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Hardy’s second “elegant” proof
— the Pythagorean school’s irrationality of \2

One of the most interesting and important
proofs in the history of mathematics is the
Pythagorean school’s proof of the “irra-
tionality” of V2. After a brief look at G. H.
Hardy’s (1941) thoughts regarding it, two
versions of the classic Pythagorean proof are
examined and discussed, one written by an
American professor (King, 1992) and the other
by an Australian mathematician, author and
lecturer (Arianrhod, 2003). A 16-year-old
student of Vietnamese/Chinese background is
asked to prioritise the versions — which
version is easiest to understand?

Proofs are an important part of what makes
mathematics what it is, yet the challenges they
present for students are generally unstated.
One of the aims of the new mathematics
curriculum document due for implementation
in 2006, the Victorian Essential Learning
Standards, or VELS (VCAA, 2005) for years
Preparatory to 10, reads as follows: “develop
understanding of the role of mathematics in
life, society and work; the role of mathematics
in history; and mathematics as a discipline —
its big ideas, history, aesthetics and philos-
ophy” (Victorian Curriculum Assessment
Authority, 2005, p. 5).

Algebra is one of the “big ideas” in mathe-
matics, as is proof. Devlin (2001) laments the
passing of the formal teaching of geometry and
comments that it was the only class in the
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high school curriculum that exposed students
to “the important concept of formal reasoning
and mathematical proof’. He writes that expo-
sure to formal mathematical reasoning is
important because “a citizen in today’s mathe-
matically based world should have at least a
general sense of one of the major contributors
to society” (p. 78). Also, a survey by the United
States Department of Education (The Riley
Report, 1997) showed that students who
completed high school geometry performed
markedly better in gaining entrance to college
(university) and did better at college than
those students who had not taken geometry,
regardless of the subjects studied at college
(Devlin, 2001).

The mathematician G. H. Hardy (1941)
thought that two proofs were simple, yet
“elegant” and of the highest class. One was
Euclid’s proof of the existence of an infinity of
prime numbers (Padula, 2003) and the other
the Pythagorean school's proof of the “irra-
tionality” of V2. Hardy thought that a theorem
showed depth and generality if it were capable
of considerable extension and was typical of a
whole class of theorems of its kind. The rela-
tions shown by the proof should be such that
they connect many different mathematical
ideas.



Mathematical philosophy

Hardy’s (1941) version of Pythagoras’ proof is
interesting because it is beautifully and
concisely written and is based on classic logic
— reductio ad absurdum — like Euclid’s proof
of the infinity of primes. Hardy, in a footnote,
states that the proof can be arranged to avoid
a reductio and that some logicians prefer not
to use this form of argument. This is a refer-
ence to developments in logic such as that of
the intuitionist school. (Hardy himself
belonged to the realist, or “mathematics is
discovered” school and believed that mathe-
matical reality lies outside us and that the
theorems that we prove, and which are
described rather grandly as our “creations”,
are simply our notes of our observations.
Devlin, 2001, holds a similar view.)

Since Kurt Godel, an intuitionist, showed
that in any system rich enough to express
arithmetic there will be sentences proved
which are false, or unprovable sentences
which are true, perhaps classical logic has less
currency than it once did, but because
students should be aware of the importance of
mathematics to society and the historical
impact of this particular proof, it is good to
marvel at the cleverness of the ancient Greeks
and to share one’s enthusiasm.

Sriraman (2003, 2004) found that students
as young as 13-14 years were evenly divided
between the Platonist, or realist (mathematics
is discovered, mind independent) camp and
the Formalist view, that is: mathematics is
invented, or mind dependent. His students
showed that they could discuss mathematical
philosophy at an elementary level, after
reading and discussing Flatland (Abbott,
1932) and some of the mathematical ideas in
the first five chapters of Stewart’s Flatterland
(2001). It is worth noting here that Stewart
(1996) argues that mathematics is neither
invented nor discovered: it is a bit of both
because “neither word adequately describes
the process” and what mathematicians do is
neither invention nor discovery, but a
“complex context-dependent mix of both”.

So what are the challenges for students
when studying a proof and where will suitable
versions of this proof be found?

The problem

Typically, proofs are embedded in language.
Ordinary language, in this case English, can be
difficult to comprehend; there are different
registers (most of us use more than one) and
words can have different meanings in different
contexts, fields of study and so on. Also, a
seemingly simple sentence in “ordinary”
English can have a complex inner structure
that is difficult to process — as the study of
linguistics (Devlin, 2001), psycholinguistics,
and mathematics education (Padula, Lam &
Schmidtke, 2001; 2002) shows. Mathematics is
a highly symbolic language that often requires
a whole hierarchy of previous knowledge for
understanding. It follows that a proof written in
a combination of two complex languages,
English and mathematics (the English mathe-
matical register together with mathematical
sentences in the form of equations, and some-
times “ordinary” English as well), can be quite
challenging for many students, not just
students of non-English-speaking background.

Mathematics as language

Somewhat paradoxically, mathematical symbols
combined with words can convey complex,
powerful ideas more efficiently than everyday, or
even literary, language. Arianrhod (2003) states
that the symbolism of the language of mathe-
matics is an extremely important and integral
part of its content. When you think in terms of
mathematical symbols as well as words, thought
itself is economised because “the symbolism
enables you to see at a glance patterns and
generalities, similarities and differences, which
may not be obvious if you think only in words”
(ibid, p. 133). Mathematics is not merely
descriptive, Arianrhod explains, its linguistic
structure seems to reflect hidden physical struc-
ture. She illustrates her point by saying that
Einstein’s famous equation E = mc” (energy
equals mass, times the speed of light squared)
came first, and only later did experimental
physicists discover that it described reality.
Furthermore, she explains, the same kind of
event occurred when James Clerk Maxwell
expressed Faraday's ideas about electromag-
netism mathematically, thus paving the way for
Einstein’s theory of relativity (1905).
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Mathematics: A definition

Hardy (1941) states that the beauty of mathe-
matics resides in the fact that mathematics is
all about, not just patterns, but patterns of
ideas. Devlin defines mathematics as the
“science of patterns” and then more fully as:
“the science of order, patterns, structure, and
logical relationships” (Devlin, 2001, p. 73).
Mathematics has also often been described as
the language of science. Since the mixture of
symbols and words is so powerfully descriptive
and communicative perhaps the definition:
“mathematics is the language of the science of
order, patterns, structure and logical relation-
ships” may be considered.

Hardy’s version

Hardy (1941) claims his version of the
Pythagoreans’ proof can be mastered in an
hour by any intelligent reader however slender
his “mathematical equipment”. Obviously,
that mathematical equipment must include
some knowledge of number (theory) and
algebra. Hardy uses the mathematical register
of English; for example, he uses “integral” in
the mathematical-adjectival sense, that is
“whole number, integer”, not the ordinary-
English
completeness of the whole”.

Hardy’'s language is quite sophisticated.
Instead of merely stating the initial premise
that the V2 is rational in an equation such as

sense of “necessary to the

2-2
b
(where a and b are integers), as other writers
have, Hardy writes:

To say that “V2 is irrational” is merely
another way of saying that 2 cannot be
expressed in the form

Bl

and this is the same as saying that the equa-
tion... a® = 2b® cannot be satisfied by integral
values of a and b which have no common
factor. (Hardy, 1941, p. 34)
(Please see the appendix for the full text of
Hardy’s version.)
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Perhaps not surprisingly, “Linh”, a 16-year-
old Year-11 student of Vietnamese/ Chinese
background at an Australian high school,
thought that Hardy’s version is “to (sic) intel-
lectual to understand”. (Linh has been doing
mainstream English since Year 8; however,
she was enrolled in English-as-a-Second-
Language classes last year, her Year 12, as she
was eligible.)

Now let us look at two other, hopefully
simpler, versions.

King’s version
King (1992), mathematics
researcher and poet, includes in his book a
version of Pythagoras’ proof, as follows:

professor,

Theorem: V2 is irrational.
Proof: Suppose the theorem is false; i.e.,
suppose V2 is rational. Then we may write

P
q

where p and q have no common factors. (Any
original common factors may be canceled
leaving numerator and denominator free of
them.) Hence

V2q=p
or

2q2 = p2.
Thus, p2 is an even number. It then follows
that p is an even number. (It is easy to see
that the square of any odd number is odd.)
Thus, p = 2c¢ for some integer c. Therefore,

2q2 = (20]2
or

q2 =27
Thus, ¢ is even and, just as before, it follows
that q is even. Consequently, both p and q
are even numbers and so are both divisible
by 2. This contradicts our assumption that p
and g have no common factors. So our
hypothesis that V2 is rational is false. So, V2
is irrational and the theorem is proved.
(King, 1992, pp. 136-137)

Note that King presumes a previous knowl-
edge of rational and irrational numbers, and
integers; they are discussed in the lead-up to
this version of the proof in his book. In the
beginning he has included equations Hardy
left out, but, after placing p = 2c¢ within the



discourse he omits two “steps” or equations
after 2q2 = (2c)2. These are: 2q2 =p2 = (20)2 =47,
and 2q2 = 4c

Linh, after studying King’s version, made it
her “No. 2 priority”, stating that it is suitable
for “people who likes (sic) numeracy explana-
(sic)”. She her
understanding of it geometrically with a
diagram of a right-angled triangle with its
sides labelled p and g, and the hypotenuse V2.
She placed in the margin a mnemonic, the
equation m = rise/run (the gradient, m, equals
the vertical axis, or “rise”, divided by the hori-
zontal axis, or “run”). She included the
equation 24> = 4% that King had left out, and
wrote the mathematical symbol for “therefore”,
.., in the appropriate place before q2 =27

tion demonstrated

Hl
q
Usemzﬁ &:E

run q

Figure 1. Linh’s diagram of her understanding of
King’s (1992) version of the proof.

Arianrhod (2003), in an appendix, has
provided a version of the proof for the “general
reader”. She takes little for granted and has
embedded the proof in an explanatory narra-
tive of ordinary language, although she still
uses vocabulary from the English mathemat-
ical register. Words such as “denominator” and
“ratio” that are unexplained in the proof have
usually been described in the main body of her
book.

Arianrhod’s version

To prove that \2 is irrational, all you do is explore what
would happen if it were rational that is, if it could be

z-X

y

written as

where ‘x’ and ‘y’ are positive whole numbers which give
the simplest possible fractional version of V2. (For
example, 3 is simpler than 2 although they are both
equal to one-half.) The idea is to solve this equation,

z-X
y

and find appropriate values of x and y. An equation is
‘solved’ if actual numbers are found for x’ and ‘y’, so
that the left-hand side of the equation equals the right-
hand side. But how can you do this if you do not know
what number V2 is?

The trick is to square the equation — that is, you
square the terms on each side of the equals sign:

el -

that way, you are not changing the meaning of the
equation because you have altered each symbol in
exactly the same way, but you are rewriting it in a form
which gives you 2 on the left-hand side of the ‘equals’
sign since by definition, N2)? = 2; you do not have to
worry about what numerical value V2 actually has.

To summarise this procedure: square both sides of the

equation
=X
y
to get ) )
W2)* =% or 2=
y y

You now want to see if you can find whole numbers x’
and ‘Y’ that ‘solve’ this equation. If you were doing this

with a rational number, say 9, you would have:

9=
y

which you would then square to give

2
9=
y

If you let x = 3 and y = 1, the equation is solved:

2
9:3—2929 SO 9:§:3
12 1 1
Surprisingly,
%2
2:—2
y

is quite different. Rearrange it by taking the y® from the
denominator (multiply both sides of the equation by y2]
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so that the original equation

2 =X

y

is now completely equivalent to the equation 25(2 = X
This means that x¥* is an even number, because it
equals a multiple of 2 (that is, 2y2). But since ‘X’ is a
positive, whole number, it must also be even, if its
square is even. The even numbers, 2, 4, 6 ... all have
even squares (4, 16, 36...), while the odd numbers, 1,
3, 5 ... have odd squares (1, 9, 25 ...). So to keep this
clear in your mind, replace the ‘X’ in the equation 2y2
= X by an obviously even number, 2p, where p’ is
another whole number (which is half of the original
number ). The equation now reads 2y* = (2p)°, or 2y°
=2pXx2p= 4p2.

The equation

2 =X

can now be written as 2y2 = 4p?, and so the common
factor 2 on both sides of the equation can be cancelled
out to give y® = 2p®. Now we have the same argument
for 'y’ as we had for x: it is a positive whole number,
and since its square is even, it is even. Thus, the orig-
inal x’ and ‘y’ have to both be even if they are to satisfy
the equation

2 =X

But any rational fraction can be expressed in simplest
form, without both numbers being even (or having
common factors). Therefore, V2 is not a rational frac-
tion — it cannot be expressed as a ratio of two whole
numbers. QED. (Arianrhod, 2003, pp. 282-283)

As you can see Arianrhod’s version is highly
explanatory and explicit. It is salutary for
teachers since it shows the extent of (just
some) of the prior learning necessary to
master the proof. It also illustrates why Hardy
thought the proof had depth and generality: it
links many different mathematical ideas, not
the least of which are number theory, rational
and irrational numbers, and algebra. It
contains ordinary English and she explains
every step in detail. Some good students may
be annoyed by being told what they know well
but Arianrhod’s version may be quite suitable
for: high school students, students who like to
confirm every point of an argument as they
study it, and students who sometimes fail to
grasp an individual step or two of an argument
without further explication. (Of course all
students can be advised that it helps to read
any proof several times and to write it down.)
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Students’ reactions

NESB student Linh made many common-
sense comments about Arianrhod’s version.
Here are some of them, in her words:

e Use simple language so students don’t
tune out.

e Too many unnecessary words can be
confusing.

e Explain first then write equations.

¢ Make layout clear by putting equations on
a new line.

e A layout with words and numbers “mixed”
together not only doesn’t look nice but
also makes (the) student easily tune out.
(Linh, 16)

In pencilled notes, Linh simplified the
language even further, in places suggesting
clearer phrasing, and she crossed out the
rather formal (and probably unfamiliar), “To
summarise this procedure.” She also inserted
equations, and an example in equations and
words that summed up a wordy statement.
However, Linh made Arianrhod’s version her
No. 1 priority, with the proviso that it was for
“people who likes (sic) wordy explanation (sic).”

Nella (23 years), an applied-science grad-
uate, King’s and
Arianrhod’s versions of the proof declared that
the equations were more illuminating than the
discourse. When asked why she thought so
she replied, “If you know the patterns, the way
algebra works, you can see... The language
adds an extra complication.”

when shown Hardy’s,

Teaching choices

Obviously, high-school students should have
mastered algebra before they attempt to
understand the proof (although Arianrhod’s
explanations are both a reminder of algebraic
rules and a crash course in same). Also, defi-
nitions (or reminders) of “integers,” “rational”
and “irrational” numbers should be given to
students with, or prior to, study of the proof.
Teachers should be aware of their students’
command of the English mathematical
register; i.e., words like “numerator” and
“denominator,” and, if the version demands it,
ordinary English as well.

It seems that as well as considering the
wording of a proof (Padula, Lam & Schmidtke,



2002) and the complexity of the underlying
structure of its sentences (Padula, Lam &
Schmidtke, 2001; Padula, 2003), teachers
should also consider the layout of the words
and symbols, so that students do not “easily
tune out.” If an equation is described in words
it should be followed by the equation in
symbols. (If possible, the equation should be
removed from the text and displayed on a new
line.) If an equation is to be inferred from the
words but not actually written down as an
equation, as in Hardy’s version, remember
that this necessitates the use of another
linguistic skill: making a valid inference.

History of mathematics

Teachers may try the “history of mathematics”
approach by first relating the story of the
proof, the impact it made on the early Greek
philosophers and why it was kept secret by
them for many years. There are many excellent
books currently available which tell the story;
Arianrhod’s (2003) highly readable book is but
one, and an Internet search can be rewarding
for students. One educational site suitable for
projects on the history of mathematics and
science is that of the School of Mathematics
and Statistics at the University of St Andrews,
Scotland, at:
http: //www-groups.dcs.st-and.ac.uk/~history
If the proof is to be given not to an individual
but to a group of capable students, teachers
may decide to distribute one or both of the King
and Arianrhod versions for study for an agreed
period of time, to be followed by a group
discussion; or, depending on students’ abilities
and knowledge of English and its mathematical
register, teachers may choose between
Arianrhod’s (2003) thorough, explicit and
explanatory — but rather wordy — version,
and King’s (1992) concise, business-like one. If
preferred, King's version may be amended by
the addition of some, or all, of the equations he
did not use. If teachers would rather challenge
students a little, King’s version can be distrib-
uted as written and students asked to insert
the skipped equations.

Conclusion

The proof of the irrationality of V2 is a very
important part of the history of mathematics
and makes a good introduction to formal
mathematical reasoning; students may be
enriched by its challenges. (Students may be
interested to know that Einstein found mathe-
matics very difficult but he did not let that
stop him (Devlin, 2001).)

Learning to understand a proof is a
linguistic/mathematical exercise. Words often
have different meanings; when they are
combined with mathematical symbols it
makes for a powerful mix — a mix so powerful
it helps us to explain the world to ourselves.
Unfortunately, that mix can also be more
intimidating for a learner than (well-known)
mathematical symbols alone. Although there
is no clear-cut way of assessing under-
standing, this may be gleaned from students’
satisfaction that they have understood the
proof, their diagrams, comments, the insertion
of equations in the appropriate places, and
their willingness to discuss the inherent ideas.

Teachers should know their students well
and know if and when they need a challenge,
or some assistance. It is not the few simple
algebraic equations that make the proof of the
irrationality of V2 difficult — on the contrary,
the algebraic symbols and equations seem to
aid understanding — rather, it is the ideas
embedded in the mix of words and equations,
and the twists and turns they take. Students
may feel more in control of their learning, like
Linh seems to, and may gain a better under-
standing of the proof, if they are invited to
compare versions, and can refer from one to
another to clarify a point.

Hardy’s
Pythagorean school’s proof of the irrationality
of V2, has the potential to give students an
insight into the world of pure mathematics
and a glimpse into the history of mathematics.
Ideally, it may also give students cause to
think about the conceptual power of mathe-
and help hone their skills in
mathematical technique — something Hardy
thought was of the utmost importance.

second “elegant” proof, the

matics
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Appendix:
Hardy’s version of Pythagorean
school’s proof of the irrationality of 2

24

A ‘rational number’ is a fraction a/b, where a and b are
integers: we may suppose that a and b have no
common factor, since if they had we could remove it. To
say that “2 is irrational’ is merely another way of
saying that 2 cannot be expressed in the form

2
a
and this is the same as saying that the equation

(B) a = 2p°

cannot be satisfied by integral values of a and b which
have no common factor. This is a theorem of pure
arithmetic, which does not demand any knowledge of
‘irrational numbers’ or depend on any theory about
their nature.

We argue ... by reductio ad absurdum; we suppose that
(B) is true, a and b being integers without any common
factor. It follows from (B) that a® is even (since 2b? is
divisible by 2), and therefore that a is even (since the
square of an odd number is odd). If a is even then

© a=2c

for some integral value of ¢; and therefore

2b% = a® = (292 = 42

or

(D) b =27

Hence b? is even, and therefore (for the same reason as
before) b is even. That is to say, a and b are both even,
and so have the common factor 2. This contradicts our
hypothesis, and therefore the hypothesis is false.
(Hardy, 1941, pp. 34-36)
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