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Introduction

This article is the sequel to the use of Flatland
with beginning algebra students reported in
Sriraman (2003). The use of Flatland with
beginning algebra students resulted in the
positive outcomes of cultivating critical
thinking in the students as well as providing
the teacher with the context necessary to
introduce sophisticated mathematical ideas.
The marriage of mathematics and literature
led students to reflect on contemporary society
and its problems as well as gain an insight
into notions of limits, historical approximation
techniques and various non-Euclidean geome-
tries (fractal geometry and Minkowskian
space-time geometry). This atypical but
refreshing learning experience led students to
request the reading of one of the sequels to
Flatland. The ‘providential’ release of Stewart’s
Flatterland in 2001 seemed like the ideal
follow up to Flatland. Banchoff’s (2001) review
of Flatterland for the Mathematical Association
of America partially found in the back cover
states: ‘Flatterland challenges readers to go
beyond Flatland and deal with phenomena,
not just in dimensions higher than four, but in
many exotic geometric realms that stretch our
imagination and powers of visualization.’ Upon
reading the book over the winter break, my
personal impression was that the ideas intro-
duced in the entire book would pose a
challenge to university math and physics
majors. However the material in the first five of
the eighteen chapters were within the scope of

13–14 year-old ninth graders. In fact, some of
the ideas introduced in the first five chapters
such as arbitrary dimensions in mathematics,
and fractal geometry had been discussed in
the class during the reading of Flatland. In
addition, Stewart (2001) had brilliantly made
modern ideas such as encryption on the
Internet, the taxi-cab metric, and fractal
dimensions, among others, very accessible to
the lay person. This was achieved by creating
a contemporary setting in which the heroine
Vikki, the great-great-granddaughter of
Flatland’s protagonist A. Square, is taken on a
guided virtual reality tour of the mathematical
universe by a space hopper. 

Setting up the experiment

I was fortunate once again to have the support
of the principal in this endeavour and was
supplied with a classroom set of Flatterland. I
decided to make use of the book towards the
end of the high school year, when interest in
the regular curriculum typically begins to
wane. The pedagogical reason for doing this
was to ensure that students had the mathe-
matical background (from the algebra
curriculum) necessary to allow me to develop
the ideas in the book. My goal was to use
Flatterland as scaffolding in order to: 
1. explore non-intuitive math problems;
2. further students’ understanding of

dimension;
3. to help students gain a deeper under-
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standing of fractal geometry; and 
4. to develop the taxi-cab geometry.

The first five chapters of Flatterland were
read sequentially in April–May 2002. The
reading structure was very similar to that
used in the reading of Flatland. As in the
experiment with Flatland (Sriraman, 2003),
reading, writing and discussing the book
replaced one of the tests in the second
semester, which again went over very well with
the students. 

I explained that the book was a recently
released fun sequel to Flatland. The five chap-
ters were read over eight weeks. A reading
schedule was provided for the students. We
discussed and developed the ideas from the
first five chapters in eight 50-minute Friday
class periods. Unlike the previous experiment
where students were split into groups for
discussion, I used a show of hands to separate
the class into two groups, namely those that
‘thought’ they understood the reading and
those that were confused. Then I applied the
Socratic method of question-hypothesis-
elenchus-acceptance/rejection to moderate
the classroom discussion. In other words
classroom discussion began with a ‘confused’
student stating the nature of their confusion,
which was then restated as question. Then
unconfused students were asked to respond to
the question. Their response/explanation was
used to generate a testable hypothesis, which
was subject to elenchus (or refutation), even-
tually leading to acceptance of the explanation
or rejection, in which case the hypothesis was
re-examined. This process was modelled many
times in the regular algebra curriculum in
order to set the stage for the discussion of
Flatterland. The fascinating outcomes of the
use of Flatterland with the 13–14 year old
ninth graders is presented in the next
sections.

The times they are a-changin’1

The first three discussions revolved
around the contemporary setting of
Flatterland, the dashing heroine Vikki,
and strange packing problems. Having
read Flatland in the first semester,
students were able to use to the contem-
porary setting of the book and compare

the changes described in the book to the tidal
waves of change in the 20th century. First, the
girls in the class were pleased that the protag-
onist was a female, who was roughly their age.
Second, the students were happy to see that
the chauvinistic society of Flatland had
evolved and embraced women's liberation due
to various Flatlandian wars and revolutions.
Third, students really enjoyed the satirical
word play of the book and relished the double-
edged nature of words used by Stewart (2001).
Student comments that made various critical
comparisons on the changes in Flatland and
their parallels to our world are summarised
below.

[In Flatterland] Flatland has changed in quite

a few ways. They have become more intelli-

gent and not so prejudiced against women.

Women are treated as equals rather than just

unintelligent things. They send messages like

us (e-mail) and code stuff… I’d say

Flatterland is the more mature version of

Flatland.

Flatterland now has interline computers like

our Internet computers, telephones and

many other devices that were actually

invented in the past century. Women have

gained more respect and rights in Flatterland

just like the voting movements (suffrage) in

our history… but they still have to sway their

back from side to side and sing to avoid

hurting other people.

It still seems as though people won’t accept

the fact of there being a 3rd dimension. You

are deemed ‘weird’ if you have a radical idea,

and it still happens today in our society when

people don’t accept new ideas from science. 

Did you notice that generations now do not

gain another edge with each generation. I like

the word play, like you don’t have an edge

over others just cause you’re born into a rich

family. But we all know in reality you do have

an edge if your parents are rich.
1 The title of a

revolutionary
song by 
Bob Dylan,
released in
January 1964
during the
Civil Rights
movement in
the US.
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Is everything mathematically
possible? Packing fruit and
dementia with dimensions

The third chapter of Flatterland describes the
visitation of the ‘Space hopper’ and Vicki’s
discovery of the space hopper’s strange shape.
The use of a time-series of cross-sections was
understood by the students and thought
similar to the discovery of the Circular visitor’s
shape by A. Square. Just as a sphere moving
through a horizontal plane would first be seen
as a dot followed by a series of expanding
circles and then by a series of contracting
circles culminating in a dot and then disap-
pearance; students were able to extend this
notion and accept that it was plausible to
think of a series of expanding and contracting
moving spheres as the shadow a 4-dimen-
sional hypersphere would cast in our world.
Students found some of the ideas in the third
and fourth chapters a little difficult to under-
stand. For instance, Stewart (2001) describes
the non-intuitive possibility of fitting a cube of
side length 1.06 into a unit cube!2 One of the
students actually tried to accomplish this by
using thin cardboard boxes but was unsuc-
cessful. This was discussed in the class and
students concluded that it was practically
‘impossible’ to find instruments that could be
used to make a cube of side length 1.06.
Therefore they deemed this non-intuitive
notion of squeezing a larger cube into a
smaller one as ‘mathematically’ possible but
practically ‘impossible’. I used this opportunity
to discuss the need for calibration and accu-
rate measuring instruments in science to
generate data that could verify or refute
hypothesis. Many students were also unable
to completely understand the encryption
procedure described by Stewart (2001) to
encode and decode messages. However this
presented the opportunity to introduce the
binary numeral system and play with the four
basic arithmetic operations in base 2.
Students really enjoyed this and realised the
arbitrariness of numerals. 

Students were also intrigued and under-
stood the fruit packing problem described by
Stewart (2001), namely what is the most effi-
cient way to pack fruit (that are roughly
spheres) into cardboard boxes that are rectan-
gular prisms? This problem allowed us to

explore approximation techniques to deter-
mine the maximum amount of a fruit that
could be packed into a box, given particular
starting assumptions of the size of fruit, and
the size of boxes. We choose starting sizes for
apples, grapefruit, pumpkins and water-
melons to determine how many could be
packed in a standard fruit box found in the
grocery store. One student took the initiative
of going to a grocery story and bringing some
perforated sheets used in apple boxes, which
visually demonstrated the practical nature of
the packing problem. Student comments
follow:

It seems that it is mathematically possible to

do anything. I don’t believe you can fit a

bigger cube into a smaller one… But I really

like the idea of using binary digits for

changing letters to symbols with only 0 and 1

and it made sense how to spot the errors.

In Spaceland or ‘Planeturthian’ you have

more space than in Flatland. They are forced

to stick oranges with gaps in Flatland… but

we can stack them differently and reduce the

gaps because we can move in more directions

than they can.

It makes sense to add a dimension every time

you can move something in a different

direction. So we can have a ‘chalk-cheese’

direction just like north-south, east-west,

up-down. The idea of finding the dimen-

sion also makes sense because if you had

a 3D ball, its surface is 2D, because 

3 – 1 = 2. So the surface is always one

dimension smaller than the original

dimension. So a 101 dimensional ball has

a 100D surface.

The idea of stacking spheres to make a

hypersphere is really far out; but it makes

sense if you think of making a sphere by

stacking together smaller and bigger

circles 

2 Jerrard &
Wetzel (2004)
recently wrote
an expository
article on the
history of this
problem. They
wrote that the
origin of this
problem was
a wager made
and won by
Prince Rupert
in the late
17th century
that a hole
could be
made in cube
such that
another cube
of the same
size could
slide through.
One hundred
years later
Nieuwland
calculated the
dimensions of
a larger cube
that could
pass through
a cube of unit
side by deter-
mining the
size of the
largest square
that fits in
this cube. 
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Fractals, taxicabs 
and square circles

The fourth chapter of Flatterland describes the
arbitrary nature of dimensions in mathe-
matics by surveying ideas from different
geometries. In Flatland, the notion of self-simi-
larity was used by the circular visitor from
Spaceland to postulate the existence of higher
dimensions to A. Square. This notion was
understood by students as was evidenced in
their constructions of 4-dimensional objects
such as a hyper-cube and in their argument
that the geometric sequence 1, 2, 4, 8, 16…
that counted the number of vertices of self-
similar objects indicated the existence of
higher dimensional objects (even if one could
not visualise them). During the previous
experiment with Flatland, I had used students’
notion of self-similarity to construct the
Sierpinski triangle and posed the question
about the dimension of fractal objects. In
Flatterland, the notion of fractal dimension is
explored at a deeper level. One of the class-

room discussions revolved around the calcula-
tion of fractal dimensions. Table 1 summarises
student strategy to calculate fractal dimen-
sions.

Students calculated the dimensions of the
Sierpinski triangle and the Koch snowflake
using trial and error on their calculators.
Since they were not exposed to the notion of
logarithms, I decided that it was pedagogically
sound to perform this calculation by trial and
error. The dimensions found for the Sierpinski
triangle and Koch snowflake were 1.584 and
1.261 respectively, which was accepted by the
class as being accurate. One industrious
student located a fractal website, which we
used to check our dimension calculations.

In the consequent discussion of the
Mandelbrot set, Stewart (2001) makes use of
the taxicab metaphor to describe coordinates
in the complex plane. The description given to
Vikki about the moves necessary to get from
one point to another in Quadratic City created
the perfect setting to talk about taxicab geom-
etry. Since students had been exposed to the

Object Dimension of Object
Self-similar copies

made
Pattern

Point 0 1 1 = 20

Line segment 
[2 points]

1 2 2 = 21

Square [two segments] 
[4 points]

2 4 4 = 22

Cube [Two squares] 
[8 points]

3 8 8 = 23

Hypercube [Two cubes]
[16 points]

4 16 16 = 24

[Student observation: The dimension always shows up in the exponent]

Sierpinski Triangle don't know 3 3 = 2dimension?

Sierpinski Triangle Know (1.584) 3 3 = 21.584

Koch Snowflake don't know 4 4 = 2dimension?

[Student observation: The dimension of the Koch Snowflake cannot be the same as a square. The size
of the snowflake does not double, but triples every time]

Koch Snowflake Know (1.261) 4 4 = 3dimension

4 = 31.261

Table 1. Extension of self-similarity idea to discovery of formula for calculating fractal dimensions.
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distance formula in the analytic geometry
segment of the algebra curriculum, it was
quite easy to introduce the taxi-cab metric by
analogy.

We explored several questions related to
Flatland and middle school geometry, namely
are there any regular polygons in taxicab
geometry? In particular we compared the
notions of betweenness in the Euclidean and
taxicab metrics and explored various Flatland
shapes such as isosceles triangles, squares,
and circles in the taxicab metric. A vignette of
this exploration follows.

A classroom vignette 

Teacher: How do we determine whether one
point is between two other points?

Student 1: You plot the points and see where
they are on the real number line.

Student 2: Couldn’t we use the midpoint
formula?

Student1: But you can’t be sure that this
point is exactly in the middle of the
two other points.

Teacher: Don’t we need some information
about the location of the points to
use the midpoint formula?

Student 3: How can you be sure that the
points are on the real line? Can’t
the points be outside the real line?

Student 2: Yeah, we use (x,y) co-ordinates to
locate the points.

Teacher: Why don’t we look at an example.
What if we take the points P(3,2),
Q(6,4) and R(9,6) and plot them?

Student 4: The points are on the line with
slope 2/3. 

Teacher: Okay, now how do we check
whether Q is between P and R?

Student 1: Just use the plot and you see the
point Q is right in between.

Teacher: What if you don’t have graph paper
and you can’t plot the points?

Student 2: You can just visualise it in your
head.

Teacher: Can we use any formulas we
learned?

Student 4: The midpoint formula?
Teacher: But you can’t always be sure that

one point will always be between
the other two.

Student 5: Why don’t we look at distances

between the three points?
Teacher: That’s a good idea. Does anybody

remember how we calculate
distances?

Student 6: The distance formula.
Teacher: Yes, but how can we use the

distance formula to decide that Q
is between P and R?

Student 6: Calculate PQ, then QR, and then
see if they add up to PR.

Teacher: Does anybody disagree with this
idea?

Student 4: Yeah, but does it always work?
Student 6: I think it does. You can check it on

the real line if you like.
Teacher: If it works on the real line, do you

think it works on every line?
Student 6: Yeah, cause the real line is just

another line with no slope.

[Students perform calculations and determine
that PQ + QR = PR.]

Teacher: Can we define betweenness now?
Student 6: We already did. Just calculate the

three distances and see if the two
smaller ones add up to the total
distance.

Teacher: Okay, so we say that a point B is
between A and C if AB + BC = AC,
and to make life easier we write 
A-B-C. Now the question is does it
work the same way in the taxicab
world?

Student 5: But how are we going to calculate
distances there? Don’t we need
that?

Student 7: You can just count on a graph
paper.

Teacher: Can we come up with a formula
maybe? Just like the distance
formula we already know?

[Classroom discussion eventually leads to the
discovery that distance in the taxicab world is
calculated by counting the number of blocks
travelled either east-west plus the number of
blocks travelled up-down.] 

Teacher: We can write this formula as 
dT = |(x1 – x2)| + |(y1 – y2)| and

d = x1 − x2( )2 + y1 − y2( )2
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we’ll use dE for the normal way of
calculating distance. Now can we
check whether Q is between P and
R?

Student 8: Do we do the same thing like
before?

Teacher: What do you mean?
Student 8: Like see if those three distances

add up?
Teacher: What does the class think?
Student 6: I think it will be the same.
Teacher: Same what? 
Student 6: Like the same rule, you know

AB + BC has to equal AC.

[Calculations reveal that betweenness does
work out the same way.]

Student 7: Can’t we go from P to R like in a
city, where you are trying to avoid
a block. What I’m saying is can’t
you go through a different point,
like some point X and get to R.
Does that mean there are other
points P and R that are between
but not on the line?

[This elenchus (refutation) led to a discussion
of the difference between ‘metric’ betweenness
and betweenness as defined in Euclidean
geometry. The discussion led us to re-examine
the Euclidean hypothesis for betweenness and
reach the following conclusion.]

Teacher: We will impose the requirement in
the definition of betweenness that
points be on a particular line to
take care of this problem of ‘metric’
betweenness in taxicab geometry.
This way we can use the same defi-
nition in both geometries

Commentary on vignette

This vignette is used for the purpose of illus-
trating the Socratic method. As is evident in
the transcribed comments, students were
unwilling to accept statements made by other
students and the teacher blindly but subjected
it to scrutiny. As teachers we should value the
pedagogical value of the Socratic method even
though it can be very tedious on occasions.
The preceding vignette is a condensed and

Students were ‘blown away’ by the bizarre
appearances of known Euclidean objects in
the taxicab metric. In addition to discovering
circles appeared as squares in the taxicab
metric, the class also found several known
triangles to have strange properties; for
example, equilateral triangles in the Euclidean
metric turned out to be isosceles but equian-
gular in the taxicab metric!

A foray into philosophy

Towards the end of the fifth chapter, one of the
students in the class asked the ponderable
question, ‘Is mathematics real?’. The fact that
Vikki was zipping in and out of different
geometrical worlds in mathiverse (the mathe-
matical universe) led many students to wonder
whether mathematics was invented or discov-
ered. In other words, did Vikki discover
geometries that were present a priori or were
the different geometries a figment of the space
hopper’s imagination made real via the use of
virtual reality? These questions were raised by
several students who were big fans of the
movie The Matrix in which reality as is was
quite different from reality experienced
through a virtual interface. These questions
posed the challenge of introducing mathemat-

Figure 1

edited version of 45 minutes of dialogue even-
tually leading to the acceptance of the taxicab
metric and the notion of betweenness. In the
discussion in the following week we used the
taxicab metric to explore regular polygons and
circles.
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ical philosophy at an elementary level. The
following vignettes illustrate 13–14 year-old
student viewpoints on the nature of mathe-
matics. I have condensed two students’
expressions of their viewpoints, which parallel
the Platonist and Formalist viewpoints of the
nature of mathematics. It is interesting to note
that the class was evenly divided between the
Platonist and Formalist camps as in profes-
sional mathematics, which I believe was a
function of the non-intuitive mathematics
brought alive by the book.

Mathematics is something real. I strongly feel

this way because you can never prove math

wrong. Every equation in mathematics has

some connection to the real world. Let’s use

area of a square or a rectangle for example,

you can always use this in the real world…

and I’m sure that there is a mathematical

equation that solves the packing orange

problem. So for the various reasons I have

stated I believe the mathematical world to be

real.

[This quote shows similarities to the Platonist
view of mathematics.]

I believe mathematics is imagined. For one,

nothing on earth is perfectly predictable…

like take the weather. I don’t think there is

any mathematical equation that can predict

the weather. Mathematics is simply there to

entertain people… it sometimes helps explain

things like how to calculate area without

measuring, and there are laws like Newton’s

laws of motion that solve some problems but

not all. Math is food for thought… it can

interest some people and easily scare others

away.

[This quote shows similarities to the Formalist
view of mathematics.]

Conclusion

The experiment with Flatterland lasted eight
weeks towards the end of the school year. Just
when student interest in the regular algebra
curriculum had begun to wane, the book
served as a catalyst to renew their enthusiasm
for mathematics. The anticipation of being
able to talk about the book on Friday kept
student interest in the regular algebra
curriculum alive. The ideas in the book deep-
ened many students’ interest in mathematics.
It led three students to deciding to attend a
summer math camp at a nearby university.
Four of the students in the class are strongly
considering a career that is related to mathe-
matics or computer science. It is
professionally satisfying to realise that the use
of mathematics literature with students can
lead to vistas unexplored and unimagined
both for the students and the teacher.
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