbal or algebraic concept have a diagrammatic

representation? 

• Does the new item involve special notation, syntax, and/or text-

formatting? If so, this needs to be clearly and repeatedly explained; e.g.,

Greek deltas (for increments, differences) and sigmas (sums, evolving

later into long-S integrals). 

Consider the importance of distinguishing (even for advanced students) a

handwritten multiplication symbol from a lower-case x, used as a pronumeral.

Similarly, emphasise the need for careful handwriting when using exponents,

superscripts, and subscripts — smaller characters, and deliberate raising or

lowering, spatially, relative to the main (invisible?) baseline for writing. 

It sounds trivial and/or silly to suggest that good book-keeping habits,

along with good handwriting, can be important in learning and doing

advanced mathematics; but it is true that slipshod penmanship, careless

use of columns and rows, and poor attention to “managing and showing all

(or enough) working,” can make life harder than it needs to be for consci-

entious students. 




