
Introduction

This study was conducted to reveal how students at university level justify
their solutions to tasks with various degrees of difficulty. The study is part

of a larger study of students’ concept formation of limits. The mathematical
area is limits of functions. The study was carried out at a Swedish university at
the first level of mathematics. The results are, however, applicable to other
countries as well since students meet similar challenges in their learning of
limits. I have, in discussions with some Australian mathematics teachers at
university level, found out that the topics taught in basic mathematics courses
in Australia are similar to Swedish courses. Two groups of students taking the
same course in successive semesters have been solving tasks. Their solutions
are categorised here and analysed to create a picture of how students reason
about limits.

Background and questions

When students take a course in analysis, they solve a vast number of tasks.
They can check if they got correct answers and then continue to work with
their problems; but what can be said if some of the solutions are correct for
the wrong reasons or wrong by accident despite a thorough attempt? This
could lead to serious errors in the students’ mental representations of the
concept at hand. For a mathematics teacher, to be able to assist his or her
students, it is essential to be aware of the different ways students justify their
claims. In this study I address the following questions: 

• How do students solve problems with limits?
• How do they explain their solutions?
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Theoretical background

About problem solving in general
Mathematics is often expressed with symbols operated by certain rules. The
rules have to be known to an individual engaged in mathematical activity and
they can be memorised. This is not enough if he or she wants to understand
mathematics though. Instead of only memorising formulas and procedures,
the individual needs to have an exploring attitude to problem solving
(Schoenfeld, 1992). Pólya (1945) describes a way to go about it in terms of
decomposing and recombining. The problem is at first considered as a whole,
then details are examined to give more information for the solution process.
The details are combined in different ways and this may give a new perspec-
tive to the problem as a whole.

Students learn new and improved methods for problem solving as they
take courses in mathematics. This means that they eventually can have quite
a few methods to choose from, both new and old ones. When an individual
encounters a problem he or she might not fetch the optimum solution
method from the mind (Davis & Vinner, 1986; Pólya, 1945). This is not the
same as saying that the student cannot solve the problem in a better way. We
cannot know what strategies are available in an individual’s mind, but we can
see the chosen method. The students’ actions are shaped by their abilities
(Star, 2000). Whatever effective and numerous methods a person has in his
or her mind, if they are unreachable at the time they are needed, they are of
no use.

A concept image is the total cognitive representation of a notion that an
individual has in his or her mind (Tall & Vinner, 1981). It might be partially
evoked and different parts can be active in different situations leading to
possible inconsistencies. An individual’s concept image might differ from the
formal concept definition or the concept image in itself can be confusing or
incoherent. It may be that an individual is convinced that limits are upper or
lower bounds, impossible for the function to pass or even to reach (Cornu,
1991). Then his or her concept image is incompatible with the formal
concept definition. Such confusion on a critical issue may provoke the indi-
vidual to try to understand how it should actually be, but there is also the
danger of giving up because of the obstacle.

Lithner (2000; 2003) describes, influenced by Pólya, different types of
reasoning in problem solving. He states plausible reasoning (PR) to be if the
argumentation in the reasoning structure:

(i) is founded on intrinsic mathematical properties of the components

involved in the reasoning, and

(ii) is meant to guide towards what probably is the truth, without necessar-

ily having to be complete or correct. (Lithner, 2003, p. 33)

Established experience (EE) is at hand when the argumentation:

(i) is founded on notions and procedures established on the basis of the

individual’s previous experiences from the learning environment, and
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(ii) is meant to guide towards what probably is the truth, without necessar-

ily having to be complete or correct. (Lithner, 2003, p. 34).

Identification of similarities (IS) occurs when the reasoning satisfies the two

conditions:

(i) The strategy choice is founded on identifying similar surface properties

in an example, theorem, rule, or some other situation described earlier

in the text.

(ii) The strategy implementation is carried through by mimicking the

procedure from the identified situation. (Lithner, 2003, p. 35).

Lithner’s study showed that almost all the time the students in his study
spent on mathematics at home was devoted to exercises and IS was the
preferred way to reason. The students compared the problems with solutions
in the textbook to the problems they should solve and used the strategy from
the textbook. One problem for the students was to identify the essential
surface properties in order to select the correct procedure for the solution.
This way of reasoning has a weak foundation since it is based on memory and
not understanding. It is easy to make mistakes. The students did not display
much reflection on intrinsic properties or awareness of relations in the study.
The author suggests that one reason for this can be that the students are not
worried about their inadequate insight into the critical features and therefore
do not regard them as useful. This kind of judgement of their own capability
has occurred among the students in the study presented in this paper as well
(Juter, 2003). Many of the students were unable to solve non-routine tasks or
explain given solutions about limits of functions but they thought they had
control over the notion of limits anyway. This sense of control can come from
successful problem solving (Cornu, 1991) and the difficulties with a few non-
routine problems do not change that feeling.

Hiebert and Lefevre (1986) present a different perspective. They speak of
conceptual and procedural knowledge. Conceptual knowledge has an emphasis
on relations. The items of a notion are connected through relations and
together they form a mental web. A part of conceptual knowledge cannot be
thought of as a disjointed piece of information. Conceptual knowledge devel-
ops via construction of relations between items. The items can be other
relations or concepts where the connection can be between two (or more)
items that are existing already in the mind or between a new and an existing
item. When this connection is created, the result often becomes more than its
parts jointly (Dreyfus, 1991). Parts with no prior relations become connected
and suddenly more things fit together. Hiebert and Lefevre (1986) present
two levels at which relationships between items of mathematical knowledge
can be created. At the primary level, the connections are of the same or lower
degree of abstractness than the items that are connected. At the reflective level,
the relations are at a higher level than the connected items. At this level, the
relationships are often based on identification of similar crucial features in
seemingly different items. A relation can be at more than one level. Procedural
knowledge is divided in two parts (Hiebert & Lefevre, 1986). One is knowledge
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of the formal language of mathematics, that is the symbols and words we use
to represent the mathematics. Knowing this is not the same as knowing what
the mathematics described actually means. It is just the accepted forms that
are known. The other part consists of the algorithms used for solving tasks.
Characteristics of these algorithms are their step-by-step descriptions which
are similar to an assembly description for a shelf. There are no relational
needs except that one instruction follows the former one.

Mathematical knowledge needs links between conceptual and procedural
knowledge and both of them are essential for students to be able to perform
mathematics satisfactorily as I see it. Otherwise, the result might be that they
are able to produce an answer to a task but not to understand what they have
done. On the other hand students can have an accurate intuition for the
mathematics, but be unable to make the necessary calculations. Such links
can make it easier to remember algorithms and when to use each of them. If
there is a connection between an algorithm and the explanation to it, it is a
big help for the students when they are solving problems. Links to the under-
lying meaning of the symbols are also important for an individual to be able
to understand what is actually going on. Then it might be possible to rephrase
the task in an easier way and to use a preferred algorithm rather than a
perhaps harder one tied to the initial formulation of the task. Connections
from conceptual to procedural knowledge in the use of symbols make the
thinking smoother, according to Hiebert and Lefevre (1986). With a compact
symbolic representation it is easier to manipulate objects and processes and
detect their features. In this way, new knowledge can be formed. Powerful
procedures create more space for other thoughts necessary for completion of
the task.

Mathematical thinking in a problem solving situation is a dynamic process
and the relations between items of conceptual and procedural knowledge are
therefore vital (Silver, 1986). It is very rare that a person only shows evidence
of one sort of knowledge. Problem solving is an action involving different
kinds of knowledge. Non-standard tasks, but also easier tasks, can reveal rela-
tions between the different knowledge types. The former types generally
require understanding or interpretation of some kind and thereby the inter-
play becomes more visible.

School mathematics has a tradition of focusing on manipulation of
symbols rather than on understanding what the symbols represent (Davis,
1986). Davis suggests that experience of the mathematical area should come
before the symbols for it are introduced. Then the meaning of the symbols
will be familiar from the start and this will perhaps make problem solving less
demanding.

I consider the students’ reasoning and problem solving to be expressions
of their concept images (Tall & Vinner, 1981).

About problems related to limits
Infinity is a notion that can cause trouble. It is something for which an indi-
vidual has one or several intuitive representations (Tall, 1980). If there are
multiple, different representations evoked simultaneously, the result might
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be erroneous. When dealing with limits of functions one has no specific
method or algorithm as one has for diofantic equations for example. The
limit process appears potentially infinite and students can get the impression
that there is no end to it (Tall, 2001). It can be hard for them to work with
items that are confusing in identity. Is it an object or a process?

A common error in students’ concept interpretations of limits of functions
is that functions do not attain their limit values (Cornu, 1991; Tall, 1993; Tall,
2001; Szydlik, 2000). There is also a possible mix-up of f(a) and 

(Davis & Vinner, 1986). These two flaws combined can totally block students
in their struggle with tasks that could easily be solved with an equation for
instance.

When students meet the concept of limits at universities for the first time
they have already been working with functions and their graphs. The goals in
the curriculum for upper secondary school in Sweden do not mention limits
explicitly, but the students are expected to learn about derivatives and inte-
grals (Skolverket, 2003). This implies that limits of functions are discussed in
some form. The students at universities therefore have an existing concept
image of limits of functions that has been satisfactory in the contexts they
have worked in so far. Hence there is no need to learn the formal limit
concept to be able to analyse functions (Williams, 1991). The students have
to experience the need for further sophistication in their mathematical devel-
opment to adjust their perhaps blunt existing mental representation of limits.
Szydlik’s (2000) data implies that there is a connection between the under-
standing of limits and functions and infinitesimals. Students who used
infinitesimal language in their descriptions of limits did not show evidence of
increasing alternate conceptions of limits. Their ability to solve problems
about limits was not diminished either. Infinitesimals can on the other hand
have the opposite effect too. Milani and Baldino (2002) found cases where
students had trouble with their concept images of infinitesimals and limits.
Images and definitions of limits were different but this was not the case for
infinitesimals. The authors ask the question whether students perceive defi-
nitions as useful for their mathematical activities.

The definition of the limit concept often causes difficulties for students
(Cornu, 1991; Juter, 2003; Vinner, 1991). The students’ concept definitions
are not always compatible with the formal concept definition and that can
cause an incoherent concept image with different rules for different situa-
tions. If a problem is stated in a manner that is not specifically represented in
the students’ concept images, there can be more than one representation
evoked in the effort to solve the problem. This can make the students
confused and unable to proceed.

There are many things that can disturb the solving process. The goal of
this study is to find out more about the students’ solution strategies when
solving problems involving limits of functions and the justifications of their
choices.
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The study and the students

The students in this study were enrolled in a 20 week, full time course in
mathematics. They were learning analysis and algebra at basic University
level. In the Spring Semester of 2002, 111 students solved Task 1 to Task 3
described below. They had treated limits of functions in the course and it was
nothing new for them. Eleven days later they were given Task 4 and Task 5.
There were 87 students who participated in that session. The last set of tasks
provided solutions that could be wrong or incomplete. This was stated on the
sheet with the tasks and the students were to give a complete and correct solu-
tion to each task. A new group of 78 students tackled the same tasks the
following Semester (Autumn of 2002). They were all given the five tasks at the
same time, after the notion of limits of functions had been dealt with. The
group was smaller than the previous Semester and one reason is that the
students who had biology or chemistry as a main topic were offered another
course more suitable for them but this was not an option for the students in
the Spring Study. In both cases, the tasks formed part of three questionnaires
along with questions about limits and attitudes towards mathematics in
general. Two interviews with each of 15 of the students were conducted in the
Autumn Study (Juter, 2003). The first three tasks in this presentation were
slightly altered in the Second Study since many of the students misinterpreted
or did not understand what the tasks were about. The change was from “Can
the function f(x) = 2x + 3 attain the limit value?” to “Can the function 
f(x) = 2x + 3 attain the limit value in 1a?” with respective functions in Task 1
to Task 3 below.

Method 

The tasks were constructed to focus on different aspects of the limit concept.
The degree of difficulty varied to identify the level the students could handle.
I explained what I wanted the students to do and at each session they
responded to the questionnaires to make sure that it was clear to them.

The collected data has been rewritten and categorised with the aid of the
computer program NUD*IST (N6, 2003). The categories were decided from
the raw material. I did not create them in advance, other than that the right
and wrong answers made different categories. There were subcategories in
each of them based, on the students’ justifications of their responses. They
were chosen from the different reasons the students used for their solutions.
This process led to a number of categories. Categories with similar types of
reasoning were merged together to make the presentation more accessible.
Some solutions are in more than one category since some students gave more
than one solution or solutions that fitted more than one category for other
reasons. This way to work with the data gave different types of category
systems for the different tasks.
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Empirical data

Examples of typical student answers are provided in a table after each task.
The tables also include the number of students from each semester in each
category. The numbers within brackets are percentages of participating
students in each class. (R) indicates that the answer is right and (W) denotes
a wrong answer.

Task 1
a) Decide the limit: . 
b) Explanation.
c) Can the function f(x) = 2x + 3 attain the limit value in 1a?
d) Why?

Table 1(i). Typical student answers in the categories for Task 1a–b. Number of students (%).

Table 1(ii). Typical student answers in the categories for Task 1c–d. Number of students (%).
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Category 1a 1b Spring
2002

Autumn
2002

Tends to (R) 9 x tends to 3 2x+3 becomes close to 9 39 (35) 33 (42)

Replace x by 3
(R)

9 2 × 3 + 3 = 9 37 (33) 19 (24)

Mixed (R) 9 x tends to 3 and 2 × 3 + 3 = 9 9 (8.1) 9 (12)

Theory (R) 9 Continuous function that attains the
function value in the point 3

7 (6.3) 3 (3.8)

No explanation
(R)

9 – 9 (8.1) 8 (10)

Wrong or empty The answer is either wrong or
missing

12 (11) 16 (21)

Category 1c 1d Spring
2002

Autumn
2002

Theory (R) Yes The function is continuous in the
point

22 (20) 23 (29)

Replace x by 3
(R)

Yes 2x + 3 = 9 for x = 3 22 (20) 21 (27)

No explanation
(R)

Yes 15 (14) 8 (10)

Limits not attain-
able (W)

No A function does not attain the limit
value, it only comes very close, it is
in the definition

9 (8.1) 10 (13)

No reason (W) No – 3 (2.7) 3 (3.8)

Empty or 
misinterpretation

The answer has no connection to
the question or is missing

40 (36) 16 (21)



Task 2

a) Decide the limit: . 

b) Explanation.

c) Can the function attain the limit value in 2a?

d) Why?

Table 2 (i). Typical student answers in the categories for Task 2a–b. Number of students (%).

Table 2 (ii). Typical student answers in the categories for Task 2c–d. Number of students (%).
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Category 2a 2b Spring
2002

Autumn
2002

Exclude –2 & 1
(R)

1 The x3 terms dominate, –2 and
1 insignificant as x → ∞

53 (48) 32 (41)

Algebra (R) 1 Divide with x3, 17 (15) 28 (36)

No explanation
(R)

1 – 6 (5.4) 4 (5.1)

Algebra (W) –2 x3 cancel out since it is the same
number

17 (15) 12 (15)

Infinity reason
(W)

Does
not exist

Divided by infinity 11 (10) 0 (0)

Empty or 
misinterpretation

The answer has no connection
to the question or is missing

10 (9) 9 (12)

Category 2c 2d Spring
2002

Autumn
2002

x3 – 2 ≠ x3 + 1
(R)

No x3 – 2 can never be equal to
x3 + 1 for the same value of x

7 (6.3) 17 (22)

–2 & 1 (R) No terms –2 and 1 will always
remain

7 (6.3) 5 (6.4)

No explanation
(R)

No – 18 (16) 8 (10)

Infinity reason
(W)

No Since x never attains the value
∞

16 (14) 21 (27)

Theory (W) No The function tends to the limit
value, it does not attain it

7 (6.3) 6 (7.7)

No reason (W) Yes – 15 (14) 7 (9.0)

Empty or 
misinterpretation

The answer has no connection
to the question or is missing

42 (38) 17 (22)



Task 3

a) Decide the limit: . 

b) Explanation.

c) Can the function attain the limit value in 3a?

d) Why?

Table 3 (i). Typical student answers in the categories for Task 3a–b. Number of students (%).

Table 3 (ii). Typical student answers in the categories for Task 3c–d. Number of students (%).

lim
x →∞

x 5

2x
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Category 3a 3b Spring
2002

Autumn
2002

Exp. dominant
(R)

0 2x grows faster than x5 80 (72) 64 (82)

No explanation
(R)

0 – 6 (5.4) 3 (3.8)

Infinity or no
limit (W)

∞ x5 is larger than 2x when x is large 11 (10) 7 (9.0)

Empty or 
misinterpretation

The answer has no connection to
the question or is missing

17 (15) 4 (5.1)

Category 3c 3d Spring
2002

Autumn
2002

x = 0 (R) Yes For x = 0 → f(0) = 0/1 = 0 15 (14) 16 (21)

No explanation
(R)

Yes – 5 (5) 6 (7.7)

Does not reach
limit (W)

No We can only get infinitely close 14 (13) 16 (21)

x5 ≠ 0 or 0/0
(W)

No Then the numerator has to be zero
and it never is

22 (20) 12 (15)

Right for wrong
reason (W)

Yes Because the denominator attains a
much larger number for large x

5 (5) 16 (21)

Empty or 
misinterpretation

The answer has no connection to
the question or is missing

47 (42) 12 (15)



Task 4:
Problem: Decide the following limit value: .

The students were given the following:

Solution: when x → 1.

The task was for the students to decide the proper adjustments to make
the solution correct:
Adjustments (What changes or complements are needed and why?):

Table 4. Typical student answers in the categories for Task 4. Number of students (%).

Task 5
Problem: Decide the following limit value: .

The students were given the following:

Solution: . 

We know that when x → ∞ and when x → ∞.

The limit value implies that when x → 0.
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Category 4 Spring
2002

Autumn
2002

Both sides (R) x → 1 from minus or plus 18 (21) 28 (36)

One side (R)
Incomplete

As x → 1 the denominator becomes nega-
tive

10 (11) 5 (6.4)

Dominant factor
(W)

15 (17) 12 (15)

Reasoning (W) x tends to 1 hence it can not be infinite 14 (16) 18 (23)

No change (W) It is entirely correct! 8 (9.2) 4 (5.1)

Empty or
unclear

The answer is missing or does not make
any sense

24 (28) 17 (22)



The task was for the students to decide the proper adjustments to make
the solution correct:

Adjustments (What changes or complements are needed and why):

Table 5. Typical student answers in the categories for Task 5. Number of students (%).

Analysis 

The students’ solutions to Task 1a–b are mainly correct. The correct solutions
were divided into categories, with most responses falling into two categories.
The second category explicitly suggests that the limit value is attainable and a
large proportion of the students have chosen this way to solve the task. An
even larger number of the students solved the task in words of approaching
the limit value. The idea that limits are not attainable comes again in Task
1c–d where students use this as an argument for the function not to attain the
value 9. It is a documented fact that some students have this misinterpretation
of the limit value definition (Cornu, 1991; Tall, 1991). Some students do not
separate the part with the limit value from the part with the function, that is
they mix up f(a) and as Davis and Vinner (1986) describe. If the
students have the conviction that limits are unattainable, there might be
problems analysing the function. This is something that follows through Task
1 to Task 3. A large part of the students did not answer or answered Task 1c–d
in a way that did not make any sense. Some wrote that it depends on what x
tends to and this is the reason for the additional words in the formulation of
the task in the autumn of 2002. The result of the change is that this category
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Category 5 Spring
2002

Autumn
2002

All right (R) 10 (11) 17 (22)

Part right (R)
Incomplete is not the same thing as 

therefore you cannot use limit values on
limit values

9 (10) 11 (14)

Reasoning (W)
→ 0 when x → ∞

so the denominator has to go → 0 
and the expression → ∞

31 (36) 18 (23)

No change (W) Nothing 4 (4.6) 1 (1.3)

Empty or
unclear

The answer is missing or does not make
any sense

33 (38) 32 (41)



contained a smaller number of students the second semester. This applies for
all the c–d questions.

Task 2 is harder for the students to handle and one serious problem is
algebra. There are several students who think that x3 in the numerator and
the denominator are cancelling out in a way that erases the terms and leaves
only the constants or that x3 can be replaced by 1 with a similar reasoning.
There are more students in the autumn study using algebra in a correct
manner to solve the task than in the spring study. The majority of the students
are unable to solve Task 2c–d. One problem is attainability as discussed above.
Only some students regard this problem as an equation to solve and this is
obvious in Task 3c–d as well. Twenty-two percent of the students in the
autumn study solved Task 2c–d with an equation in a correct way whereas the
corresponding figure in the Spring Study is 6.3. Eight students from each
semester abused the equal sign and wrote 

in their explanations in Task 2b. Their results are in the column “Exclude –2
& 1 (R)”.

Task 3a–b is a standard limit value that is well known to the students apart
from about 10% who got it backwards (“Infinity or no limit (W)”). There are
fewer categories for this task since over 70% of all the students used the stan-
dard limit value reasoning. The problems come in Task 3c–d where the mix
up of limits and functions is clear. Students claim that x is never zero since x
tends to infinity, but this has nothing to do with the functions ability to attain
the value 0. Algebra is a problem for some students here too. Some believe
that 20 = 0, for example.

Task 4 offers a challenge for many students. Forty-six of the 165 students
were able to solve the task completely. One mistake many made was to use the
dominant factor and divide, but that is not solving the problem with left and
right limit value. This method is often used when x tends to infinity and the
students seem to just go through the motions without considering the char-
acteristics of the task they are involved with.

Task 5 is apparently the most demanding one since only 26 of all the
students managed to solve it properly. The 20 students in the “Part right (R)
Incomplete” category were also correct but they did not give the limit value,
they only pointed at the inaccuracy so they might or might not be able to
carry out the calculations. The majority of the students either left the task
unsolved or reasoned incorrectly.

Discussion

The tables show that the students’ explanations of choices of solutions vary.
They are good at finding limits in the first three tasks. The problems seem to
come when the tasks are a bit different from what the students are used to. A
task can be a problem for one student but just routine for another
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(Björkqvist, 2001; Grevholm, 1991) and this obviously leads to different
outcomes for the students. Part c and d are not mathematically more
demanding than the other parts of Task 1 to Task 3 but there is something
that troubles the students in them. The outcome might have been different if
the parts were not presented together. The students were working in the
context of limits when they were asked to examine the functions for attain-
ability. The effect was that the functions were only considered locally in some
cases and the misconception that limits are unattainable (Cornu, 1991; Tall,
1993; Szydlik, 2000) made some students claim that the function could not
attain the value even if it obviously could (Task 1 and Task 3). There were also
other types of confusion. One student from the Study in the Autumn of 2002
answered Task 1 like this:

1a: → 9

1b: If x → (=3) the result becomes 9, the function will never attain that. 

1c: Yes.

1d: If you let x → 3.

The confusion of functions with limits of functions is a problem that indi-
cates a lack of relations between the concepts. If the students were more
confident about the roles and possibilities of the notions they would have a
better chance to solve problems correctly. An insufficient mathematical base
to work from can cause constraints on the individual, in that he or she is not
sure what operations are allowed and how to carry them out. This uncertainty
can be the reason for the many empty answers.

Infinity is obviously an element that can cause confusion (Tall, 1980). All
tasks revealed problems with infinity in different degrees. One thing that is
connected with infinity is the notion of local limits in a wider context. Table 5
indicates this by the categories “Reasoning (W)” and “No change (W)”. Many
students are reasoning about the local limits for the functions 

and 

separately or dissect the given function in other ways and locally consider
limits. The students follow part of Pólya’s (1945) model with decomposing
and recombining, but the recombining to check at the whole again is over-
looked. The students’ reasoning hints an attempt for plausible reasoning or
established experience (Lithner, 2003), but there appears to be a lack of parts
in the mental web that represents this fraction of the concept image (Tall &
Vinner, 1981) since they do not have access to the essential information about
the properties of the limit process and functions. The development of
conceptual knowledge (Hiebert & Lefevre, 1986) has not had a satisfactorily
progress.

Table 4 shows an example of identification of similarities (Lithner, 2003)
as the students in the category “Dominant factor (W)” use a solving technique
that is usually effective on rational functions as x tends to infinity. Here the
students recognise the rational function but they do not consider what x
tends to. The resemblances at first sight are not the same on all crucial points
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and the chosen method is not working any better than the given solution.
This task requires reasoning rather than an algorithm.

The choices of methods seem to be triggered by first sight resemblances in
other cases too. There are comparisons with standard limit values. Sometimes
the method is working, as it did for most students’ solutions to Task 3a–b.
Other times it does not work, as for some suggested solutions to Task 5. The
students do not appear to have a global view of the important characteristics
of the mathematics at hand. The effect of this can be that critical features are
overlooked and the solution is beyond the possibility to reach for the
students.

Table 2(ii) and Table 3(ii) show examples of solutions with correct answer
and wrong explanation. The students from the autumn study do this to a
higher extent than the other students which can be due to various reasons
since the two groups learn mathematics under different circumstances. This
is something that students must be confronted with to be able to repair. The
textbook only gives the answer and not a full solution to the tasks so the first
confrontation is in the worst scenario at the exam. If the students have used
the wrong arguments for a long time, an adjustment can be hard to make.
The students represented in Table 2(ii) who have answered correctly with no
explanation can also belong to the category of students with correct answer
for the wrong reasons since we do not know why they answered the way they
did.

Algebra is the reason for a number of mistakes. Many of the algebraic
errors are serious. Table 2 (i) shows the existence of some of them, but there
are similar errors in other places too. Some examples are:

These examples expose a lack of knowledge in basic calculation rules that
should not exist at university level. Investigations at upper secondary school
and among student teachers in mathematics show that students find it hard
to work with algebra and similar mistakes as those in this study are common
(Grevholm, 2003; Olteanu, Grevholm & Ottosson, 2003). If the solution
process is hindered by such matters, there is much for the students to work
with to improve their concept images. The students have to be aware of the
problems before they feel a need to alter anything and if the errors are not
discovered nothing will happen. 
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Conclusion

I have shown students’ different types of solutions to tasks about limits of
functions and how they are explained. A variety of solutions of different accu-
racy appeared in the study. I did not expect to see so much confusion about
functions and limits of functions or the problems caused by algebra. These
are examples of problems related to what is allowed and what is not. The large
number of correct solutions based on wrong facts is also a serious problem
that shows that, for many students, connections between concepts are wrong
or not there at all. Perhaps students need to experience a larger variety of
problems to understand the rules and properties of mathematics better.
Problems that demand thought and provoke the students’ concept images
give opportunities for the students to make appropriate adjustments. Then
they would probably get to know vital intrinsic properties for notions at a
deeper level as well. Large groups of students and time shortage make this
kind of extra effort to help students very hard to carry out, but students
should be able to see the core of the mathematics they work with and to
recognise its characteristic features. These abilities can be developed if teach-
ers can provide an environment that inspires the students to discuss
mathematical issues.

Despite all errors and misunderstandings that have been documented
here, there are skilful problem solvers among the students and that is some-
thing we must not forget. One goal of our teaching is to make able problem
solvers of as many students as possible. We need not only to know how the
mathematically weak students reason but also how the mathematically devel-
oped students do it. 
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