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Introduction

Paper folding can be used in the classroom to
introduce the standard results of school geom-
etry, such as the transversal and parallel lines
results along with results concerning angles in
convex polygons and centres of triangles, for
example. Angle bisectors, midpoints, 
perpendiculars are all straightforward
“constructions” for the paper folder. If translu-
cent paper is used it renders easy tasks such
as duplicating an angle or a segment to any
position desired. Serra (1994) indicates how
these goals and others can be achieved.

Used in this way, paper folding encourages
students toward conjecture and invites the
teacher to reflect upon the meaning of proof.
Results are made plausible – convincingly so –
by simple observations associated with the
folding of paper. A significant benefit of the
paper folding technique is its accessibility to
students and the affective benefits this
confers. The difficult question of when it is
most effective to introduce deductive rigour
remains. 

Paper folding can also be used to solve
problems that have been interesting in the
context of Euclidean constructions with
straightedge and compass. It is easy to trisect
an angle using paper folding and also to find
the cube root of two (among other numbers) –
that is, to double the cube. Paper folding also
enables students to visualise parabolas and
other conics as folded structures.

When used together with dynamic geometry
software (DGS) such as The Geometer’s
Sketchpad, paper folding becomes a powerful

tool in the classroom. Its use can be extended
to problems that are interesting in their own
right, including folding rational angles and
star polygons.

Basic folds and 
applications of paper folding

To begin it is good to note the fundamental
folds. We immediately confront the pedagog-
ical question of whether to elucidate
axiomatically which folds underpin our paper
folding technique, or whether to mediate the
introduction through specific problems. A fold
is a line segment l (or a line, if you wish to
extend it). The segment l can be bisected by
folding its ends (points A and B) together over
itself. 

Note that this fold automatically produces a
perpendicular bisector. By folding a line l onto
itself, a perpendicular can be constructed
through any given point P not on the line l.

Two non parallel folds make an angle. The
angle is bisected quite naturally by folding the
segments onto each other through the point of
intersection.

These simple folds can be posed as intro-
ductory challenges for students (“How might

in the middle school classroom

LANCE COAD

and beyond



amt 62 (1) 2006 7

we construct a perpendicular? How might we
bisect a segment? How can we find a perpen-
dicular bisector? An angle bisector?”), and the
success rate is high. If a straightedge is
employed then it is easy to construct a line
parallel to a given a line l. Without the
straightedge it is still easy via the agency of
two perpendicular lines.

Comparing angles is easy if two sheets of
translucent paper are used. Again, this is not
necessary, but it speeds the process and
reduces complication, so making the desired
conclusions more readily accessible to a wider
range of students.

It is simple to compare the angles in a
triangle and establish that they form a straight
line by cutting them out and placing them
with vertices together so that the three angles
are seen to form a straight line. This process
extends to quadrilaterals and beyond. It
affords a nice opportunity to invite conjecture
about the internal angle sum of polygons
which can be verified in a variety of ways. The
exterior triangle sum likewise yields rapidly to
a simple trace and compare strategy.

A fruitful exercise is to have students
consider intersection of pairs of line segments
under various conditions: if the segments are
same/different lengths; if they intersect at
midpoints (one or both) or not; and if they
intersect at right angles or not. Joining the
end points of the segments produces quadri-
laterals, and in this way the properties of the
various quadrilaterals can be seen to be
derived from the nature of their diagonals.
Table 1 demonstrates four possibilities.

Such a categorisation reveals the relation-
ships between the various quadrilaterals and
encourages the view that some are special
cases of others. For example, “same length,
both at midpoints, not 90°” is a special case of
“not same length, both at midpoints, not 90°”,

particularly so if “not” means “not neces-
sarily”. Thus students are encouraged to move
through the van Hiele levels from analysis to
informal deduction, or ordering. (See Senk
(1985; 1989) for a discussion of van Hiele
levels and evidence that students’ success at
writing geometric proofs can be predicted from
knowledge of their van Hiele levels at the
beginning of a course. Pegg (1995) also intro-
duces the van Hiele theory).

These activities can be accomplished
readily enough using dynamic geometry soft-
ware (DGS). Indeed, DGS has several
advantages, especially in being able to provide
multiple examples of a phenomenon as a point
or segment is dragged, capitalising on the
inductive character of our thought. So why
would we choose to fold paper? 

Why choose paper folding?

Paper folding is accessible to students in a way
that DGS might not be. While evidence for the
use of manipulatives is mixed (see for example
Sowell, 1989, but also Raphael and
Wahlstrom, 1989), we might ask whether
students introduced to geometric ideas via
paper folding will generate better cognitive
models than those who commence work on a
computer. The engagement of the hands in the
process of completing folds (and of the mind in
the process of deciding what folds to pursue)
possibly raises the cognitive models above
those that might have been developed had pen
and paper only been employed. This is,
however, speculative. The act of selecting
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appropriate folds might be seen as an aid to
developing the kinds of heuristics that are
useful in establishing more formal proofs
(what is relevant, how do I move from here to
there, etc.).

The affective aspects of paper folding are
significant. It has been my experience that
students enjoy paper folding. Paramount
among the positive emotions appears to be a
sense of pleasure brought on simply by under-
standing what is being done. Schlöglmann
(2002) refers to the implicit emotional memory
system that can be activated by the problem
solving process, leading in some cases to nega-
tive reactions beyond cognitive control that
effectively block learning. The value of positive
experiences in the mathematics classroom
should not be understated. We know that a
sense of belief and worth is important for
success in mathematics, so any mathemati-
cally sound process that encourages self belief
is worthy of serious consideration.

Paper folding is certainly cheaper than
equipping students with access to DGS. It
relies less on knowledge of special procedures
(how, for example, to construct line segments
with DGS software) and is, in that sense, rela-
tively transparent. Healy and Hoyles (2001)
discuss issues related to tool selection. They
report that in work with “less successful
students, learners can… find themselves in a
position where they are unable to use the tools
they have in mind, even if they are convinced
that their use would make sense mathemati-
cally, and they are familiar with how the tools
should work” (p. 252). They note that, “the
mediation of students’ activities by the soft-
ware is not necessarily positive for their
engagement and for their learning” (ibid).

In using a paper folding approach, never-
theless, the time will come when it is
determined that students will benefit from
progressing to DGS in order to make conjec-
tures more clear or to amplify the signals that
paper folding is providing. This timing is likely
to vary between students and so it is advanta-
geous to have a structure in place that enables
students to operate in a differentiated fashion.
Indeed, I would suggest that the nature of the
teacher mediated interplay between paper
folding, pencil and paper and DGS will influ-
ence student achievement, and this interplay
is likely to vary between students. In general,

paper folding provides a useful exploratory
introduction to geometry and proof after which
DGS can be utilised to extend investigations
and foster a deeper understanding of proof.
That said, paper folding has hidden layers of
depth that invite further investigation.

Paper folding, DGS and proof

If we adopt the view that it is not unreasonable
to introduce proof gradually, then we can use
students’ natural facility with paper folding to
enable construction of simple class approved
proofs. For example, in proving that opposite
angles are equal, one might follow a path like
this:

Let us call acute angles CEB and DEA α and
β respectively. Then, as AEB is a straight line,
we have CEA = 180° – α; but we also have a
straight line CED, and so CEA = 180° – β.
Hence 180° – β = 180° – α and so α = β.

As an alternative, we could simply produce
a fold so that the angles α and β were super-
imposed upon each other. The fold line is the
bisector of angles CEA and BED.

From this fold, it is “obvious” that α = β. Of
course, this places a certain weight on the
observation that might be greater than some
are prepared to accept. It nevertheless estab-
lishes a result (opposite angles are equal)
quickly and believably so — all the more
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believable, I might suggest, to the students
concerned because there has been no attempt
to shroud in rigour what is obvious. Better,
perhaps, to reserve more rigorous proofs for
circumstances in which rigorous proofs are
necessary.

To prove that base angles of an isosceles
triangle are equal becomes the work of a
moment. One merely has to fold a perpendic-
ular bisector:

It is worth noting that prior to or in the
course of making this proof, students can fold
perpendicular bisectors to the base in non
isosceles triangles to “establish” that only in
isosceles triangles does the perpendicular
bisector pass through the opposite vertex.
Such an activity is an investigation in its own
right. The property that isosceles base angles
are equal will fall out as a corollary. As a
consequence, the act of creating an isosceles
triangle can then be managed simply by
folding a perpendicular bisector to a base
segment (see later). The vertex can be any
point on the perpendicular bisector. In this
sense, then, the “proof”, whilst lacking in
rigour, carries the power of explanation and
definition (of properties).

In cases such as this, proving becomes an
action, a process. Tall (1995) might describe it
as enactive, whilst acknowledging that moving
between categories of proof, from enactive to
visual to manipulative (often meaning alge-
braic) can involve a “huge cognitive struggle”
(p. 36). The use of axioms is embodied in the
sense that one physically enacts what are in
effect axioms of the geometry. Students can be
encouraged to consider what fundamental
folds are utilised in making explorations. That
is, a search for axioms can be undertaken. The
Euclidean axioms are well established, and
have been for some time, but it is only rela-
tively recently that efforts have been made to
axiomatise paper folding.

Students can be required to determine the
folds that can be used to produce given states
— that is, to “prove” or derive given “theorems”

(folded states or constructions) by reference to
“axioms”. This is fundamentally a proof
process. Proofs that detail the sequence of
steps are proofs that convince. At the next
level, students can be presented with
sequences of folds to produce a given state,
such as the trisection of a segment, and asked
to explain why, possibly in algebraic terms,
the process works (see Hanna & Jahnke,
1996) for a discussion of types and purposes
of proof). For example, why do the sequence of
folds presented later in this paper trisect a
line, or an angle, or produce an equilateral
triangle?

DGS can be used to encourage students to
further explore geometrical situations and to
make conjectures  Traditional geometrical
results can be cast as open explorations with
scaffolding and constraints applied to guide
the search process so that results become
personal discoveries. Christou et al. (2004),
forward the concern raised by others that the
power of DGS to facilitate students “seeing”
results (conjectures) might militate against
them feeling a need to explain why the results
hold. This is the “gap between deduction and
experimentation” (p. 340). They conclude, in
concert with others (e.g., Jones, 2002) that
care and skill in task construction and teacher
guidance to encourage in students a desire to
validate results is important:

In the DGS environment students acquire

understanding through verifying their

conjectures and in turn this understanding

solicits further curiosity to explain “why” a

particular result is true. However, students

working in the DGS environment are able to

produce numerous configurations easily and

rapidly, and thereby they may have no need

for further conviction/verification (Hölzl,

2001). Although students may exhibit no

further need for conviction in such situa-

tions, it is important for teachers to challenge

them by asking why they think a particular

result is true (De Villiers, 1996, 2003).

Students quickly admit that inductive verifi-

cation merely confirms but the why

questions urge them to view deductive argu-

ments as an attempt for explanation, rather

than verification (Hölzl, 2001). Thus, the

challenge of educators is to convey clearly to

the students the interplay of deduction and
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experimentation. (Hanna, 2000, pp.

342–343).

When students use paper folding and DGS
to explore and make discoveries a teacher is
able to foster the development of explanatory
proof.

Axioms

Paper folding (origami) axioms have been
developed by various mathematicians.
Geretschlager (1995) presents the following
set:

1. Given two non parallel straight lines l1
and l2, one can determine their unique
point of intersection P = l1 ∩ l2. 

2. Given two parallel straight lines l1 and l2,
one can fold the line m parallel to and
equidistant from them (“mid-parallel”). 

3. Given two intersecting straight lines l1
and l2, one can fold their angle bisectors
a and a'. 

4. Given two non-identical points P and Q,
one can fold the unique straight line
connecting both points. 

5. Given two non-identical points P and Q,
one can fold the unique perpendicular
bisector b of the line segment PQ. 

6 Given a point P and a straight line l, one
can fold the unique line l' perpendicular
to l and containing P. 

7 Given a point P and a straight line l, one
can fold any tangent of the parabola with
focus P and directrix l. Specifically, given
a farther point Q, one can fold to the
parabola tangents that contain Q.

7.* Given (possibly identical) points P1 and
P2 and (possibly identical) lines l1 and l2,
one can fold the common tangents of the
parabolas p1 and p2 with foci P1 and P2

and directrices l1 and l2, respectively.
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The parabola p1 with focus P1 and direc-
trix l1, showing that the fold line is a
tangent.

The parabola p2 with focus P2 and direc-
trix l2, showing that the fold line is a
tangent.

This last axiom states that given two points
P1 and P2 and two lines l1 and l2, it is possible
with a single fold to fold P1 onto l1 and P2 onto
l2. Note that this is to be interpreted to mean
that it can be done under certain conditions. If
the two lines l1 and l2 are too far apart, for
example, then it will not be possible to fold P1

onto l1 and P2 onto l2. Geretschlager notes that
it is this last procedure (7*) that makes
origami (paper folding) different from
Euclidean geometry. He shows that Euclidean
constructions are equivalent to origami built
from 1 to 7, but that 7* amounts to the solu-
tion of a cubic problem, which is not
achievable using Euclidean methods. It is this
axiom, in fact, that allows paper folding
methods to solve the classic problems of
doubling the cube and trisecting the angle.

Note that this axiom list is not presented as
though it were the “correct” set: Alperin (2000)
produces a reduced set of six origami axioms
and discusses the associated field theory. Hull
(2003) likewise lists six axioms developed by
Humiaki Huzita (see also Hull, 1996). For our
purposes, we can note that origami is at least
as rich, and in fact richer, than traditional
Euclidean geometry, and that it is subject to
rigorous treatment.

Folded constructions 
that beg proofs that explain

As indicated above, students can be asked to
explain why certain constructions “work”. A
variety is presented here, ranging from simple
to more complex, to indicate the breadth that
is available within the context of school math-
ematics. The historically noteworthy cases of
the trisection of the angle and the doubling of
the cube are described.

1. One might begin with simple results,
such as folding a perpendicular bisector
enables the construction of an isosceles
triangle. Why?

2. Simple folds can also be used to
construct equilateral triangles.
Fold a sheet of paper in half and then
fold so that the segment AD meets EF at
G.

Then it is easy enough to see that GD is
equal to AG and hence to AD. Thus
triangle AGD is equilateral. While at it,
one can note that angle DAH is 30°.

3. Slightly less obvious, the following
shows that a line segment can be
trisected. We fold in half again, and then
fold B up to the midpoint of CD.

We find that DF = 2
3 AD. That is, F is a

point of trisection of AD. The proof is an
exercise in similar triangles.
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4. To trisect an angle one utilises 7*. If we
begin with a square sheet of paper, then
to trisect the angle ABC we first fold a
line parallel to AB. Call this line l1. Use
as a fold over which to reflect AB, so that
a new segment l2 can be determined.

From here the trick is to use 7* to fold B
and D onto l1 and BC respectively.

A perpendicular is constructed from the
line AB through B'. The trisection can be
appreciated now by recognising that the
three right triangles EBB', BF'B' and
BF'D' are congruent.

Details, including useful diagrams, are
available at various websites including
hverrill.net/pages~helena/origami/trisect.

5. To double a cube, by which is meant to
construct a segment of length , we can
proceed as follows. Note that 7* is
required. This solution is due to Peter
Messer, from Problem 1054 in Crux
Mathematicorum, 12(10), 1986, pp.
284–285. It and more are available from
Thomas Hull’s origami pages at
www.merrimack.edu/~thull/origamimath.html.
Having trisected the side of a square, we
can extend this and fold the square into
thirds. All that is then required is to
apply 7* to bring B and G to AD and
respectively:

It can now be demonstrated that 

To see this, let DB' = x and B'A = y, as
shown above. Since AJ + JB' = x + y we
can use Pythagoras’ theorem to express
each of AJ and JB' in terms of y. Noting
that DE = G'B' = 1

3 (x + y) and that right
triangles G'EB' and JAB' are similar
helps develop the desired result. This is
a challenging result for a student in the
middle school, but it is good to have
challenges ready should occasion
demand. It can be shown more generally
that folding with 7* produces solutions
to the general cubic equation (e.g., see
Geretschlager, 1995), but that is beyond
our present scope.

Further avenues for exploration

Anyone interested in pursuing further aspects
of paper folding could investigate folding
ellipses and hyperbolae by using circular
paper (Yates, 1943) or turning to any of: Hilton
and Pedersen (1983), (1993); Polster (2004);
Froemke and Grossman (1988); to investigate
a technique that allows the approximation of
any rational angle with simple sequences of
angle bisections. These sketches show conver-
gence to 60º from an initial estimate:

and to :

The procedure can be carried out using
cash register tape and involves some simple
but useful work with fractions and also the
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application of an algorithmic approach. What
is more, it demonstrates convergence and has
the added benefit of producing the reward of
constructible polygons, including star poly-
gons at the end of the process. For the
interested, the field is open to number theo-
retic investigation.

Conclusion

Paper folding, then, is a far from trivial enter-
prise. It is a rich field of mathematics that has
the advantage of being readily accessible to
middle school students. It introduces students
to geometrical ideas that can be developed
further using DGS and it encourages an emer-
gent appreciation of proofs that convince and
proofs that explain. It is accessible and
engaging and so carries affective benefits that
traditional approaches to proof via Euclidean
geometry have perhaps lacked.
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