CONVEX LATTICE™
POLYGONS

The problem

It was 1976. I had been looking at my lecture
notes on Pick’s Theorem, when the thought
suddenly came to me. Suppose you have a
lattice polygon P with a fixed number I of inte-
rior points, and you insist that the polygon be
convex. Now try to increase the number of
boundary points B, while keeping I fixed, and
retaining the convexity. Might we not expect
there to be some bound on the number B?

A convex polygon is one with no re-entrant
angles. Alternatively we can use the standard
convexity definition, asserting that for any two
points of the convex polygon, the line segment
joining them is contained completely within
the polygon.

I=1,B=4,5,6,7,8.
It turns out that there are two cases to
consider:
(a) convex lattice polygons with I = O.
(b) convex lattice polygons with I > 1.
Suppose we look at case (a). We quickly find
the set of polygons:

for which I = 0, and B = 4, 6, 8... This means
that for I = O, the number of boundary points
B can be made arbitrarily large; thus there is
no upper bound on B.
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Let us now look at case (b). See if you can
find convex lattice polygons having the values
of I, B listed in the following table. Remember,
for given I we are looking for the maximum
value of B. Also, can you find a simple
inequality involving B and I (and maybe some
constants) which will hold for all convex lattice
polygons with I > 1?
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Answering the above question, you should
have found convex lattice polygons with the
following values of I, B.
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The pairs at right come from a sequence of
rectangles of width 2, like the first two poly-
gons below.

In this sequence, there seem to be six end
boundary points, and each interior point is
associated with two further boundary points.
This suggests B = 2] + 6, and we might have
conjectured B < 2] + 6, were it not for the
surprise triangle at right. Did you find it? So,
our conjecture becomes B < 2] + 7. In fact we
have:

Convexity theorem

If P is a convex lattice polygon with B

boundary points and I interior points, then
B<2I+7 if I=1,

and B<2I+6 if I>1.



We observe that this result will remain true for
any planar lattice, since it just depends on the
numbers B and I. This result first appeared in
Scott (1976).

A partial solution

I find it amazing that this simple result could
have remained undiscovered for so long. We
will not give the whole proof here, but we can
make some observations.

Suppose we set g(P) = B - 21.

The statements of the Convexity Theorem
now become g(P) < 7 and g(P) < 6 respectively.
We can rewrite g(P) in different ways using
Pick’s Theorem (refer to AMT 62(3)) which
states

A=3B+1-1
to obtain:
sgP)=B-A-1=A-2[+1.
Now, how would we begin to prove the
Convexity Theorem? Suppose our (convex)
polygon P contains the lattice trapezium

pictured below with parallel sides of length h
and k placed distance w apart.

AP) =3 wh+ K

g(P) = 2B(P) - 2A(P) - 2
<2h+k+2w)-wh+ k-2
=(h+k-4)2-p) +6.

It follows that g(P) < 7 if:
e p=2,0or h+ k<4;or
e p=3and h+ k< 3; or
e p<4and h+ k< 3.

We see that in order to establish our
theorem, we now only need consider lattice
polygons which do not satisfy these condi-
tions. Details of the rest of the proof can be
found in Scott (1976).

Further results

Various other results are known or conjec-
tured when some restriction is placed on the
size or shape of the lattice polygon.

For example, suppose P is a convex lattice
pentagon. What is the smallest number of
interior points it can have? Try some exam-
ples! Ehrhart (1955) gives the answer to this
(in French!); the answer is 1.

In fact, it is relatively easy to obtain a
sequence of results of the form:

A convex lattice n-gon contains at least I(n)
interior points.

In 1978, Coleman independently proved the
Convexity Theorem. For convex polygons with
I > 0, he proposed the relatively weak
inequality B < 9I (best possible for I = 1, but
9> 21+ 7 for I > 1).

He then makes the interesting conjecture: if
a convex lattice polygon has n sides, then
B <2 + 10 — n. Setting n = 3 we see that the
bound is best possible (can you see why?); but
even if it is true, it is probably much too large
for large values of n.

Coleman also establishes a result in the
other direction for convex lattice n-gons:

|55

and for n> 7, 12|:n;2}

Here the square brackets denote the inte-
gral part of the number inside; e.g., [3.2] = 3.
The proof is rather involved, but we can easily
check the first part.

o

For n= 3 or 4,
2

and clearly I = 0.
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For n=5 or 6, [HT_S:|:1

and I > 1 is correct (for example, using
Ehrhart’s result).

Arkinstall (1980) incorporated Ehrhart’s
result and extended it as follows.
For a convex lattice n-gon P:

e n =4 and P has no pair of parallel edges

=1I1=1.

e nx>25=121.
6 and I = 1 = P is a centrally
symmetric hexagon,

e n =

e nNn>6=12>2.

Rabinowitz (1989) later wused some
computer help to list all convex lattice poly-
gons in the plane (up to equivalence) with at

most one interior lattice point.

We can improve the Convexity Theorem
inequality if we add further constraints to the
lattice polygon. For example suppose we insist
that all the angles in the polygon P be acute.
Then B < 2I + 4, and this result is best
possible; but this is not very interesting
because in this case P must be an acute-
angled triangle.

Of more interest is when we insist that
every angle of P be obtuse. What do you think
the inequality might be in this case? Find an
example where equality holds. The proof of
this result is given in Scott (1979).
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Simpson (1990) suggests looking for convex
lattice n-gons which have minimal area for
given n. He shows that for n> 3

n
an)=gn) +§—1

where a(n) denotes the minimal area, and g(n)
the minimal number of interior points for the
given value of n. He gives values of a(2n) for
low values of n.

Honsberger (1978) observes that an n x n
square S can be placed in the plane with its
sides parallel to the coordinate axes to cover
n + 1]2 lattice points. He then asks if S can
ever cover a greater number of lattice points if
it is just tossed onto the lattice plane; for the
answer, see Honsberger (1978).
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