
Perhaps next time you head towards the fundamental theorem of calculus
in your classroom, you may wish to consider Fermat’s technique of

finding expressions for areas under curves, beautifully outlined in Boyer’s
History of Mathematics. Pierre de Fermat (1601–1665) developed some impor-
tant results in the journey toward the discovery of the calculus. One of these
concerned finding areas under simple polynomial curves. It is an amazing
fact that, despite deriving these results, he failed to document any connection
between tangents and areas. 

The method is essentially an exercise in geometric series, and I think it is
instructive and perhaps refreshing to introduce a little bit of variation from
the standard introductions. The method is entirely accessible to senior
students, and makes an interesting connection between the anti derivative
result and the factorisation of (1 – rn+1). 

Fermat considered that the area between x = 0 and x = a below the curve y
= xn and above the x-axis, to be approximated by circumscribed rectangles
where the width of each rectangle formed a geometric sequence. The divi-
sions into which the interval is divided, from the right hand side are made at
x = a, x = ar, x = ar2, x = ar3 etc., where a and r are constants, with 0 < r < 1 as
shown in the diagram.
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If we first consider the curve y = x2, the area A contained within the rectan-
gles is given by:

A = (a – ar)a2 + (ar – ar2)(ar)2 + (ar2 – ar3)(ar2)2 + …

This is a geometric series with ratio r3 and first term (1 – r)a3.

Using the limiting sum formula, we have

Now as r → 1 the widths of the rectangles decrease and the total area
approaches the area under the curve. That is to say: 

We can apply the same logic using any curve of the form y = xn for n a posi-
tive integer. The geometric series formed has the first term an+1(1 – r) and the
common ratio rn+1. This means that the denominator in the limiting sum
factorises to (1 – r)(1 + r + r2 + … + rn) and the general result becomes clear.

We can even apply the method to the Mid-Ordinate and the Trapezoidal
rule to produce two further expressions for A. Considering the curve y = x2,
the expression for A using the mid-ordinate rule becomes

and for the trapezoidal rule,

which after determining the limiting sums in both expressions produces the
desired result. 

    
A = a3

2
(r 2 +1)(1− r)(1+ r 3 + r 6 + r 9 +…)

    
A = a3

4
(r +1)2(1− r)(1+ r 3 + r 6 + r 9 +…)

    
x 2dx = a3

3
0

a

∫

    

A = a3(1− r)
1− r 3

= a3(1− r)
(1− r)(1+ r + r 2)

= a3

(1+ r + r 2)
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