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The National Assessment of Educational
Progress (NAEP), a United States report, raises
concerns regarding trends in student achieve-
ment over the past twenty years (NCES, 2000).
The results indicate that students of age
seventeen recurrently demonstrated a lack of
proficiency with fraction concepts. An analysis
of the 1990 NAEP mathematics achievement
by Mullis, Dossey, Owen, and Phillips (1991)
found that only 46 percent of all high school
seniors demonstrated success with a grasp of
decimals, percentages, fractions, and simple
algebra. If algebra is for everyone, then a
bridge must be built to span the gap between
arithmetic and algebra. The building materials
are conceptual understanding and the ability
to perform arithmetic manipulation on whole
numbers, decimal fractions, and common
fractions.

Augustus De Morgan, writing in Study and
Difficulty of Mathematics (1910) acknowledges
that the learning of fractions is expected to
“present extraordinary difficulties.” This was
true in the nineteenth century and it is still
true today. Consider the following (p. 41):

What is 1
4 of 2

7 of a foot? What is 2
5 of 1

3 of 3
4 of

a foot? Into how many parts must 37 of a foot

be divided, and how many of them must be

taken to produce 14
15 of a foot? What is 13 + 17 of

a foot? and so on.

Is the above a logical and natural progres-
sion from operations on whole numbers?
Examine the difficulty in finding the product of
two common fractions. Multiplication is
precisely defined as repeated addition,
multiply 5 and 8 together and the product is
either eight fives or five eights. Having become
proficient at whole number multiplication with

a solid understanding of the concept, consider
the product of 2

3 and 3
5. The result is absurd

(p. 34). For the sake of the learner the absur-
dity must be alleviated, the mystery of
1
3 × 1

7 = 1
21 must be resolved. When fractions

should be taught, how fractions should be
taught, and how competence with fractions
affects the transition from arithmetic to
algebra, are questions that mathematics
educators and researchers have examined for
the past century.

Kieren (1980) suggests that the instruction
of rational numbers be postponed until the
student has reached the stage of formal oper-
ations. He reasons that five concepts of
fractional numbers must be both differenti-
ated and connected to form a cogent rational
number construct. The five ideas, (1)
part–whole relationships, (2) ratios, (3)
quotients, (4) measures, and (5) operators,
represent “five separate fractional or rational
number thinking patterns” (p. 134). 

The rational number concept is rich and
complex. Kieren (1980) asserts that the
number of disjointed protocols a learner must
control to form the rational number concept is
extensive. Too often simply an algorithm has
been taught, abandoning the student deep in
the rational number construct. This provides
no connection for understanding, and leaves
the student clinging to a prescribed step-by-
step set of instructions. If the algorithm is
forgotten, then the learner must retreat to
familiar protocols, which can be applied in the
given situation. For example, the individual
may try to apply a natural number protocol for
fraction addition, adding both numerators and
denominators, since addition of natural
numbers arises from the natural activity of
children (p. 102). Algorithms that are taught
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when the concept is beyond the learner’s
cognitive development force the learner to
abandon his or her own thinking and resort to
memorisation — doing without under-
standing. Lamon (1999) insists that the
consequences of doing rather than under-
standing affect both a student’s enjoyment of
and motivation for learning mathematics
(p. xi).

This article will investigate error patterns
that emerge as students attempt to answer
questions involving the ability to apply fraction
concepts and perform operations on fractions.
This analysis will provide a source that can
assist teachers in detecting and correcting
common mistakes students make when
manipulating fractional numbers.

Methodology

A twenty-five-question test was prepared to
analyse competency with fractions. This test
was developed using questions from previous
research (Ginther, Ng & Begle, 1976; Rotman,
1991), and questions devised by the
researcher. The test was a pencil and paper
instrument in which calculators were not
allowed. Students were encouraged to show all
of their work. The questions were designed to
test concept knowledge and computational
fluency and were divided into six categories.
All questions on the test are prerequisite for
developing a complete rational number
concept. 

The test was administered to five elemen-
tary algebra classes (N = 143). The students in
all five groups finished the fraction test within
a thirty-minute time period. The researcher
scored all tests and analysed each test item.
The test items were categorised and errors
were analysed by type and frequency. 

All participants were from the same four-
year high school that serves a predominately
white (81%) upper middle class population
where there is strong parental support and
involvement. Approximately 50% of the 2001
graduating class took college entrance exams.
The average score among this population
exceeded the national average.

The elementary algebra students are mostly
ninth graders with a few tenth graders; typi-
cally these students are of average

mathematics ability. Generally, a student in
elementary algebra has taken one of the
following routes: 
1. passed elementary algebra in the eighth

grade but opts to retake the course to
bolster confidence; 

2. passed an eighth grade regular mathe-
matics course with a “C” or better; or 

3. failed elementary algebra in either eighth
or ninth grade. 

All of these students will be required to take
geometry and an intermediate algebra course
prior to graduation.

Error analysis

A close examination of the specific errors
made on the fraction test demonstrates the
degree of familiarity with fraction concepts
and operations that exists among the students
who participated in the study. The following
discussion consists of several dynamics. It is
essential to note that each of the twenty-five
problems on the fraction assessment was
selected or developed for specific reasons. The
researcher was looking for understanding on
many different levels. Consequently, the ques-
tions have been broken into six general
categories. Some of the problems could fit into
more than one category, but for the sake of
succinct analyses each problem was assigned
to a single category. Each of the categories has
been explained in terms of the researcher’s
intent. Several of the questions have been
used in related studies (Benander & Clement,
1985; Ginther, Ng & Begle 1976; Rotman,
1991). 

Each of the twenty-five problems is briefly
analysed and examples of common errors and
unique errors are discussed. The purpose of
the discussion is to provide quick detection of
specific error types, which can serve as a
guideline for remediation and re-teaching.
Since the students were encouraged to show
all of their work, the researcher was able to
discover several misconceptions relating to the
rational number construct and several misap-
plications of algorithms used for fraction
computation. 

The following is a question-by-question
analysis from the fraction test.
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Category I: 
Algorithmic applications

The following six examples were selected to
check the algorithms that students use for
finding sums, products, and differences, and
for reducing fractions to lowest terms.

Nearly 48% of the students were unable to
find the correct sum. 
1. Twenty-seven students were unable to

find a common denominator.
2. Nineteen of the 27 added the numera-

tors and added the denominators.
3. Six students demonstrated misconcep-

tions related to equivalent fractions, e.g.,
3
8 became  7

12 by adding 4 to numerator
and denominator.

Driscoll (1982) noted the second error as
one of the two most common errors in his
study (p. 110). This error is easy to detect, but
is difficult to remedy. This particular mistake
is a logical extension of natural number addi-
tion. Wu (2001, p. 13) suggests avoiding the
concept of the lowest common denominator
and assisting the student, over time, in devel-
oping the formula 

Sixty-seven percent of the students gave an
incorrect response.
1. Twenty-one students did not find the

lowest common denominator.
2. Sixteen students rewrote the example as 

8
5 – 35 or 35 – 85 , getting answers of ±5

4 or 1.
3. Sixteen students subtracted the numer-

ators and subtracted the denominators.
For the first error, Wu (2001) would argue

that there is no need to find a lowest common
denominator. The second error indicates a
lack of clear understanding about the relation-
ship between a natural number and a fraction.
This error is a student-developed modification
of the poorly understood short-cut algorithm
for renaming a mixed number as an improper
fraction (see Category I example E). These

students will need re-teaching, that should
include visual and verbal reasoning activities
that build a conceptual understanding using
the part–whole relationship of rational
numbers (Lamon, 1999). The third error is an
attempt to extend the subtraction algorithm
for natural numbers and apply it directly to
fractions. 

Of the 47 students that answered correctly,
only 13 students did not resort to an algo-
rithm; instead, they simply recognised that
8 – 35 = 72

5.

Fifty-eight percent of the students did not
find the correct product.
1. Thirty-seven students misapplied the

standard multiplication algorithm. 
2. Eight of the 37 students added the

denominators and multiplied the
numerators.

3. Another eight of these students found
the least common denominator before
multiplying.

Each of the three errors indicated a strict
algorithmic approach to operations on frac-
tions. The most frequent error was either the
overgeneralisation of a cross-multiplication
algorithm or the overgeneralisation of the divi-
sion algorithm (Benander & Clement, 1985).
The former error yields a product of 12 and the
latter should yield an answer of 2. The first
overgeneralisation could be eliminated if
students were given the time to develop the
formula

Once the product is written in the form 

it can be reduced using the commutative prop-
erty and then multiplied. The
overgeneralisation of the division algorithm
stems from the conflict between the visual and
the algorithmic approach to fraction opera-
tions (Driscoll, 1982) — students are literally
unable to see how the algorithm works. To
eliminate the conflict, Sharpe (1998) and
Lamon (1999) offer methodologies that use a
visual approach to allow students to develop a
division algorithm for fractions; the algorithm



31amt 62 (4) 2006

extends logically from the division of natural
numbers. Sharpe uses pattern blocks and
fraction circles and the concept of repeated
subtraction to facilitate a student-invented
division algorithm (pp. 198–203). 

The third error is symptomatic of students
applying teacher-taught algorithms without a
proper conceptual base.

Forty-eight percent of the students
answered this incorrectly.
1. Thirty-five of the students demonstrated

no understanding of finding the product
of more than two fractions.

2. Sixty-one students failed to reduce
before multiplying.

More students were able to find the correct
product on this example than on the previous
problem. This should be expected because
there is no division algorithm for more than
two fractions; therefore, overgeneralisation did
not occur in this example. Most of the
students multiplied the numerators together,
multiplied the denominators together, and
then reduced the fraction to lowest terms. This
works, but is not very efficient. Twelve of the
students, having an informal concept of the
commutative property, recognised common
factors and reduced before multiplying. All
students need to be able to visualise or rewrite
the given product, 

as

then reduce and find the product.

Twenty-five percent of the students did not
rename the mixed number correctly.
1. Eighteen students indicated that they

did not know or their process demon-
strated a complete lack of
understanding.

2. The other 125 students applied the
shortcut algorithm for renaming a mixed
number as an improper fraction.

3. Thirteen of these 125 applied seven

different incorrect forms of the shortcut
algorithm.

Out of the 143 students who attempted to
rename the mixed number, none employed
partitioning strategies. Partitioning can be
defined as a general strategy for dividing a
given quantity into a given number of equal
parts (Kieren, 1980). Although 75% of the
students were able to rename the mixed
number correctly, all should be taught to use
partitioning, since the shortcut method, 
“6 × 3 + 5 over 6” is not easily generalised in
algebra. Students should learn to partition the
three into eighteen-sixths and then add this to
five-sixths, e.g., 

Learning to partition whole numbers could
eliminate mistakes similar to those made in
example B of Category I.

Twenty-seven percent of students did not
correctly reduce the fraction.
1. Thirteen students did not demonstrate a

method for reducing fractions.
2. Twelve students committed basic divi-

sion errors.
3. Fourteen students did not completely

reduce the fraction.
The algorithm employed by the students is

dependent upon their ability to exhaust all of
the factors that are common to both numer-
ator and denominator. Most of the students
were able to complete the task without any
errors. However, reducing fractions into lowest
terms is only one of the components of a
complete concept of equivalence. Students
may be proficient in reducing fractions, but
they need to be provided with problem solving
experiences in which they must decide which
equivalent form of the fraction is best suited
for the given situation.
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Category II: 
Applications of basic fraction
concepts in word problems

The next three problems are word problems
involving basic fraction concepts and simple
fraction computations. The objective was to
determine if students could recognise how a
fraction should be used as an operator in each
of the three contexts and then correctly apply
the operator.

Sixty-six percent of the students did not
solve the problem correctly.
1. Twenty students made errors by

choosing the wrong operator. For
example some students found the
product of 12 and 5.

2. Fourteen students applied the correct
concept, but left their answer as 15 of half
the school or 12 ÷ 5.

3. Four students simply gave an answer of
5 1

2.
All three errors can be addressed by

encouraging students to use pictorial repre-
sentations and by providing a variety of
partitioning experiences, especially when the
unit to be partitioned is a fraction (see Lamon,
1999, pp. 75–109).

Thirty-nine percent of the students gave the
correct response to the question.
1. Thirteen of the students made errors

resulting in answers that did not make
sense. For example one student incor-
rectly applied the division algorithm,
getting

but did not correct the obvious error.
2. Forty-two students did not attempt the

problem.
The errors that were made and the failure

to attempt the problem by so many students

B. If you have a half ball of string and each
kite needs an eighth of a ball of string, how
many kites can you fly?

A. One half the students of a school are
going to a concert. These students will be
taken on 5 buses. What fraction of the
students of the school will ride each bus?

indicate a lack of experience with word prob-
lems. Students need to be able to employ
drawings so that they can construct a rela-
tionship between the visual and the verbal.
Once again, an abundance of partitioning
activities in the context of verbal problems can
provide every student with a strategy to be
able to at least attempt to find a solution to the
problem. 

Forty-nine percent of the students were
unable solve this problem. 
1) Ten students did not use the correct

fraction operator.
2) Fifteen students applied disjointed algo-

rithms using different combinations of 2,
5, and 6; e.g., five students first wrote 
6 2

5 and then used the shortcut algorithm
to get 32

5 , concluding that there are 32
giants.

3) Twelve students divided the six giants
into fifths; the result was 30 giants.

The first two error types are indicative of
students who have collected a series of frag-
mented algorithms, but do not understand
fraction operations. The usual cues for
deciding which algorithm to use are not
obvious in a verbal problem; consequently,
these students arrange the numbers in a
familiar form and then apply an algorithm that
they believe fits the form. This allows them to
cope with the confusion of fractions and to at
least get an answer. Since these students do
not have a basic understanding of fraction
concepts, they have no mechanism for
checking the reasonableness of their answers.
Offering a variety of experiences to allow
students to develop partitioning skills and a
de-emphasis on teacher-taught algorithms
will provide a few more avenues for the
student to take when solving problems (see
Category II, examples A & B). 

The third error type stems from viewing
fraction relationships as strictly part–whole
comparisons in which one portion is a fixed
size: there are six giants and since the number
of giants is being divided into fifths, then there

C. Adrian has conquered only 6 giants in
his new video game, Giant Trouble, but
this is only two-fifths of the giants that he
must conquer. How many giants are there
in the new video game?
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must be thirty giants. Lamon (1999) suggests
that students need a variety of experiences in
order to develop the cognitive process of
unitising: a mental skill that allows the indi-
vidual to decide upon the most useful
operating unit to apply to a given set of condi-
tions (p. 42). In this example unitising would
allow the student to think of the operating unit
as either one fifth or as three giants, both
approaches illustrate that for every fifth there
are three giants.

Category III: 
Elementary algebraic concepts 

The next three examples include algebraic
concepts that are covered in first semester
elementary algebra. The two equations could
have been solved intuitively or by using an
equation-solving algorithm. In the first
example students could have recognised that
6 2

3 + 1
3 = 7 and simply written down the

answer, 6 2
3 . In the second example students

could have used equivalent fractions, recog-
nising that 58 = 15

24. 
The rationale for the third example was to

determine if students could generalise a
product like 1

3 × 5 = 5
3 and apply the results to

1
3 × a = a

3.

Fifty percent of the students did not find
the correct value for x.
1. Seventy-seven students used algebra to

solve the equation, i.e., they subtracted
one-third from both sides of the equa-
tion. Thirty-eight of these students were
unable to correctly subtract one-third
from seven (see discussion in Category I,
example B).

2. Thirty-two students were able to recog-
nise that 6 2

3 + 13 = 7.
Of the 39 students who used algebra and

found the correct value for x, 27 of these
students did not immediately recognise that 
7 – 13 = 6 2

3 , and used 21
3 – 13 to get 20

3. This obser-
vation indicates that students may perceive
fraction operations as a series of isolated algo-
rithms rather, than as a set of connected ideas
that form one complete concept. Partitioning a

unit rectangle into the given fractional unit, as
a method for subtracting common fractions
from whole numbers, offers visual clues that a
pure algorithmic approach is unable to
provide.

Eighteen percent of the students did not
find the correct value for x.
1. Twenty-seven students either made

arithmetic errors or did not attempt to
solve the equation. 

Most of the students used the cross-
product algorithm to solve the proportion.
Forty-six students recognised equivalent frac-
tions and concluded that x was equal to 15,
without employing the cross-product algo-
rithm. It should be noted that finding the
correct answer in this example does not indi-
cate competence in proportional reasoning;
there is more to proportional reasoning than
recognising the right scenario in which to
apply a familiar algorithm.

Sixty-two percent did not answer correctly
with either 13a, a

3 or a 1
3.

1. Forty-one students wrote the answer
incorrectly as  13a .

2. Nine tried to solve a non-existent equa-
tion for a.

Benander & Clement (1985) in their cata-
logue of error patterns concluded that the first
error is because students tend to view multi-
plication of fractions as non-commutative. The
second is a common error in elementary
algebra. Students are bothered by variables
and go to great lengths to assign them a value;
as a result, many will attempt to solve alge-
braic expressions as if they were equations.
Offering students experiences in generalising
fraction operations could help to eliminate
such errors. For example, allow students to
induce the formula

by observing several examples in which
different positive integers are substituted for
a, b, c, and d. 
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Category IV:
Specific arithmetic skills that are
prerequisite to algebra

Rotman (1991) believes that the foundation for
understanding algebra is laid in the under-
standing of arithmetic that students
encounter before they reach an algebra
course. It is the understanding that is prereq-
uisite to algebra, not the set of computational
skills (p. 8). The next three exercises are
samples involving rational number concepts
that Rotman believes are prerequisite to
algebra.

Eleven percent of the students failed to
reduce the fraction correctly.
1. Ten chose to use an algorithm to rename

7
2 as a mixed number.

2. Two divided four by two and added the
quotient to three.

This example emphasises fraction concepts
and de-emphasises using rote algorithms
(Rotman, 1991). The first error type occurred
when students applied a rote algorithm to
convert the improper fraction to a mixed
number. These students correctly found the
fraction to be 7

2 and then renamed the
improper fraction incorrectly. Leaving the
answer as 7

2 is often the preferred form in
algebra, but many students think that
reducing an improper fraction means
renaming it as a mixed number.

The second error indicates a basic misun-
derstanding with regard to fraction addition.
Since students were not expected to add two
fractions, the impulse to find common denom-
inators was not triggered. Without having to
consider common denominators students may
have viewed 

and

as two distinct ideas, rather than as two forms
of the same idea. Consequently, 4 ÷ 2 + 3 = 5
would seem to be a logical solution. 

Anecdotal evidence indicates that this is a
frequent error made by students in elementary
algebra. 

Fifty-eight percent of the students were
unable to give a correct response.
1. Eighty-three students either stated that

they did not know or demonstrated that
they did not know.

2. Eleven of the 83 gave an answer of 37, 
(7 × 5 + 2 = 37).

This example focusses on the meaning of
symbols (Rotman, 1991). Accordingly,
students who were unable to write the mixed
number as a sum do not understand the
meaning of mixed number notation. Students,
who have only learned the shortcut algorithm
for renaming mixed numbers as improper
fractions, may not know that a mixed number
is a sum. This possibility is indicated by the
results of this example (see discussion on
Category I, example E).

Eighty percent of the students failed to
indicate this operation as undefined.
1. Eighty-six students responded with an

answer of 0.
2. Twenty-one students gave an answer of

18.
Rotman’s (1991) rationale for this example

is that (1) fractions show division, (2) division
by zero is not defined, and (3) it avoids
employing a mechanical process (p. 12). The
idea that division by zero is undefined is too
often taught as an isolated fact, that students
are asked to simply believe. The results indi-
cate that they really do not believe it.

For students, a quotient of 0 is a logical
choice. They do not see why you cannot have
a 0 in the denominator if a 0 in the numerator
is acceptable (Benander & Clement, 1985). 

The second result, 18, is also logical. If you
have a number and you “don’t divide it by
anything” then its value should not change.
Besides, division is repeated subtraction;
therefore, the reasoning is understandable,
i.e., subtract 0 from 18 and it remains 18,
subtract 0 from 18 repeatedly and it still
remains 18. 

Division by 0 is an abstract notion that
needs to be connected to the complete rational
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number concept. Since the solution is unde-
fined, there is no process for determining the
outcome. However, the results can be logically
developed using the following pattern.

The process that was employed above is the
same process that students used to check
their quotients when they first encountered
whole number division.

Category V: 
Comprehension of the structure
of rational numbers

The five problems in this category were
intended to ascertain a student’s conceptual
understanding of the basic structure of
rational numbers. One aspect that was
assessed was the ability to use the relation-
ship between the numerator and denominator
in determining the relative size of two or more
fractions. Another facet that was checked was
the capability to use fractions as operators. By
simply applying the appropriate concept, each
of these questions could have been solved.
None of these problems required computation
or application of an algorithm.

Forty-six percent of the students gave the
incorrect response.
1. Sixty-seven students responded incor-

rectly.

  

  

  

  

  

  

  

 

The error indicates that students are prob-
ably attempting to extend the concept of
natural number division, in which the
quotient is always smaller than the dividend.
These students need to be provided with expe-
riences that can be represented pictorially,
allowing them to see and count the number of
times a given fraction can be divided into a
given amount. Initially the student should
start working with dividing whole numbers by
proper fractions to develop the notion that
division does not always yield a quotient that
is smaller than the dividend. This concept
should be developed with and connected to
division by one, division by zero, and division
by numbers between zero and one.

Sixty-four percent of the students did not
answer this question correctly.
1. Twenty students did not recognise that

the solution is a product.
2. Thirty-seven students used the cross-

multiplication algorithm (see the
discussion in Category I, example C). 

The first error is another example of
improper extension of natural number opera-
tions, where “of” implies a division process.
The results of this example were unexpected.
None of the students who attempted this
problem demonstrated a basic knowledge of
the concept that one-half of two-thirds is
simply one-third. Those who attempted the
problem relied solely on the multiplication
algorithm.

Forty-eight percent of the students did not
choose the correct response.
1. Twenty-two students selected (a) or (c).
2. Forty-six students indicated that they

did not know.
The students were being asked to estimate

the answer; therefore, many did not attempt to
apply the subtraction algorithm. Roughly half
of the class did not demonstrate a scheme for
estimating fractions. One element of an
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informal treatment of fraction operations
involves activities in which students are given
fractions and asked to indicate whether the
given fraction is closer to 0, 12, or 1. Estimating
activities that allow the student to determine
the relative size of fractions should later be
extended to estimating sums, differences,
products, and quotients of common fractions.
These informal estimating activities are valu-
able precursors to a more formal treatment of
fraction operations. Essential to the develop-
ment of computational algorithms is the
ability to estimate the outcome of basic opera-
tions on fractions; students need to be able to
predict a sum, difference, product, or quotient
with a relative degree of accuracy.

Forty-three percent of the students did not
order the fractions correctly.
1. Of the 62 students who ordered the frac-

tions incorrectly, 39 reversed the order.
Seven students of the 81 who ordered the

fractions correctly used a least common
denominator, while the rest of the students
relied upon their intuition. It is interesting to
note that most students saw this example as
an exercise to estimate the relative size of frac-
tions, but failed to see the same connection in
the previous example.

Fifty percent of the students did not answer
correctly.
1. Thirty of the students claimed that 1n gets

very close to one.
2. Thirty of the students claimed that 1n gets

very large.
3. Twelve did not even offer a guess.

The results indicate that half of the students
either guessed correctly or were able to gener-
alise the effect of a continually increasing
denominator. All students need to be provided
with experiences that are aimed at developing
inductive reasoning skills. In the present

  

example, students could experiment with
several cases using ever-increasing whole
number denominators while observing the
decreasing nature of the quotients. Given this
experience students would be ready to gener-
alise the nature of their observations and make
a logical conclusion, thus developing a skill
that is at the heart of algebra (Wu, 2001, p. 14). 

Category VI:
Computational fluency

The following questions were specifically
designed to determine if students have control
over fraction concepts and algorithms that
would allow them to demonstrate fluent
computation in unfamiliar contexts. These five
questions should be the strongest predictor for
success in both elementary and intermediate
algebra. Wu (2001) believes that fluent compu-
tation with numbers lies at the foundation of
symbolic manipulation, which is an integral
part of proficiency in algebra (pp. 10, 13).
Students cannot rely upon memorised algo-
rithms to solve these problems.

Eighty-five percent of the students did not
correctly interpret the complex fraction and
perform the correct operations.
1. Four students wrote the equivalent fraction

2. Five students gave a response of 7 3
5.

3. Six students gave a response of 7
15.

The first response is true but does not
recognise the fraction as a division operator.
The second response is indicative of the 109
incorrect responses, which demonstrated a
complete lack of understanding. The third
error type supposes a commutative property
for division. 

The results may be a symptom of inexperi-
ence. If students do not master basic
operations with common fractions, then
teachers are less likely to provide experiences
that extend computation to operations on
complex fractions. When an abundance of
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experience with complex fractions is neglected,
students may be unable to acquire the famil-
iarity and fluency that will be needed to
manipulate algebraic fractions.

Thirty percent of the students selected the
correct response.
1. Forty-one students selected (e) as the

correct answer, 24 students selected (d),
nine selected (a), nine selected (c), and
17 did not select an answer.

In most cases, the students did not show
their work, making it impossible to ascertain
the type of error that was made, but the
results indicate an overall lack of under-
standing.

This problem could be solved by simply
applying basic partitioning strategies. The
students could draw a number line using
twelve intervals between each whole number,
and then count the intervals from 0 to 21

4; no
computation is necessary. 

Looking ahead to learning algebra,
students need to firmly understand two basic
concepts involved in this question. First, they
need to understand that 21

4 means 2 + 1
4 and

second, if the fractional unit is given as 12,
then the sum can be written as 24

12 + 3
12; there-

fore, they can conclude that there are 27
twelfths. Eventually this process can be gener-
alised and applied to algebraic fractions. 

Eighty-nine percent of the students could
not find the correct sum.
1. Seventy students did not attempt to find

the sum.
2. Fifty-seven made manipulation errors.

Of the 57 students who calculated an incor-
rect sum, there were forty different algorithmic
variations that yielded over forty different
sums. Most of the answers were unreason-
able. It appears that these students do not
possess the conceptual understanding neces-
sary to make a reasonable estimate of the sum

(see Category V, question C). Most of these
students found that 

but were unable to manipulate the quotient of
fractions. The quotient

is written in a form that is not usually associ-
ated with the “invert and multiply” algorithm;
consequently, students were confused,
applying a variety of incorrect algorithms. The
form 5

6 ÷ 5
3 would be more likely to elicit the

correct algorithmic response. Once again the
emphasis should be on providing students
with more opportunities in manipulating
complex fractions (see discussion on Category
VI, question A).

Seventy-nine percent of the students could
not simplify the complex fraction.
1. Twenty-three students committed algo-

rithmic errors in finding the product of
the denominator. 

2. Fifty-three errors were made in trying to
find the quotient of

The errors made in finding the product of
the denominator involve the same error
patterns that were evident in previous prob-
lems pertaining to the product of fractions (see
the discussion in Category I, question C).

The error made in finding the quotient may
be a failure to recognise the numerical defini-
tion of the reciprocal. The failure could stem
from confusion relating to the familiar
shortcut, “flip the fraction to find the recip-
rocal,” which may serve the student
temporarily, but ultimately provides no under-
standing of the essential concept. The
reciprocal of x is defined as 1

x. This definition
can be developed over time, first with the
natural numbers and then extended to
rational numbers. This approach is preferred
to the treatment of the reciprocal concept as
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an isolated step in the “invert and multiply”
method for dividing fractions; a teacher-
taught algorithm that students are required to
memorise. Anecdotal evidence indicates that
division of fractions makes little sense to both
teacher and student alike. 

Students with experience in partitioning
and unitising activities, however, do not have
to search their memories to find the correct
algorithm. Their experience would direct them
to find the number of 1

6 units that are in 1
(Lamon, 1999, pp. 39–58).

Ninety-two percent of the students did not
find the correct fraction of votes.
1. Forty-one students failed to find the

correct number of votes after finding the
least common denominator.

2. Ten of the previous 41 students got the
correct fraction sum, but did not
subtract the sum from one.

3. Only half of the students who answered
correctly wrote the fraction in lowest terms.

It should be noted that only 36% of the
students recognised that addition was one of
the operations needed to solve the problem.
These students were able to find a common
denominator, but many could not apply the
rest of the addition algorithm correctly. There
were only 21 students who were able to apply
the algorithm accurately and get the correct
sum, but 10 of these students did not subtract
the sum from one; giving the unreasonable
answer of 11

12 , which is the fraction of votes for
the other three candidates.

The fact that only 11 out of 143 students
were able to solve this problem emphasises the
need to provide numerous experiences that
will allow students to develop strategies for
solving word problems that involve fractions.
Students at this stage in elementary algebra
have been introduced to solving problems by
defining a variable and then setting up an
equation, yet none of the students in this
sample opted to use algebra. 

 

 

 

It should be noted that this problem could
be solved visually, without applying the addi-
tion algorithm and without algebra. If students
were able to partition a number line from 0 to
1 using 60 intervals, the solution can be
reduced to the simple process of counting. 

Discussion of error analysis

The previous error analysis indicated that
most of the students in the sample had a frag-
mented understanding of fraction concepts
and operations. In test items that could be
solved by directly applying a concept (Category
V), most of the students opted to use an algo-
rithm. The results show that many who chose
to use an algorithm were not really sure of the
correct process, demonstrating several of the
error patterns catalogued by Benander and
Clement (1985). Many of the errors produced
unreasonable answers, indicating that doing
an operation on fractions is not connected to
understanding the operation. For example, if a
student insists that 1

2 of 2
3 is equal to 3

4 by
misapplying a shortcut division algorithm,
then it is evident that he or she does not
understand the relative size of fractions or the
function of 12 as a multiplicative operator. 

Capable high school students often
complain that they cannot do fractions;
fluency with rational numbers means doing
with understanding. Regrettably, many
students are taught algorithms before they
have had the time to develop the fundamental
concept. Their only alternative when
confronted with fraction operations is to
match what is being presented with one of the
disconnected, previously-memorised algo-
rithms from earlier mathematics experiences.
If the situation being presented is novel or is
not in a recognisable form, then a student’s
best effort is no more than a good guess. The
errors that were made repeatedly demonstrate
that a good guess is not sufficient.

The results of the error analysis reveal an
overall lack of experience with basic fraction
concepts — experience that should have been
gained through an informal treatment of frac-
tions providing an abundance of concrete
referents. Only a few students used pictorial
representations to help them answer some of
the questions. A few more students were able
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to apply the concept directly and provide the
correct answer without resorting to an algo-
rithm. For most of the students, however, the
strategy of choice was to select an algorithm
and then use it. This approach yielded a host
of illogical answers, which more often than not
went undetected by the student. Such incon-
sistent results demonstrate a lack of fluency
with fraction computation, the fluency that
becomes a necessity when students begin to
work with algebraic fractions. 

Implications for practice

The results of this analysis magnify the exis-
tence of a problem in the learning of
mathematics that must be rectified. The error
analysis revealed a large number of miscon-
ceptions that students have related to the
subject of fractions. These misconceptions
must be addressed. Research designed to
examine the effect of treatment on a given
population over an extended period of time
needs to be organised. Below are recommen-
dations which were prompted by the review of
the literature and the findings of this study.
For example, Bezuk and Cramer (1989) offer a
few general recommendations, which are
echoed in much of the literature concerned
with the teaching of fraction concepts: (1) the
use of manipulatives is fundamental in devel-
oping students’ understanding, (2) the
majority of the time spent on fractions before
grade 6 should be devoted to developing a
conceptual base of fraction relationships, (3)
operations on fractions should be delayed
until students have a solid understanding of
order and equivalence of fractions, and (4) the
size of the denominator for computational
exercises should be 12 or below (p. 158).

The following recommendations are
intended for implementation in longitudinal
studies, which track the development of the
fraction construct over time. 
1. Children in the early primary grades

should be allowed the time to develop
whole number concepts and whole
number operations informally with
abundant concrete referents. Arabic
symbols should be used for counting
purposes only and always connected to
concrete objects or pictorial representa-

tions. Informal practice with fraction
concepts should be limited to experi-
ences that arise naturally, like fair
sharing or situations that involve
money. Lamon (1999) claims that
studies have shown that if children are
given the time to develop their own
reasoning for at least three years
without being taught standard algo-
rithms for operations with fractions and
ratios, then a dramatic increase in their
reasoning abilities occurred, including
their proportional thinking (p. 5).

2. Upper primary students should be given
experiences that extend the whole
number concept with an eye toward
algebra involving an informal treatment
of the field properties. These students
need to be provided with experience in
partitioning as a method for solving
verbal problems involving fractions
(Lamon, 1999; Huinker, 1998). The
informal treatment of fractions should
include manipulation of concrete objects
and the use of pictorial representations,
such as unit rectangles and number
lines. Fraction notation must be devel-
oped, but formal fraction operations
using teacher-taught algorithms should
be postponed. Learning the subject of
fractions will revolve around informal
strategies for solving problems involving
fractions. The objective at this level is to
build a broad base of experience that will
be the foundation for a progressively
more formal approach to learning frac-
tions.

3. In middle school, the development of
fraction operations as an extension of
whole number operations should provide
experiences that guide and encourage
students to construct their own algo-
rithms (Lappan & Bouck, 1998; Sharp,
1998). More time is needed to allow
students to invent their own ways to
operate on fractions rather than memo-
rising a procedure (Huinker, 1998).
Progressively this development should
lead to more formal definitions of frac-
tion operations and algorithms that
prepare students for the abstractions
that arise later in the study of algebra
(Wu, 2001). How fractions should be
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taught is inexorably linked to when the
concepts are being presented and what
impact the learned concepts will have on
future mathematics courses. 

Conclusion

The lack of experience with both fraction
concepts and fraction computation is inexcus-
able. Prior to entering the ninth grade,
students should have had at least two years
for an informal treatment of fraction concepts
and three years for the development of formal
concepts and computational fluency. The
rational number concept is pivotal to
extending whole number concepts while
building fraction concepts, which can then be
extended to form algebraic concepts. The
process is one of generalisation. Wu (1999)
prescribes numerous experiences with gener-
alising number concepts, but an individual
cannot generalise a concept if the concept is
not understood. This is a genuine problem in
mathematics education. Scores from the NAEP
(Mullis et al., 1991; NCES, 2000) indicate that
the problem is perpetual. The “Nation’s Report
Card” persistently demonstrates extremely low
achievement in both fraction and algebraic
concepts for the age seventeen student. 

It is the view of this study that the lack of
experience is a problem that will not be
resolved unless the philosophy of American
mathematics education undergoes a dramatic
reformation. A philosophy that actively
promotes breadth of learning over depth of
learning exacerbates a problem, which even
the best pedagogy cannot overcome. A philos-
ophy that seemingly ignores established
guidelines regarding a child’s cognitive devel-
opment (Wadsworth, 1996) and forces children
into the belief that learning mathematics is
memorising facts and algorithms is worse than
a problem. It causes children to lose control
over numbers and to perceive doing mathe-
matics as a drudgery. 
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