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This research examined students’ responses to mathematics problem-solving
tasks and applied a general multidimensional IRT model at the response 
category level.  In doing so, cognitive processes were identified and 
modelled through item response modelling to extract more information than
would be provided using conventional practices in scoring items. More
specifically, the study consisted of two parts. The first part involved the
development of a mathematics problem-solving framework that was 
theoretically grounded, drawing upon research in mathematics education
and cognitive psychology. The framework was then used as the basis for
item development. The second part of the research involved the analysis of
the item response data. It was demonstrated that multidimensional 
IRT models were powerful tools for extracting information from a limited
number of item responses. A problem-solving profile for each student could
be constructed from the results of IRT scaling.

Researchers in the field of educational assessment are continually 
developing new approaches to improve the efficiency of assessments. They are
often concerned with methodologies that can extract the most useful and 
accurate information from students’ responses to test items. The advances in
this area can be identified in two directions at least. On the one hand, in the past
decade, psychometricians have called for closer links between psychometric
models and cognitive processes (e.g., Embretson, 1997; Frederiksen, Mislevy, &
Bejar, 1993; Masters & Doig, 1992). On the other hand, improved mathematical
modelling and estimation methods in Item Response Theory (IRT) aim 
at extracting more information from existing data, particularly with 
multidimensional modelling and distractor analyses (e.g., Adams, Wilson, &
Wang, 1997; Embretson, 1991; Wang, 1998). Many of these methods have been
made possible through the increased power of personal computers.

This paper examines students’ responses to mathematics problem-
solving tasks and applies a general multidimensional IRT model at the
response category level. In doing so, cognitive processes can be linked with an
IRT model to extract more information than would be possible using 
conventional practices in scoring items. With a limited number of test items,
student problem-solving profiles can be constructed that are informative 
for both students and teachers. This approach has not been undertaken 
previously in the area of problem solving, although unidimensional IRT 
models have been used to build profiles of problem solving dating back to the
1970s (Collis & Romberg, 1992; Cornish & Wines, 1977; Malone, Douglas,
Kissane, & Mortlock, 1980; Stacey, Grove, Bourke, & Doig, 1993; Willmott &
Fowles, 1974).
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Mathematical Problem-solving Tasks and Cognitive
Processes

It can be argued that, in order to teach mathematical problem-solving
skills effectively, one needs to link the demands of problem-solving tasks to
the cognitive processes involved. From within the field of teaching and 
learning, Wu (2004) divided the research into two approaches to identifying
problem-solving cognitive processes: the factor-analytic approach and the
information processing approach. 

Factor-Analytic Approach

This approach is generally empirical in that different factors that 
distinguish and characterise different kinds of abilities are identified through
the use of exploratory factor analysis. Based on the factor loadings for 
various mathematical tasks, one can draw possible conclusions about the
nature of mathematical thinking associated with the factors. Carroll (1993,
1996) analysed numerous published datasets and identified a three-strata 
theory whereby cognitive abilities can be hierarchically classified in terms of
general, broad and narrow factors. At the top level, the general factor is
General Intelligence. At the second level there are broad factors classified as
Fluid Intelligence, Crystallised Intelligence, General Memory and other 
factors such as Visual and Auditory Perception. Mathematical abilities are
mostly associated with Fluid and Crystallised Intelligences, as Fluid
Intelligence covers third level factors such as various reasoning abilities,
while Crystallised Intelligence covers third level factors such as Language,
Reading Comprehension, and Communication Abilities. General Memory, a
broad second level factor, also plays an important role in mathematics, as the
capacity of one’s working memory has an impact on the ability to solve 
complex, multi-staged tasks.

Exploratory factor analysis has been criticised by some researchers in that
the interpretation of factors can be difficult and somewhat open to debate. For
example, exploratory factor analysis may identify factors that are irrelevant
to cognitive processes (e.g., Carroll, 1945; Hambleton & Rovinelli, 1986; Heim,
1975; McDonald & Ahlawat, 1974; Nandakumar, 1994). Some researchers 
prefer to use confirmatory factor analysis (Jöreskog & Sörbom, 1979) to test
hypotheses about factors associated with cognitive processes, as they believe
that confirmatory factor analysis has a more rigorous basis than exploratory
factor analysis, in that the evaluation of statistical significance can be carried
out in conjunction with theoretical underpinnings in the relevant field.

Information Processing Approach

The information processing approach to identifying problem-solving
processes focuses on the sequential steps of cognitive demands required in
solving a mathematical problem. Many classification schemes for problem-
solving processes are derived from Polya’s conception of mathematics 
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problem solving as a four-phase heuristic process:1 understand the problem,
devise a plan, carry out the plan, look back and check (Polya, 1973). While
these broad processes cover most aspects of problem solving, they do not 
provide sufficient detail and guidance for teachers to give specific 
instructions to improve students’ problem-solving skills. 

Schoenfeld (1983) developed a model based on findings from research by
information-processing theorists. His model incorporated Polya’s structure
and described mathematical problem solving in five episodes: reading, 
analysis, exploration, planning/implementation and verification. Mayer and
Hegarty (1996) examined mathematics problem solving in terms of four 
components: translating, integrating, planning and executing. They 
hypothesised how expert problem solvers use different strategies from novice
problem solvers in these four components.

In general, information processing theorists are not so concerned about
the existence of separate ability factors corresponding to the stages of 
problem-solving processes. Rather, they identify the stages of problem 
solving so that these can be used to teach students how to approach a 
problem and what to do when they encounter difficulties. In particular, these
problem-solving stages can serve as useful prompts for students to monitor
and evaluate their own thought processes (Silver, 1982). Without clearly 
identified problem-solving stages, the problem-solving activities carried out
in the classrooms can be somewhat ad hoc and disorganised. Approaching
problem solving in a systematic way using steps defined through the 
information processing approach can help students acquire skills that are
transferable to a wider range of problems.

In summary, the factor-analytic approach attempts to identify distinct
abilities as required in problem-solving tasks, but these abilities are not 
necessarily required in sequential order in the steps of problem solving. 
In contrast, an information processing approach identifies the cognitive
processes required in sequential steps in the problem-solving process, and
these cognitive processes may not be distinct in the different steps of 
the problem-solving process. Both approaches attempt to isolate various 
components of cognitive processes involved in problem solving in 
systematic ways so that the components can be examined for each person
individually to address strengths and weaknesses.

Problem-solving Framework for this Research
In developing a problem-solving framework for this research, the 

principles that underlie both the factor-analytic and information processing
approaches were combined. That is, on the one hand, the study aimed to
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identify separate ability factors important for solving mathematical 
problems, but at the same time, these factors ought to correspond to tangible
cognitive processes useful for teaching and learning, and for identifying 
specific weaknesses students have in solving mathematics problems.

This starting point was rather ambitious, as it involved a long and 
iterative process of developing a theoretical framework and validating it. Initial
attempts to analyse a number of existing problem-solving data sets using 
factor analysis produced dismal results. The factor analysis results were 
unstable, with the factors and factor loadings varying considerably depending
on the number of items selected, the number of factors extracted, and the test
forms used. Three possible reasons were identified for this: (a) The factor 
analyses identified item difficulty as one factor, even when tetrachoric 
correlations were computed as the basis for the factor analyses; (b) the tests had
a speededness effect, so that many missing responses at the end of the tests
were not-reached items, and they did not reflect students’ inability to answer
the questions; and (c) many items involved multiple cognitive processes which
were not captured with a correct/incorrect scoring (Wu, 2004).

These findings highlighted the importance of developing assessment
instruments that clearly reflected the theoretical aspects of problem-solving
processes, and that had scoring guides that captured the different processes.
Consequently, new test instruments were developed for this study, 
specifically designed to capture the information required that matched the 
theoretical basis set out in the framework of this study. The difficulty, 
however, was ‘how does one design a test instrument based on a theory that
is yet to be developed through the empirical validation of the instruments’?
The starting point was to gather information from published research studies
as well as studying student responses from existing problem-solving tests
developed in the past. An iterative process followed with the development
and validation of the theory.

As the goals were to improve students’ problem-solving proficiencies, it
would be helpful to identify factors that could be translated directly into
instructional practices. The factors identified through the factor analytic
approaches such as Fluid and Crystallised Intelligences are somewhat
removed from direct classroom applications. How does one improve one’s
Fluid and Crystallised Intelligences even if the levels of these are measurable?
The problem-solving stages identified using the information processing
approach are more likely to be of practical use in the classrooms. However,
these stages are often formal concepts that are not always easily translated
into instructions. For example, how does one devise a plan, and how does one
carry out a plan? Is it always necessary to devise a plan? Do different 
problems require different ways to devise a plan? In addition, problem-
solving processes such as planning, analysing, exploration are concepts that
are difficult to observe, and hence difficult to measure through an assessment
instrument. It is also doubtful that planning, analysing, exploration, and
implementation would each be associated with different ability factors. These
are labels for problem-solving heuristics, not necessarily distinct factors of
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cognitive abilities. For example, in each step of the problem-solving process,
reasoning skills are often required. Consequently, stages of problem solving
as identified by information processing theorists involve an overlapping set
of cognitive abilities.

A study of students’ problem-solving item responses showed that 
students’ failure to find the correct answers was not always due to their
inability to follow a formal problem-solving process. Most of the time, the
failure was caused by some errors made by the students, rather than a 
complete failure to approach a problem. By studying common errors students
made, we identified the cognitive processes that were important in solving
mathematical problems, with the belief that, if students were taught how to
avoid common errors, they would be better problem solvers. For example, we
found that many incorrect answers were the result of misunderstanding of
the problem texts or carelessness of computation. There were, of course, also
incorrect applications of mathematical concepts and formulation. Identifying
the sources of error can be helpful in providing instructional materials that
teach students how to avoid the errors. Furthermore, if these sources of error
are found to form different ability dimensions, then we have reasons to believe
that these sources of error relate to different cognitive processes. A report of
students’ profiles based on these dimensions could be useful to identify 
individual differences in their strengths and weaknesses, with possible 
remedial plans.

Four dimensions of problem solving eventually were identified as the
basis for the problem-solving framework of this study, and these were tested
through a number of trials in the schools. The identification of the dimensions
was based on three principles:  (a) that the dimensions provide useful 
information for teachers and students, (b) that a student’s behaviour 
associated with the dimensions is observable through a test instrument, and
(c) that the response data from the test instruments can be modelled and
analysed using available software. The dimensions are described below with
supporting theoretical and empirical rationale.

Dimension 1: Reading/Extracting all information from the question

Both the factor-analytic and information processing approaches 
identified reading as an important component in the problem-solving
process. Clearly, one cannot proceed with solving a problem until one 
understands what the task is. In our current setting of paper-and-pencil tasks,
the first step is to read and understand the given task. The definition of this
dimension goes beyond reading comprehension of the words. It includes
understanding the problem situation. Consider the following item.

Michael drives to work. The distance between his home and work is 25 km.
If Michael works five days a week, what is the total distance Michael travels
between his home and work in a week?

To understand the problem situation fully, one needs to know not only about
the distance between Michael’s home and work, and the number of working
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days in a week, but also the fact that Michael needs to make two trips per
day—drive to work and back from work. This latter information is not 
explicitly stated in the question, but nevertheless it forms part of the 
information required for solving the problem. A full understanding of the
problem situation will include the number of trips required per day. Without
a clear understanding of all the parameters related to the problem situation,
one cannot solve the problem correctly.

There are many examples that demonstrate that the failure in solving a
problem correctly is often due to an incomplete, or incorrect, understanding
of the problem situation. Whimbey and Lochhead (1991, p. 26) place a strong
emphasis on the importance of understanding a problem:

Good problem solvers take great care to understand the facts and 
relationships in a problem fully and accurately … . Quite often (poor 
problem solvers) could have found out (the solution) if they had been more
careful. But poor problem solvers have not learned how important it is to try
to be completely accurate in understanding all the ideas of a problem. 

The following is an example where about one quarter of the students
failed to obtain the correct answer due to incorrect reading:

Here is a sequence of numbers:

2, 5, 8, 11, 14, 17, …………….

What is the 10th number?

A 20

B 21

C 28

D 29

E 47

In a trial, while 67% selected the correct answer, 23.7% of the students chose
the incorrect distractor A. It is conjectured that these students have not read
the sentence “What is the 10th number?” They proceeded to give the answer
for the next number in the sequence. These students have made a reading
error rather than an error of mathematics. In contrast, the following item had
a much higher percentage correct (85%) when the next number in the
sequence was not one of the distractors.

Starting from 2 and counting by 7, Tim gets the following numbers:

2, 9, 16, 23, 30, 37, …

What is the 10th number?

A 20

B 21

C 28

D 29

E 47
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The second example is expected to be more difficult than the first example, as it
involves counting by 7 instead of counting by 3. The percentage correct, 
however, is higher than that for the first example. One possible explanation for
this is that in the second example students who thought the answer was the next
number in the sequence had to re-read the question, since the next number in
the sequence was not one of the answer options. Clearly, understanding the
problem situation is one important factor in problem solving.

Dimension 2: Real-life and Common Sense Approach to Solving
Problems

One aspect of mathematical problem solving that is most disturbing in
recent years is that researchers have found that, in some instances, school
mathematics was taught in such a way that school children, after receiving
instruction in mathematics, regarded mathematics purely as an academic 
discipline divorced from real-world problem solving (Verschaffel & de Corte,
2000). Nesher (1980) gave the following problem to grade five students.
“What will be the temperature of water in a container if you pour 1 jug of
water at 80ºF and 1 jug of water at 40ºF into it?” Many children answered
“120ºF”! Other studies also found that many children are quite happy to give
answers such as 5.2 buses or 8.4 balloons as they accurately carry out long
divisions or multiplications. 

Termed “suspension of sense-making” Schoenfeld (1991, p. 316), this
phenomenon is widespread around the world. Cai and Silver (1995) found
that while Chinese students are better at the execution of the division 
computation procedure, US students outperform Chinese students in giving
“sense-making” answers. (Schoenfeld p. 316) commented that: “There is 
reason to believe that such suspension of sense-making develops in school, as
a result of schooling.”

In a trial test, we gave the following item to grade 5 and 6 students.

A small hose can fill a swimming pool in 12 hours, and a large hose can fill
it in 3 hours. How long will it take to fill the pool if both hoses are used at
the same time?

A 2.4 hours

B 4.0 hours

C 7.5 hours

D 9.0 hours

E 15.0 hours

The only sense-making answer is A, where the time is shorter than the time
for each hose alone. However, more than half of grades 5 and 6 students chose
an incorrect answer. In particular, a number of high ability students chose 
distractor C, giving the average time for the two hoses.

These observations suggest that students’ proficiency on traditional
school mathematics topics like computational procedures do not necessarily

99Modelling Mathematics Problem Solving Item Responses



reflect their ability to solve real-world problems. In designing a test 
instrument, we included a number of items specially designed to tap into
making sense of the problem situation and evaluating answers.

Dimension 3: Mathematics concepts, mathematisation 
and reasoning

In a test of mathematics problems solving, there obviously needs to be a
dimension that taps into the heart of mathematics itself. It is intended to
measure students’ knowledge and skills in mathematics concepts, their 
ability to turn a problem situation into a mathematical model, and their 
ability to reason. To this end, items were designed covering arithmetic and
measurement, as well as logical reasoning. In most cases, the items require
higher order thinking skills than merely recall. This may be one distinction
that was made in focusing on mathematics problem solving than just 
mathematics. In many cases, some degree of mathematisation is required.
“Mathematisation” (Treffers, 1986) is the process of turning a problem 
situation into an appropriate mathematical formulation; a skill that is often
lacking in primary school students, particularly when mathematics is taught
in a rote manner. In this study, items were designed using real-world contexts
as much as possible, as research studies showed that problem contexts could
make a difference to the way students solve a problem. The following is a
sample item.

At Nick’s school, a round-robin tennis tournament is organised where every
player plays every other player once. There are 6 players in the competition.
The school has 3 tennis courts. The matches are scheduled every evening,
with one match played on each tennis court. How many evenings are 
needed to schedule all the matches for the tournament? Show how you
found your answer.

Dimension 4: Standard computational skills and carefulness in
carrying out computations

In analysing some problem-solving trial data, it was found that a number
of able students who understood complex mathematical concepts failed to
carry out the computations correctly. From time to time, as teachers marked
test papers, there was often a sigh: “This is a good student, but so careless!”

The following item is an example.

Megan obtained an average mark of 81 for her four science tests. The 
following shows her scores for Tests 1, 3 and 4. What was her test score
for Test 2? Show how you found your answer.

Test 1 Test 2 Test 3 Test 4 Average Mark of 4 tests

84 ? 89 93 81

An item analysis showed that 41% of students obtained the correct
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answer and 6% of students used the correct method but made a computation
error. The interesting observation was that these two groups of students had
the same estimated average ability on this test. We also made the same obser-
vation with a number of other items where the item required a 
conceptual understanding as well as carrying out computation.

These observations suggest that there perhaps is a ceiling to the ability to
carry out computation, and that computational skills do not continue to grow
in parallel with the growth of concepts and reasoning skills. There is also 
an element of carelessness that plays out more in computation than in 
conceptual understanding. While carelessness may be a personality trait
rather than learned mathematical proficiency, carelessness is one reason for
students’ failure to obtain the correct answer. From this point of view, it is
important to track and distinguish between the nature of the error, whether it
is in conceptual understanding or carelessness in computation.

Discussion of the Dimensions

The four dimensions as defined above place an emphasis on problem-
solving processes rather than on traditional mathematics content strands. This
approach is consistent with four recent directions for mathematics education.

First, the document, Curriculum and evaluation standards for school 
mathematics (National Council of Teachers of Mathematics, 1989), lists a set of
goals for mathematics education that moves the curriculum away from the
traditional emphasis on decontextualised mathematical knowledge towards
the processes of problem solving and doing mathematics. Under this 
“holistic” approach, the traditional mathematics content strands are 
subsumed under the broader approach of problem solving.

Second, the theory of Realistic Mathematics Education (RME) developed
in the Netherlands (de Lange, 1996; Gravemeijer, 1999) over the past 30 years
is gathering support from around the world (de Lange, 1996; OECD, 2003;
Romberg & de Lange, 1998). Two principles underlie RME: (a) Mathematics
must be connected to the real-world; and (b) mathematics should be seen as
a human activity. 

Third, the concern with the observed phenomenon “suspension of 
sense-making” has prompted mathematics educators to advocate an
approach that takes mathematics out of the classrooms and into the 
real-world (e.g., Bonotto, 2003; Verschaffel, Greer, & de Corte, 2000). This
approach takes mathematics to the real-world, in contrast to RME that takes
the real-world to mathematics. The emphasis is to solve real-world problems
using mathematics, rather than to teach mathematical concepts using real-
world problems. Real-world problems come in all different forms, and they
are certainly not confined to the boundaries of traditional 
mathematics topics such as arithmetic, algebra, geometry and statistics. The
PISA (Programme for International Student Assessment) mathematics 
framework (OECD, 2003) also takes this approach.

Fourth, Ellerton and Clarkson (1996) described a widely-used research
methodology known as “Newman research”:
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According to Newman (1977, 1983), any person confronted with a written
mathematics task needs to go through a fixed sequence: Reading (or
Decoding), Comprehension, Transformation (or Mathematising), Process
Skills, and Encoding. Errors can also be the result of unknown factors, and
Newman (1983) assigned these to a composite category, termed “careless”.
(p. 1000)

The Newman processes described above closely resemble the four 
dimensions derived for this research.

While the four dimensions in this study were chosen with some 
theoretical and empirical underpinning, it remained to be seen whether an
assessment instrument could be designed to operationalise these dimensions
as separable latent constructs. If successful, the reporting of students’ 
proficiencies along these separate dimensions would be helpful to teachers
and students. Instead of reporting a single proficiency score of problem 
solving, one could identify specific areas of weaknesses and strengths. For
instance, one might find that a student had good conceptual understanding
of mathematics, but lacked meticulousness in reading and carrying out 
computation. Such profile building for each student would provide useful
information. On the other hand, if the four dimensions were all highly 
correlated, there was little gain in reporting scores on separate dimensions.
This validation of the dimensions of the framework formed the key tasks in
this research, as described below.

Designing the Test Instrument
One problem mentioned before in analysing existing tests for 

dimensionality is that the items were not designed to provide information on
the separate dimensions, particularly when items required multiple latent
traits within one single task. For this reason, a clear articulation of the 
underlying dimensions described above helps with the construction of the
items. The following is an example to demonstrate how an item may be 
constructed to provide information on the cognitive processes. Consider the
following item.

Mrs Lang had a box of 12 icy poles. She gave 3 of them to the children. How
many icy poles did Mrs Lang have left?

A 3

B 4

C 8

D 9

E 11

In a trial test, 68% of students obtained the correct answer D, 24% chose
A, and a small percentage chose C and E. The average estimated ability of 
students choosing D is the highest (where ability is estimated via a 
unidimensional Rasch model), followed by the group choosing A, and the
lowest ability group of students chose E. It is hypothesised that the students
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who chose A have most probably missed the last word in the question, left,
and proceeded to answer the question: “How many icy poles did Mrs Lang
give to the children?’ This mistake is related to reading the question rather
than computational skills. On the other hand, the students who chose E did
not understand the question nor the mathematical concept involved in this
question. It is hypothesised that these students applied a “keyword
approach” to learning mathematics rather than the understanding of 
mathematical concepts. The keyword, left, prompted these students to use
subtraction, as subtraction is commonly associated with word problems
involving the word, left. 

Not every item can use multiple-choice format to capture all the 
information required. Overall, about one quarter of the items were in 
multiple-choice format, the remaining items were open-ended, and scoring
was needed to capture the different kinds of errors students made, in 
particular, whether the error was in computation or method. For example, 
for the item on the average score of four science tests (see Dimension 4
descriptions above), two variables were used to capture student responses.
The first variable recorded the method used including correct conceptual
approach, trial-and-error approach, or an incorrect approach. The second
variable recorded whether computation was carried out correctly, irrespective
of the method used.

Owing to practical constraints in the schools for trialing the test, four
linked trial forms were prepared, where each form was designed for 30 
minutes of administration time (approximately 20 items). A pilot test was first
administered to a small sample of students. Data were analysed and items
were revised to circumvent problems associated with the clarity of the 
wording of questions. A larger trial took place with 951 students in the 
sample. The students were from grades 5 and 6, with about an equal number
of boys and girls, from a number of suburbs in both Sydney and Melbourne.
In all, 48 items were trialled, but each student answered around 20 items only.

Unidimensional Rasch Analysis
A unidimensional Rasch analysis was carried out using the Random

Coefficient Multinomial Logit Model (Adams, Wilson, & Wang, 1997). This
model is implemented in the software ConQuest (Wu, Adams & Wilson,
1998). In its simplest form, this model is the Rasch model (Rasch, 1960).  For
this study, an extension of the Rasch model, the partial credit model (Masters,
1982), was used. Note that, in this paper, unidimensionality refers to a single
latent variable being tested through all the items.  

The unidimensional analysis showed that the tests had a reliability of 0.8
(test length approximately 20 items). Eight items had poor unweighted fit 
t values and two items had poor weighted fit t values (> 3.0 or < -3.0)2, 
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indicating that the items did not all fit a unidimensional scale. However, in
general, the residual based fit statistics are not very sensitive to departures
from unidimensionality, particularly when there is an equal mix of items from
different dimensions (Smith & Miao, 1994). 

Confirmatory Factor Analysis and Multidimensional 
IRT Model

To find evidence of dimensionality in the data, a number of 
multidimensional Item Response Theory analyses were carried out and the
goodness-of-fit of different models were examined to identify the best model.
These multidimensional IRT analyses were essentially confirmatory in
nature, as items were pre-assigned to dimensions, based on some 
theoretically grounded hypotheses.

A general form of the Multidimensional Random Coefficient
Multinomial Logit Model (Adams, Wilson & Wang, 1997) was fitted, with
between-item dimensionality. This means each item was loaded on a single
latent dimension only so that different dimensions contained different items.

A three-dimensional model, a two-dimensional model and a 
one-dimensional model were fitted in sequence. The three-dimensional
model assigned items into three groups. Group 1 consisted of items that had
a heavy reading and extracting information component. Group 2 consisted of
items that were essentially common-sense mathematics, or non-school 
mathematics. Group 3 consisted of the rest of the item pool, consisting of
mostly items that were typically school mathematics, as well as logical 
reasoning items. In this IRT model, Dimensions 3 and 4 of the framework, 
mathematics concepts and computation skills, had been combined to form
one IRT dimension. This was because there were no items that tested compu-
tation skills alone. So, for a between-item multidimensional IRT model, it was
not possible to separate Dimension 4 of the framework, computation skills, as
a separate dimension to be modelled in the IRT analysis.

The two-dimensional model was formed with Groups 2 and 3 combined
and the one-dimensional model placed all items in a single dimension. To
assess the relative model fit of the three models, the deviances from fitting the
three models were compared. The deviance provides a degree of goodness-
of-fit, and the smaller the deviance, the better the fit of the model. The 
difference between the deviances from fitting two models can be used to
carry out a significance test to determine if the model fit has become 
significantly worse when the model was simplified with fewer parameters.
Table 1 shows that the three-dimensional model fitted the best with the 
smallest deviance (and so it should, because there were more parameters 
fitted), and the model fit was worse when the model was reduced to two- and
one-dimensions; that is, the three-dimensional model represented the 
structure of the item response data more appropriately than the 
two-dimensional and one-dimensional models.

The estimated correlations between the three dimensions are given in
Table 2. These correlations are direct estimates of the population correlations;
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that is, they are not attenuated by measurement error. To put the magnitudes
of the correlations into perspective, in the OECD PISA3 project (Adams & Wu,
2002), the correlation between reading and science was 0.89, the correlation
between science and mathematics was 0.85, and the correlation between 
reading and mathematics was 0.82. Using these correlations as a crude 
reference, one would not expect the correlations between the subscales 
of problem solving to be much lower than 0.82, the correlation between 
mathematics and reading in the PISA project (See Chapter 12, Bond & Fox,
2007).

Table 1 
Comparison of Fit between Unidimensional and Multidimensional Models

Model Deviance Number of Change in Change in p (significance)
parameters Deviance Degrees of

Freedom

3-Dimension 28164.9 70
2-Dimension 28182.5 66 17.6 4 p < 0.005
1-Dimension 28196.7 63 14.2 3 p < 0.005

Table 2
Estimated Correlations among Dimensions

Dimension
Dimension 1(Reading) 2(Sense Making) 3(Others)
Dimension 1  (Reading)
Dimension 2  (Sense Making) 0.91
Dimension 3  (Others) 0.94 0.83

To check whether the results obtained in the three-dimensional analysis
could simply be due to chance, a three-dimensional model was run with items
allocated to the dimensions in an arbitrary way. That is, items 1, 4, 7, 10, … were
loaded on dimension 1, items 2, 5, 8, 11, … were loaded on dimension 2, and
items 3, 6, 9, 12, … were loaded on dimension 3. The deviance from this run was
28187, a figure of 22 more than the deviance from the first three-dimensional
analysis where items were allocated according to hypothesised cognitive
demands. A comparison of deviances between the three-dimensional run (with
random allocation of items) and the one-dimensional run showed a reduction
of 9 in deviance with 7 degrees of freedom, indicating that there was no 
significant decline in terms of fit when a unidimensional model was fitted. This
indicates that the unidimensional model fitted just as well compared to this
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project. In 2000, around 35 countries participated in this project with assessments in
Reading, Science and Mathematics.



three-dimensional model where the items were assigned to dimensions at 
random. The estimated correlations among the three arbitrary dimensions are
given in Table 3. These estimates of correlations clearly showed that the three
dimensions were not distinguishable. 

Table 3
Correlations among three Arbitrary Dimensions

Dimension
Dimension 1 (Random 2 (Random 3 (Random

assignment) assignment) assignment)
Dimension 1  (Random assignment)
Dimension 2  (Random assignment) 0.996
Dimension 3  (Random assignment) 0.993 0.993

These results give us some assurance that the presence of 
multidimensionality in the first three-dimensional model (where items were
allocated to dimensions according to some theoretical basis) was not likely to
be the result of chance alone. In fact, with the high correlations between all
main subject domains as shown by PISA, it was extremely difficult to find
groups of items within a subject domain to demonstrate multidimensionality.
For example, the correlations between Reading subscales in PISA were 0.97,
0.89, and 0.93.

Modelling Within-item Dimensionality
To model all the cognitive demands of an item, one needs to examine 
within-item dimensionality (Adams, Wilson, & Wang, 1997) at the level of the
response categories of the items. Whereas, between-item dimensionality
models can only assign items to one ‘dominant’ dimension, within-item
dimensionality allows for an item to be assigned to more than one dimension.
Given that we have recorded more information than just right/wrong
responses for a number of items, the data could be fitted to a more ‘accurate’
Item Response Theory model, according to the four hypothesised dimensions
when items were designed.

Consider the following example:

After spending $14.70 on meat and $7.30 on vegetables in a supermarket,
Anne had $39.20 left in her purse. How much money did Anne have before
going to the supermarket?

Coding the responses 1 for correct method but incorrect computation,
and 2 for correct method and correct computation, one can set up the 
following within-item dimensionality IRT model (Multidimensional Random
Coefficient Multinomial Logit Model), where P(x) is the probability of the
response category x:
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D is the normalising divisor, being the sum of the three numerators.
The decision as to which dimensions on which a response category

should be loaded was largely determined by two considerations. The first
consideration was the hypothesised cognitive demands when an item was
designed. The second was a review of the fit of the item and the change in
deviance for the overall model. From this point of view, a confirmatory factor
analysis was essentially carried out, or to some extent, exploratory factor
analysis, in the sense that there was an iterative process where a hypothesis
was formed and tested, and then adjusted and further tested. It should be
noted that in cases where the category scores had changed from one model to
another, the model could no longer be considered as a sub-model of the 
earlier model. In such cases, one could not compare the deviances of the two
models. 

The four-dimensional model produced item parameters with reasonable

fit values, with no unweighted fit t or weighted fit t values greater than 3.

That is, all items seemed to fit the dimensions they were assigned. The 

estimated correlations between the four dimensions are shown in Table 4.
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4 While P(2) appears to be in the form of a compensatory multi-dimensional IRT
model, the ‘local step’ between 0 and 1 involves only     and     , and the local step
between 1 and 2 involves only       and       . From this respect it seems the model is not
compensatory. As the local steps have a simple Rasch model, the equations have the
form of a multi-dimensional partial credit model. This model differs from the multi-
component model (Embretson, 1997) or the steps model (Verhelst, Glas, & de Vries,
1997) in that the probabilities of the two ‘steps’ are not multiplicative. With the multi-
component or the steps model, the step probabilities are multiplied to form the likeli-
hood of a response pattern, thus making an assumption of independence between the
two steps.  In contrast, the model applied here does not assume independence. While
it maybe likely that internal steps within a task are not independent, the implicit
dependency can make the interpretation of item parameters difficult (Verhelst, Glas,
& de Vries, 1997). In this project, the main focus, however, is to give feedback to stu-
dents rather than to analyse item features.  So the interpretation of item parameters is
not a main concern.



Table 4
Correlations among Four-dimensional Within-item Model

Dimension

Dimension 1 (Reading 2 (Sense 3 (Maths
/extract -making) concepts)
information)

Dimension 1 (Reading

/extract information)

Dimension 2 (Sense-making) 0.95

Dimension 3 (Maths concepts) 0.92 0.79

Dimension 4 (Computation) 0.82 0.80 0.85

These estimates suggest that the correlation between reading/extracting
information and sense-making is the highest. This conclusion seems plausible as
the ability to fully comprehend and extract information is closely related to
making sense of the problem situation. However, the correlation between
sense-making and mathematics concepts or computational skills is relatively lower.
This result confirms the studies of researchers such as Verschaffel and de
Corte (2000) who found that sometimes the more school mathematics is
taught, the more students divorce mathematics from the real-world.
Computation, on the other hand, has relatively lower correlations with reading
and sense-making, but slightly higher correlation with mathematical concepts.
This result is not surprising as computation involves basic mathematical 
concepts; but the fact that computation and mathematical concepts do not have
a correlation close to 1 suggests that the development of mathematical 
concepts does not always go hand-in-hand with that of computation.

Reporting Students’ Problem-solving Proficiency
This model of within-item dimensionality enables us to build a profile for

each student, identifying areas of strength and weakness. For example, some
students have a good grasp of mathematical concepts but fall down in
extracting all information from the question, while others need to improve
their mathematical knowledge and skills. IRT modelling enables us to 
provide such profiles for students from a relatively short test, as we extract as
much information as possible from all item responses, and not just correct 
or incorrect answers. Figure 1 shows examples of student profiles. The 
horizontal axis shows the four dimensions. Each student’s proficiency level
on each dimension is shown on the vertical axis. The mean and standard
deviation of abilities on each dimension have been standardised to 0 and 1
respectively, to make the scales comparable across the four dimensions.
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Figure 1. Students’ Ability Profiles on the four dimensions in standard 
deviation units.

It can be seen that the computation skills of Student 1 could be improved
in relation to the other three skills, while Student 2 has strengths in 
computation and mathematical concepts but should take a closer look at a
common sense approach to solving mathematics problems.

A formal validation of the students’ reported profiles is not easy.
However, checking the reported profile patterns with the students’ test
papers and item responses generally showed agreements. For example, a
marker has placed a note on the test paper of Student 1 indicating that the 
student has made some careless computational errors.

More generally, a profile of problem-solving proficiency can provide
teachers and students with information about appropriate remedial 
measures. For example, a student with a relatively lower score on the 
reading/extracting information dimension can focus on improving skills
such as reading comprehension, visual imaging, organising information and
so on. A student with a relatively lower score on the common sense approach
dimension can focus more on checking and evaluating answers. The fact that
the four dimensions are reflecting somewhat different ability factors suggests
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that specific lessons can be devised to focus on each problem-solving 
dimension separately, and targeted intervention should more effectively
improve students’ problem-solving skills. In many cases, problem-solving
skills can be improved just through an awareness of one’s own areas of 
weaknesses when these weaknesses are clearly identified in the process of
problem solving. Thus, the usefulness of the problem-solving framework as
defined in this study lies in the fact that distinct skills are identified, and, at
the same time, students can clearly relate to these skills in the sequential
process of solving problems.

Conclusions
This research showed that multidimensional Item Response Theory 

models are powerful tools for extracting information from a limited number
of item responses. A within-item multidimensional IRT model allowed for
response categories to be loaded on different dimensions, while factor 
analysis modelled item responses at the item level only. In addition, factor
analysis was prone to idiosyncratic disturbances in the item features. It failed
to extract relevant factors particularly when the items came from linked test
forms. In contrast, IRT models were able to deal with linked test forms, at the
same time allowing for confirmatory factor analysis to be carried out.

Although the results obtained in this study clearly indicated the presence
of multidimensionality in the data, as seen from estimated correlation 
coefficients between the dimensions and the fit indices, there was, however,
no evidence that the model fitted was the best model one could find. In fact,
there would certainly be models with different loadings on the dimensions
that would improve the fit further. What we have demonstrated is a 
methodology that can help disentangle complex cognitive processes 
embedded within a task. There is likely to be no ‘true’ and unique 
identification of cognitive factors. Any method of modelling the dimensions
is worthwhile provided that the results are useful. The strongest message,
however, is that the test items must be designed with a sound theoretical
underpinning in cognitive processes, without which there is little chance of
uncovering useful ability profiles for reporting back to teachers and students.
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