
The activity “First One Home” in the Shell Centre’s Problems with Patterns
and Numbers Blue Box gives rise to a number of interesting patterns for

those looking beyond the basic solution given in the book.
The game is for two players, each taking turn and turn about to move a

single counter on the grid down and/or to the left until one or the other
player can put the counter on the FINISH square. Each move can cover as
many squares as the mover likes, within the confines of the grid, but cannot
change direction; and the direction must be either directly to the left, directly
down, or diagonally down to the left. The starting square can be chosen by
common consent (see Figure 1).

Figure 1

As indicated on the solution page, there are critical squares, shaded in the
diagram, which determine the winning strategy. No critical square can be
reached in one move from any other critical square, while from any non-
shaded square there is at least one shaded square that can be reached in one
move (see Figure 2).

The game can be won by the first player to put the counter on one of the
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critical squares; after that, the next player must move to a non-shaded square,
enabling the first player to once again move to a critical square. The FINISH
square is just the last of the critical squares.

Figure 2

The solution page lists the coordinates of the early shaded squares in two
columns, one for the squares in the upper arm, and the second for those in
the lower arm; the lower arm coordinates are simply the reverse of the upper
arm ones. However, the solution page offers no general rule for finding the
shaded squares; the following traces a tortuous path through a number of
recursive rules for doing this to eventually reach a specific rule, and a geomet-
ric construction for identifying the squares.

The first way is simply to start from the FINISH square (1,1), and rule out
all squares from which this square can be reached; the next two squares to be
shaded, (2,3) and (3,2), are the squares at the points of the two wedges
remaining. The next two, (4,6) and (6,4), are at the points of the two wedges
remaining after also ruling out all those squares from which (2,3) and (3,2)
can be reached; and so on. Note that each square has the same name as its
top right-hand corner point, if we use Cartesian coordinates for the points.

Each shaded square must be on exactly one south-east to north-west diag-
onal, and the squares on any one of these diagonals have a constant
difference between y- and x-values. Thus the upper arm coordinates can be
numbered consecutively by this difference in y- and x-values, so that Table 1 is
a convenient way to exhibit them. Note that function notation (x(n), y(n))
rather than subscript notation (xn, yn) is being used, as there would be a need
to use subscripts three deep, which is too unwieldy.
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The first, obvious, pattern is that y(n) = x(n) + n; it arises from the way the
table has been set up.

Next, each whole number appears once as an x-coordinate and once as a
y-coordinate over all the shaded squares; for the upper arm squares, this
means that, apart from 1, each whole number appears once, either as an 
x-value or as a y-value, as any which are a y-value for the upper arm are an 
x-value for the lower arm, and vice-versa.

Also, as the difference between any two x-values is at least 1, so the differ-
ence between any two y-values is at least 2:

y(n + 1) – y(n)
= x(n + 1) + n + 1 – x(n) – n
= x(n + 1) – x(n) + 1

Therefore, no two y-values are consecutive numbers, so that there cannot
be more than one y-value between any two x-values. Thus the difference
between x(n) and x(n + 1) is either 1 or 2, and the difference between y(n)
and y(n + 1) is either 2 or 3.

These observations give the following procedure for generating the coor-
dinates of the critical squares.

Assume that the table has been determined up to n – 1, and look for the
next whole number above x(n – 1) which is not used as a y-value; then this
number is x(n). In addition, y(n) is x(n) + n.

This procedure can be used to work out a number of patterns and rela-
tionships in the table.

Consider y(n), which, of course, appears in column n in the y-row. As there
are n of the y(i) before y(n) (i.e., y(0), y(1), … y(n – 1)), so the remaining
y(n) – n – 1 = x(n) – 1 numbers less than y(n), plus the extra 1 in column 0,
must be in the x-row. These numbers are then x(0), x(1), … x(x(n) – 1), and
y(n) is the number directly after them. Therefore x(x(n) – 1) is the number
just before y(n), and x(x(n)) the number just after it.

So x(x(n) – 1) = y(n) – 1, and x(x(n)) = y(n) + 1. These are illustrated in
Table 2, where the shading shows an example of the first, and the bold text
shows one of the second:
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y – x = n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

x = x(n) 1 2 4 5 7 9 10 12 13 15 17 18 20 22

y = y(n) 1 3 6 8 11 14 16 19 21 24 27 29 32 35

Table 1. The coordinates of the upper arm shaded squares.

y – x = n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

x = x(n) 1 2 4 5 7 9 10 12 13 15 17 18 20 22

y = y(n) 1 3 6 8 11 14 16 19 21 24 27 29 32 35

Table 2. Displaying x(x(n) – 1) = y(n) – 1, and x(x(n)) = y(n) + 1.



From the second of these it follows that x(y(n)+1) = x(x(x(n))) = y(x(n))+1;
x(y(n)) is either 1 or 2 less than x(y(n)+1), but it cannot be y(x(n)), which is
not an x-value. So, x(y(n)) = y(x(n))–1 = x(x(n)) + x(n)–1 = y(n)+1 + x(n)–1 =
y(n) + x(n).

Using this last relationship it can be seen that the Fibonacci sequence is
generated as part of the table: start from the n-value and x-value of a column,
and proceed to the column whose n-value is the y-value of that first column.
The n-value n' = y(n) and x-value x(n') = x(y(n)) of this new column are the
next two terms in the sequence.  It can be observed that each term is the sum
of the two previous terms: either n' = y(n) = n + x(n), or x(n') = x(y(n)) = 
x(n) + y(n) = x(n) + n'. So, starting with the first column, with n = 0 and x = 1,
the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, … indicated by the dotted
borders in Table 2, is generated.

Thus there is an improved procedure for determining the elements of the
table:

If n is an x-value (n = x(r)), then x(n) = x(x(r)) = y(r) + 1;
and if n is a y-value (n = y(r)), then x(n) = x(y(r)) = x(r) + y(r);
and, of course, in both cases y(n) = x(n) + n.

However, the procedure is still recursive — i.e., the later values of the
sequences are determined in terms of the earlier values — so we need to find
something outside the sequences to refer to; and for this we look to the
golden ratio 

(cf. Coxeter, 1961). (It may look as though I have just pulled the golden ratio
out of the air; it took some work with Microsoft Excel to see that the
sequences

both approached Γ, though somewhat slowly. I should have known, though,
that the golden ratio was involved because of its involvement with the
Fibonacci sequence.)

Now Γ is the positive root of the quadratic x2 – x – 1 = 0; for positive values
of a, then, a > Γ (a < Γ) if and only if a2 – a – 1 > 0 (a2 – a – 1 < 0). As 

are both positive for all values of n ≥ 1, it can be seen from the following that
Γ is between

Suppose
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then

i.e., x(n)2 – nx(n) – n2 > 0

Therefore y(n)2 – x(n)y(n) – x(n)2

= (x(n) + n)2 – x(n)(x(n) + n) – x(n)2

= –x(n)2 + nx(n) + n2 < 0,

and so

and hence, finally,

Equally, if

then

either way, Γ is between and .

Observing the table, it would appear that

and this can be proven by induction, as follows:

Define A(n) to be x(n)2 – ny(n); then the inequality translates to A(n) > 0.
Firstly, A(1) = x(1)2 – y(1) = 4 – 3 > 0.
Suppose that A(r) = x(r)2 – ry(r) > 0 for all r < n.
If n is an x-value, i.e., if n = x(i), 
then x(n) = x(x(i)) = y(i) + 1
and x(n – 1) = x(x(i) – 1) = y(i) – 1.
Therefore x(n) = x(n – 1) + 2 and y(n) = y(n – 1) + 3, 
and so A(n) = x(n)2 – ny(n) 

= (x(n – 1) + 2)2 – n(y(n – 1) + 3) 
= x(n – 1)2 + 4x(n – 1) + 4 – ny(n – 1) – 3n
= A(n – 1) + 4x(n – 1) + 4 – 3n
> A(n – 1) > 0,
as x(n – 1) ≥ n – 1.

On the other hand, if n is a y-value, i.e., if n = y(i), then
A(n) = x(n)2 – ny(n) 

= x(y(i))2 – y(i)y(y(i)) 
= (y(i) + x(i))2 – y(i)(x(y(i)) + y(i)) 
= y(i)2 + 2x(i)y(i) + x(i)2 – y(i)(x(i) + y(i)) – y(i)2

= x(i)y(i) + x(i)2 – y(i)2

= x(i)2 – (y(i) – x(i))y(i)
= x(i)2 – iy(i) 
= A(i) > 0.
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This last part indicates that, for those columns in the table which are part
of the Fibonacci sequence, A(n) = 1; for, if n and x(n) are in the Fibonacci
sequence, then so are n' = y(n) and x(n'), and the above argument shows that
A(n') = A(n). As A(1) = 1, so too is A(n) for each column in the Fibonacci
sequence.

Thus it is established that 

Hence x(n) > nΓ and y(n) < x(n)Γ;  also, y(n) + 1 = x(x(n)) > x(n)Γ, so that
y(n) must be the integer part of x(n)Γ.

A similar relationship can be established for x(n) and n:
If n = x(i), then x(n) – 1 = x(x(i)) – 1 = y(i) < x(i)Γ = nΓ.
If n = y(i), then we must apply induction as follows:

x(1) – 1 < Γ.
Suppose x(r) – 1 < rΓ for r < n; then

x(n) – 1 = x(y(i)) – 1 
= y(i) + x(i) – 1 < x(i)Γ + x(i) – 1 < x(i)Γ + iΓ
= y(i)Γ
= nΓ.

As x(n) > nΓ, so x(n) is the next integer above nΓ.
Thus there is a direct procedure for generating the table:
x(n) is the next integer above nΓ, and y(n) = x(n) + n.

On the diagram of the solution of the First One Home game, if the lines
y = xΓ and x = yΓ are drawn in, it will be seen that the shaded squares lie along
the line y = xΓ on the upper arm, and along the line x = yΓ on the lower arm.
More precisely, the shaded squares on the upper arm are those squares where
the line y = xΓ crosses the left edge, and those on the lower arm are the
squares where the line x = yΓ crosses the bottom edge.

To draw in the line y = xΓ, place the point of a compass on the point (2,1),
and the pencil on (0,0), and draw the arc through (0,2) and (1,3) which will
cross the line x = 2 at (2, 1 + √5).  The line through this last point and (0,0)
is the required line y = xΓ for the upper arm, and the line x = yΓ for the lower
arm can be found similarly.
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