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Tangrams

The Chinese tangram puzzle was known as far
back as 1813. It has remained popular ever
since. It consists of seven simple polygonal
pieces of card which can be assembled in the

form of a square as
shown in Figure 1. The
reader is presented
with some popular
shape such as the man
or cat above, and then
asked to construct this
using the tangram
pieces. There are whole
books of such shapes,
and one can spend
hours finding the
various solutions.

In the past I have only had a cursory
interest in tangrams. Their geometrical nature
attracts me, but not the prospect of
constructing endless arbitrary shapes.
However, my interest was sparked by the
following question: How many convex
tangrams can be formed?

Such shapes will be convex polygons,
which can be thought of as polygons with no
re-entrant angles. Alternatively, we can use
the usual convexity definition: each two points
of the figure can be joined by a line segment
which lies completely within the figure.

I find this type of problem really appealing.
It is elementary in the sense that anyone can
understand it. It appears to be a mathematical
problem of some worth. The solution is by no
means obvious or easy to find. On the other
hand the problem lends itself to a lot of exper-

imentation and “playing around”. You might
like to set it as a class project!
• How many convex tangrams can you find?
• Are there convex tangrams other than the

square and rectangle shown above?
• What constraints can you find on the size of

the final figures?
• What constraints can you find on the

configuration of the pieces?
You might like to stop reading here

temporarily so that you can work alongside
your class on an equal footing.

Rational and irrational

Let us look at the relative side-lengths of the
tangram pieces. We take the edge-length of the
square piece to be 1 (Figure 2).

Figure 1

Figure 2

We notice that the edges are of two types:
rational (1, 2) and irrational (√2, 2√2). In fact
each tangram piece is the union of a number
of 1–1–√2 basic triangles which have edges of
the same two types. Notice that for basic
triangle or tangram piece, edges adjacent to a
right angle are of the same type; edges adja-
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cent to a 45° or 135° angle are of opposite
types.

Now this raises an interesting question. If
we look at the tangram square and rectangle,
we see that all the rational sides lie in two
perpendicular directions, as do all the irra-
tional sides, and the two sets are inclined at
an angle of 45°. Does this hold true for all
completed tangrams? A quick look at the cat
and man tangrams gives the answer in the
negative; but does it hold true for all convex
tangrams?

It is easy to convince ourselves that this is
indeed the case. Suppose we have two basic
triangles that have a rational and an irrational
edge placed together on the common line L.
Building up the completed triangulated convex
figure from the left, being sure to fill all spaces,
we note that
• no pieces cross the line L;
• it is impossible to complete satisfactorily

the figure with a rational contribution along
L on one side, and an irrational contribu-
tion along the other.

Possible polygons

Suppose our constructed n-gon has s angles of
45°, r right angles, and l angles of 135°. Then

s + r + l = n,
and

45s + 90r + 135l = (n – 2)180.

Eliminating l from these two equations
gives

2s + r = 8 – n.

Since s ≥ 0, r ≥ 0, we immediately determine
that n ≤ 8. We can now list out the possibili-
ties:

n 8 7 6 6 5 5 4 4 4 3

s 0 0 0 1 0 1 0 1 2 2

r 0 1 2 0 3 1 4 2 0 1

l 8 6 4 5 2 3 0 1 2 0

Figure 3

We deduce that it is impossible to construct
a convex polygon in this way using tangram
pieces, for if it were, we would have immedi-
ately a corresponding array of triangles, which
we have seen is impossible.

Hence for convex tangram polygons the
rational and irrational edges lie in two distinct
perpendicular sets, angled at 45°.

Notice that these ten possibilities do not
determine the number of possible convex
tangram polygons: we already have two candi-
dates for (n, s, r, l) = (4, 0, 4, 0).

Suppose now that our convex tangram
polygons are placed with their rational edges
(component rational segments) horizontal and
vertical. Then our list above shows that all
such polygons occur in the form of a rectangle
with corners possibly truncated at angles of
45°. In the figure below, the rectangle edge
lengths x, y, and the edge lengths a, b, c, and
d of the truncated triangular corners are all
integers.

Figure 4
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We may take x ≥ y, and obviously have 
a + b ≤ x, c + d ≤ x, a + d ≤ y, and b + c ≤ y. We
may assume, by rotating or reflecting the
rectangle, that a = min(a, b, c, d). Adding the
maximum lengths of the tangram pieces
shows that x is well short of 20. We easily
calculate (by summing the areas of the
tangram pieces) that the area of the convex
tangram polygon is 8. Hence

2xy – (a2 + b2 + c2 + d2) = 16.

We can now run the rather rough and ready
Pascal program below to find the possible
solutions x, y, a, b, c and d.

program tangram; {to find all possible convex
tangrams}

var
a, b, c, d, x, y, M: Integer;

begin {program}

for x:= 2 to 20 do
for y:= 2 to x do
for a:= 0 to y do
for b:= a to y do
for c:= a to y do
for d:= a to y do

begin{for}
M:= 2*x*y - (a*a + b*b + c*c + d*d);
if (a + b <= x) and (c + d <= x) and 
(a + d <= y) and (b + c <= y) and 
(M = 16) then
writeln(x, y, a, b, c, d);

end{for};
end. {program}

This program gives the (annotated) printout
shown in Figure 5. The 13 rows with
“Tangram” alongside turn out to be the realis-
able sets. The tangrams are pictured in Figure
6.

There are now ten cases of which to
dispose. We note that case 3 is equivalent to
case 1, 8 and 9 are equivalent to 7, 12 and 13
are equivalent to 11, and 18 is equivalent to
17. These cases could have been removed by
more careful (and complicated) programming.
Case 23 is a long thin parallelogram, too
narrow to accommodate the tangram pieces,
so can be discarded. Case 19 requires a 10√2
length of irrational edges, which is the total
length of irrational edges of the tangram

x y a b c d
1. 3 3 0 0 1 1 Tangram
2. 3 3 0 1 0 1 Tangram
3. 3 3 0 1 1 0
4. 4 2 0 0 0 0 Tangram
5. 4 3 0 0 2 2 Tangram
6. 4 3 0 2 0 2 Tangram
7. 4 4 0 0 0 4 Tangram
8. 4 4 0 0 4 0
9. 4 4 0 4 0 0
10. 4 4 2 2 2 2 Tangram
11. 5 2 0 0 0 2 Tangram
12. 5 2 0 0 2 0
13. 5 2 0 2 0 0
14. 5 2 1 1 1 1 Tangram
15. 5 3 0 1 2 3 Tangram
16. 5 3 0 2 1 3 Tangram
17. 5 5 0 3 0 5
18. 5 5 0 5 0 3
19. 5 5 1 4 1 4
20. 6 2 0 0 2 2 Tangram
21. 6 2 0 2 0 2 Tangram
22. 6 4 0 4 0 4
23. 9 8 0 8 0 8

Figure 5

Figure 6
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pieces; however, in this shape, both irrational
edges of the parallelogram cannot be used. We
can therefore discard this case.

Cases 17 and 22 can be disposed of in
similar fashion. Each requires eight irrational
boundary edges. A further two internal irra-
tional edges are taken up as in Case 19 with
the placing of the parallelogram. This uses up
all the available irrational edges. But now
consider placing the middle-sized triangle.
However it is placed, a further new internal
irrational edge is introduced. This impossi-
bility means we can discard these two cases.
We are thus left with the result:

There are exactly 13 convex tangrams.

These are depicted in printout order in
Figure 7. This is by no means an original
result. It was first proved in 1942 by Fu Traing
Wang and Chuan-Chih Hsiung, and the above
proof is based on their method.
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