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Pierre Bezier was born on September 1 in Paris, 1910. Choosing the career
path of his father, he gained electrical and mechanical engineering

degrees by the time he was 21 years old. He began working for the car
company Renault and stayed there for the next 42 years. In 1977 he received
a doctorate in mathematics. Bezier, at the age of 50 began developing an
interest in drawing machines — interactive free form curve and surface
design. Today, his system forms the basis of much of the computer aided
design packages available in the market place. 

Like a lot of great ideas, the basis of much of Bezier’s early work (Devroye,
2005) is not difficult to understand. A brief investigation led me quickly down
the path of binomial expansions, parametric equations, the concept of
nesting, and spinners/scroll bars in an Excel spreadsheet. The ideas
presented here could easily be incorporated into the classroom as a creative
activity for upper secondary students. 

I can vaguely recall some years ago an article written by the Martin
Gardner (1959) of Scientific American fame1, where the path of four dogs, one
at each corner of a square room, was described as they set off chasing each
others tails. The dogs begin to move along the wall, toward the tail of the dog
directly in front of them. However almost immediately the dogs realise that
their target tail is moving. This causes the dogs to spiral logarithmically
toward each other into the inevitable melee at the centre of the room.
Perhaps this metaphor best describes the sense of a Bezier curve, if not its
mathematics.

To understand Bezier’s wonderful insight as it would apply to the dogs, we
need to simplify the chase by assuming that there are only two dogs in the
room, one in the South West corner (say corner A), and one in the North
West corner (say corner B) (see Figure 1).
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1. Martin Gardner had an enormous influence on my choice of career as a mathematics
teacher. As a high school student in the seventies, I was an avid reader of “Mathematical
Games” in the monthly editions of Scientific American. His books on recreational mathe-
matics are now commonplace in mathematics staff rooms around the world. The problem
is also illustrated at www.mathsworld.wolfram.com/miceproblem.html.



Figure 1. Diagram of the setup for two dogs.

The dog at corner B has some reason to move to the north-east corner C
(perhaps he is hungry and sees a delicious bone). Let us also suppose that the
dog at corner A takes off after the hungry dog. The path he would follow
would resemble a quarter circle from A to C. We can determine an equation
for this Bezier curve by looking at the two straight-line paths between these
corners. If the dog in corner A were to run directly with uniform speed to B
in unit time, the path would be given by P1(t) = A(1 – t) + Bt, where P1, A and
B are position vectors. At time t = 0, the dog would be at P(0) = A, and at time
t = 1, the end of the journey, the dog would be at P(1) = B. The path from B
to C would similarly be described by P1(t) = B(1 – t) + Ct. 

The insight that Pierre Bezier collared was that the dog’s path would be a
nested relationship containing these two straight-line paths.

To describe the dog’s path, Bezier would have formed the equation:

(1)

Note carefully how each of the straight-line functions are nested as compo-
nents in the equation. At t = 0, the equation tells us that the dog is indeed at
A, and at t = 1 the dog is at C. At the halfway point, with 

Using the simple coordinates A (0,0), B (0,1) and C (1,1) we can pinpoint
this half way position as

Equation (1) can be simplified to:

P2(t) = A(1 – t)2 + 2B(1 – t)t + Ct2 (2)

The result remarkably produces the binomial coefficients, and this if you
like is a “phenotypic” response to the equation’s symmetry.

Keeping with our (0,0), (0,1), (1,1) coordinates, we see that at anytime t,
0 ≤ t ≤ 1:

x = t2 and y = 2(1 – t)t + t2 = 2t – t2 (3)

These parametric equations show that the actual path of the dog is given
by , which could be rearranged to x2 + y2 = 2x(2 – y) showing us that
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the path is not quite the quarter circle we envisaged (i.e., x2 + y2 = 2x). Figure 2
shows the graph of the dog’s journey2:

Figure 2. Graph of the dog’s journey.

The path is in fact a parabolic section2, with

(see footnote, unless you derived this). The derivative displays Bezier’s discov-
ery about the tangents to a Bezier curve at its end points. In our simple
example, the dog’s initial movement is in the direction along the wall, and its
final movement is in the direction of the other wall. The beauty of this is that
two Bezier curves can be joined together smoothly. 

If we widen our exploration by considering general coordinates A (x1, y1),
B (x2, y2) and C (x3, y3), we can graph the dog’s position across the unit time
interval on an Excel spreadsheet with:

P2,x(t) = x1(1–t)2 + 2x2(1–t) + x3t
2 and P2,y(t) = y1(1–t)2 + 2y2(1–t) + y3t

2 (4)

The corners A and C are actually known as terminals, and B is known as a
control point. If we now place Excel “spinners” on the three coordinates, we can
witness what Pierre Bezier witnessed in the early 1960s when he was searching
for a way to control the shape of computer generated curves. Bezier had been
conducting design research with the Renault automobile company for which
he worked. If we come “out of the corners” and into the real ring, we might
choose terminals and control points anywhere on the Cartesian plane. 

Figures 3a and 3b show Bezier curves with two different control points and
terminals (3,4) and (18,4):

2. The dog’s path is a section of the parabola (x + y)2 = 4x. Under a 45° anticlockwise axes

rotation, using and , the parabola takes the more familiar

form . Furthermore, (x + y)2 = 4x has the single solution (0,0) when y = –x. 

This means that the line y = –x must be parallel to the axis of symmetry. It is also a remark-
able fact that the dog’s path is that section of the parabola lying above the latus rectum.



Figure 3. Bezier curves with terminals (3,4) and (18,4) 
and control points at (a) (3, 13) and (b) (17, 13).

If we look carefully at expression (2), we see that the coefficients of A, B
and C are the continuous equivalent of the discrete binomial probabilities
familiar to students. The coefficients are generally known as Bernstein
Polynomials of order n having the form:

(3)

The order n signifies that there are n points in the Bezier construction, two
terminals and (n – 2) control points. There are of course (r + 1) terms in the
general Bezier expression and, for example, B(3,1) = 3t(1–t)2 becomes the
coefficient of the first control point for P3(t). 

In a sense, the quantity B(n,r) gives us an idea of the weighting being
placed on the nth control point which is varying across the interval 0 < t < 1.
The graph of B(3,1) in Figure 4 shows the change in weighting of this coeffi-
cient across unit time. In this case, at t = 0.3, the weighting of the first control
point on P3(t) reaches a maximum of 0.44. Note, the Bernstein polynomials
can be investigated with spinners and scroll bars as well (see www.canberra-
maths.org.au).

Figure 4. The graph for B(3,1).
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The “U” shaped curve above the Bernstein graph in Figure 4 is the enve-
lope of all Bernstein polynomials of order n, and is given by:

If we extend the Bezier from one control point to two control points we
increase our power to control the Bezier curve’s shape. If you like, it enables
another degree of freedom. By employing the Bernstein polynomials, we find
that for two control points:

P3(t) = A(1 – t)3 + 3B(1 – t)2t + 3C(1 – t)t2 +Dt3 (4)

Again the binomial coefficients are present. Equation (4) reveals itself
because of the simple principle of nesting as illustrated by:

Figure 5 is an example of a four point Bezier, with two terminals and two
control points.

Figure 5. A Bezier curve with two terminals and two control points.

The number of control points is limitless, and the generated Bezier can
close, loop back on itself, or pulled into any shape that the controller desires.
Figure 6 shows a five point closed Bezier that also contains a loop. Try to
imagine the path of the dog from the point (3, 11) to the same point!
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Figure 6. A Bezier curve with both terminals at (3, 11) and three control points.

Investigating Bezier curves adds a new dimension to the problem of curve
sketching. You can play around with 3,4 and 5 point Beziers, or the Bernstein
polynomials by going to the post-primary resources section on the Canberra
Mathematics Association website www.canberramaths.org.au. There is also a
host of websites available for deeper investigation, and perhaps my favourite
is http://www.ablestable.com/play/bezier.
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