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Traditionally, students learn arithmetic
throughout their primary schooling, and this
is seen as the ideal preparation for the
learning of algebra in the junior secondary
school. The four operations are taught and
rehearsed in the early years and from this, it is
assumed, “children will induce the funda-
mental structure of arithmetic” (Warren &
Pierce, 2004, p. 294). Recent research has
shown that the emphasis on computation can
actually lead to many misconceptions in the
students’ minds, which in turn will make the
learning of algebra more difficult.

This article will focus on two categories of
student misconceptions, the first concerns
difficulties with the notion of equivalence and
the second concerns difficulties with the appli-
cation of the four operations. The last section
of the article presents suggestions on easing
the transition to algebra through problem-
solving.

Student misconceptions 
of equivalence

Falkner, Levi and Carpenter (1999) asked 145
American grade 6 students to solve the
following problem: 

8 + 4 = + 5

All the students thought that either 12 or
17 should go into the box. Referring to the
same study, Blair (2005) reports: “It became
clear through subsequent class discussions
that to these students, the equal sign meant
“carry out the operation”. They had not

learned that the equal sign expresses a rela-
tionship between the numbers on each side of
the equal sign.” This is usually attributed to
the fact that in the students’ experience, the
equal sign always “comes at the end of an
equation and only one number comes after it”
(Falkner et al., 1999, p. 3). One expert has
suggested to me that another possible origin of
this misconception is the “=” button on many
calculators, which always returns an answer.

Figures 1 and 2 show two typical responses
from my Year 8 class to the question: “Explain
the meaning of the ‘=’ sign” (Toth, Weedon &
Stephens, 2004). One third of the class (nine
out of 27 students) gave an operational defini-
tion despite the fact that we had previously
discussed the meaning of the equal sign in
that class. 
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Figure 1. Relational and operational understanding
of the equal sign by a Year 8 student.

Figure 2. Relational and operational understanding
of the equal sign by a Year 8 student.
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While all of my Year 8 students are capable
of solving problems such as the one above,
those with an operational understanding of
the equal sign perform the sum on the left
hand side (8 + 4 = 12) and then resort to
different strategies to find the missing number
on the right. Having found that number, they
then perform the operation on the right hand
side in order to verify their answer. In contrast,
those with a relational understanding of the
equal sign recognise that the missing number
must be one less than 8, since it is being
added to a number that is one more than 4.
Figures 3 and 4 contrast two students’ justifi-
cations of the truth of the equation: 46 + 33 =
45 + 34. Clearly, those with an operational
understanding can establish the truth of the
statement, but their understanding proves to
be a hindrance when learning algebra.

equal sign and change their sign. I recently
asked my Year 11 students to explain to me
how they understood this method, and their
answers are best summed up by the following
statement from one of them: “It gets zapped by
the equal sign!” Clearly, while the justification
of that method may have been taught, the
practice of taking terms over to the other side
does nothing to address students’ misunder-
standings of equivalence.

Equivalence and 
teacher discourse

Booth (1986) suggests that teachers should
emphasise the equivalence of an equation in
the way they read number sentences. For
instance, when working with the sentence 
“2 + 3 = 5”, teachers should sometimes read
the left hand side as “the number that is 3
more than 2”, and avoid reading the equal sign
as “makes” as this reinforces the operational
meaning of the sign (p. 4). This use of
language is not lost on curriculum writers.
The following performance indicator comes
from level 1 (prep.) of the Curriculum
Standards Framework II, used in Victorian
schools at the time of writing: “Use materials
and models to develop and verbalise
part–whole relationships (e.g., 6 is 5 and 1
more, two more than 4, one less than 7,
double 3)” (2000, p. 31). 

Building generalisations 
in arithmetic

Recent research is suggesting that students
need to be helped, from an early age, to
construct valid generalisations of the arith-
metic operations. Fuji and Stephens (2001)
introduce a concept built on elements of the
Japanese program which they call a quasi-
variable. They define this term as “a number
sentence or group of number sentences that
indicate an underlying mathematical relation-
ship which remains true whatever the
numbers used” (p. 260). For instance, before
students are able to understand an equation
expressed as a – b + b = a, they can be intro-
duced to equations such as 78 – 49 + 49 = 78.
The truth of this relationship is independent of

Figure 3. Application of the relational and
operational understandings of the equal sign.

Figure 4. Application of the relational and
operational understandings of the equal sign.

When teaching students to solve equations,
we teach them the necessity of doing the same
thing to both sides. This is “particularly impor-
tant as students encounter and learn to solve
algebraic equations with operations on both
sides of the symbol (e.g., 3x – 5 = 2x + 1)”
(Knuth, Alibali, McNeil & Weinberg, 2005,
p. 69). Unless a student understands that this
rule exists to preserve the equality of both
sides, then that student will have little chance
of experiencing success. Teachers often pass
over these difficulties by teaching their
students to take terms to the other side of the
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the number 78 “provided the same number is
taken away and then added back” (p. 260). If
such use of numbers is followed by class
discussions, students can arrive at mathemat-
ical generalisations.

Falkner et al. found that, with guidance,
students at first and second grade levels were
able to make such generalisations as: “Zero
added to another number equals that other
number”, and “any number minus the same
number equals zero”. In the same study,
fourth and fifth grade students were able to
explain the commutative law by generalising
that “when you multiply two numbers, you
can change the order of the numbers” (p. 2).

Student misconceptions of
mathematical structure

Warren (2003) administered a written test to
672 students in grades 7 and 8 in two
Brisbane schools. Neither group had as yet
received formal training in algebra. She found
that subtraction was regarded by 16% of the
students as commutative, as was division by
18% of them. This means that they considered
the following statements to be true: 

2 – 3 = 3 – 2
2 ÷ 3 = 3 ÷ 2

Knowledge of the commutative law necessi-
tates exposure to subtractions with a negative
result and divisions with a result that is less
than one. In interviews I conducted with six
Year 7 students, I found that they recognised
that division was not commutative. The
reasons four of these students gave were
concerned with the fact that dividing a
number by a larger one “does not make sense”
or “gives a really small number, like a negative
number!” It is possible that these students’
experiences with division were limited to whole
number quotients. So, in addition to the
excessive emphasis on computation, it may be
that a limited experience with computation is
another source of misconceptions.

In Warren’s study, more students had
trouble with the associative law, 17%
answering false to a sentence involving addi-
tion, and 21% answering true to one involving
subtraction. The New South Wales curriculum

(Board of Studies NSW, 2002, pp. 74–75)
includes the following objectives at stages 1
and 2:

• building addition facts to at least 20 by

recognising patterns or applying the

commutative property, e.g. 4 + 5 = 5 + 4

• relating addition and subtraction facts for

numbers to at least 20, e.g. 5 + 3 = 8; so 

8 – 3 = 5 and 8 – 5 = 3

• applying the associative property of addi-

tion and multiplication to aid mental

computation, e.g. 2 + 3 + 8 = 2 + 8 + 3, 2

× 3 × 5 = 2 × 5 × 3

Facilitating a relational
understanding of the operations

Gunningham (2004) describes buying lunch
from a former student of hers. The student
struggled to work out the correct change as
she endeavoured to apply the subtraction
algorithm she had learned at school. The
author suggests that a better way of teaching
number skills is to present students with
authentic tasks where the numbers mean
something. An enduring memory of my initial
teacher training is a video we were shown in
our very first mathematics method lecture. It
was a video recording of interviews with
primary students who were given “take-away
sums” to perform. The success of these
students was very limited. However, when
asked more complex subtraction problems in
the context of buying bars of chocolate, they
were able to solve them mentally and describe
their strategies in clear terms. 

Before teaching my Year 8 class to find the
percentage of a quantity, I asked them how
they would work out the discount on a shirt
that normally costs $40, if the store had a 15%
sale. One student, Jackie, described her
strategy of working out 10% of $40, which she
found by dividing 40 by 10, and then adding
half of that amount. Hence, 15% of 40 is the
same as 

My regret is leaving the strategy at that and
launching into teaching the more standard
algorithm: 
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A student who experienced a lot of success
with this algorithm came back from the mid-
year break and asked me to spend some time
teaching her Jackie’s method as she had
found the standard algorithm too difficult to
apply when shopping!

The idea of allowing students to discuss
their intuitive strategies and helping them
build on those is gaining currency in recent
research. Carpenter, Levi, Franke and
Zeringue (2005) report on interviews with two
primary students, one of whom is described as
“a fairly typical student in the class [who] was
actually struggling more than most of the
students, but she was learning with under-
standing” (p. 55). This student, referred to as
Kelly, struggled with her multiplication tables,
but used the distributive law to combine
smaller multiplications with which she was
more comfortable. For instance, she broke
4 × 6 into 2 × 6 + 2 × 6 and got 32! When
encouraged to check her answer, she said: “4
times 6 is 24, because 10 and 10 is 20, and 2
and 2 is 4, put those together and its (sic) 24”
(p. 56).

Redefining algebra: 
Problem modelling and solving

Some researchers widen the definition of
algebra and regard it as being more than a
system of symbols. Instead, they concentrate
on algebraic thinking, which “can be inter-
preted as an approach to quantitative
situations that emphasises the general rela-
tional aspects with tools that are not
necessarily letter symbolic, but which can ulti-
mately be used as cognitive support for
introducing and for sustaining the more tradi-
tional discourses of school algebra” (Kieran,
1996, cited in Johanning, 2004, p. 372). The
idea behind this approach is to discover
students’ informal strategies in solving prob-
lems. These strategies are then used as a
foundation for teaching the students to model
the problem and their solution using symbolic
notation. This may be the intent of the writers
of the Victorian Essential Learning Standards,
which will be implemented as of 2006, when
they state: “Students identify variables and

related variables in everyday situations, and
explain the ideas of change, dependency and
allowable values in relationships between
pairs of variables” (Victorian Curriculum and
Assessment Authority, 2005, Mathematics
Level 4, Standards, Structure, paragraph 2).

Johanning gave two worded problems to 31
students in grades 6 to 8 who had not yet
learned algebra and whose exposure to
problem solving was limited. One of these was
the “candy bar” problem:

There were three kinds of candy bars being

sold at the concession stand during the

Friday dance. There were 22 more Snickers

bars sold than Kit Kat bars and there were 32

more Reese’s Peanut Butter Cups sold than

Kit Kat bars. There were 306 candy bars sold

in all. How many of each kind of candy bar

was sold?(p. 374)

Nine out of the twelve students who elected
to solve this problem did so successfully, and
seven of those used a systematic guess and
check. The difference in the solutions was
mainly in the quantity which the students
guessed first. Three approaches were
observed:
(a) Most started with the number of Kit Kat

bars, as this was the smallest quantity.
To that, “they added 22 to find the
number of Snickers bars. Next, they took
the number of Kit Kat bars and added 32
to find the number of Reese’s Peanut
Butter Cups. Finally, the amounts of the
three candy bars were totalled to see if
the sum was 306” (p. 378).

(b) One student began by guessing the
number of Reese Cups and used
subtraction to obtain the other two
quantities.

(c) One student adjusted the first approach
in that he guessed the number of Kit Kat
bars, multiplied it by three, and then
added 22 and 32. 

While not explored in the study, Johanning
proposes that such problems could form the
basis of teaching algebra, with symbolic nota-
tion being introduced to model the students’
solutions. For instance, the solution in (a) can
be modelled as n + (n + 32) + (n + 22) = 306,
while (c) can be modelled as 
3n + 22 + 32 = 306.
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Using intermediate
representations

In this section, I present examples from two
research projects that have taught students
algebra through realistic tasks. Both have
used the students’ intuitive solutions and
encouraged them to develop their own
symbolic representations. The researchers
then built on those intermediate representa-
tions in teaching them formal algebra. I hope
that these examples will show that students
do have abilities which, if allowed to come to
the fore, can form a sound basis for our
teaching.

In Montreal, Bednarz worked with 24
students in secondary 2 (13 and 14 years old)
who had been identified as having “low-
ability”. She aimed to build on these students’
experiences with problem-solving in arith-
metic. She argues that continuity with
arithmetic can be achieved through a gradual
“complexification of reasoning procedures”
(2001, p. 71) and the use of problems that
show the advantage of using a symbolic
language, thus endowing the symbols with
meaning. Towards the end of the intervention,
the following problem was posed with the aim
of forcing the students to concentrate on the
relationships between three unknown quanti-
ties:

A son (hired by his father to do an inventory)

left him the following message: three types of

articles were counted. There are 2 times more

rackets than balls, and 3 times more hockey

sticks than rackets. (p. 74)

The students had to model the problem
using multiple representations. An example is
given of a student who drew three columns of
symbols. In the first column, a symbol is
drawn to stand for the total number of balls.
In the second, two symbols of the same type
are presented to stand for the number of
rackets (which is twice that of balls). The third
column contains six such symbols to repre-
sent the number of hockey sticks. The same
student then proceeded to define variables to
model the problem using the letters b, r and h
which he used in two letter-symbolic equa-
tions. A description in words was also
presented, followed by a restatement of the

standard equations using pictures of the balls,
rackets and hockey sticks. 

Brizuela and Schliemann (2003) used a
similar approach of posing problems and
inviting students to develop multiple represen-
tations. They write of the success of some
grade 4 students, with whom they had worked
from the time they were in grade 2, at solving
equations. The following problem was posed:

Two students have the same amount of
candies. Briana has one box, two tubes, and 7
loose candies. Susan has one box, one tube,
and 20 loose candies. If each box has the same
amount and each tube has the same amount,
can you figure out how much each tube holds?
Each box? (p. 3).

Samples are presented by the author of
students representing the problem with
pictures and solving for the unknowns. Of
particular interest is one student’s sophisti-
cated solution which starts by modelling the
problem as: 20 + 1N + J = 7 + 2N + J. The
student then proceeded to eliminate common
terms from both sides, to obtain N =13. He
explained: “I broke 20 into 7 and 13. Then
matched 7 and 7. Then broke 2N into N and N
and matched them. Then 13 = N” (p. 3). 

As these examples show, students can
surprise us if we give them meaningful prob-
lems and the necessary support, trust and
time to discuss and solve them. 

Conclusion

This article has discussed some of the miscon-
ceptions that many students have at the end
of their primary years of schooling. It has
argued for the promotion of a relational under-
standing of equivalence and the four
operations in the primary school. The article
has also attempted to present some sugges-
tions for building a bridge between arithmetic
and algebra through problem-solving. A
common theme in all the cited research is the
necessity to expose students to arithmetic in a
variety of contexts and to allow them to
discuss their intuitive solutions. 

The transition to algebra can be eased if we
acknowledge that our students need explicit
assistance from us to see its relationship with
arithmetic, and if we show them that algebra
is a tool for them to model realistic situations.
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Current approaches confuse students,
presenting algebra as the art of manipulating
symbols. This art is made up of arbitrary rules
to be remembered, it is hoped, until the unit of
work is finished and the test is passed. Year
after year, we teach the students the same
skills and lament their lack of proficiency. We
need to break this cycle and make room for
meaningful tasks that build a good under-
standing in the middle years.

Finally, I must acknowledge the many limi-
tations of this article. Among those is the
absence of a discussion of the misconceptions
related to the concept of a variable and the
uses of technology and manipulatives.
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