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Introduction

In our experience, many students view mathe-
matics as a collection of theorems and facts
that were discovered by intelligent mathemati-
cians and all they have left to do is to study
them carefully. We believe it is important to
help students change this view (Lavy & Shriki,
2003). One possible way is to enable students
to modify the attributes of a given situation,
and then pose problems that concern the
newly generated situation (Brown & Walter,
1993). In this paper we wish to demonstrate
the simplicity of such a process, and exemplify
the idea that even a fundamental situation can
serve as a trigger for discovering unknown
patterns. 

Revisiting triangles

Looking at a triangle, one can think of
numerous questions that can be asked. We
present an example of surprising and unex-
pected results that emerge as a consequence
of one initial simple question. The answer to
this question leads us to ask further related
questions, and to discover patterns that we
were not aware of previously. 

Take a triangle ABC with an area A0: each
side of the triangle is lengthened to twice its
length (BD = 2AB, AE = 2AC, CF = 2CB) and
the new endpoints, D, E, F are connected to
form a new triangle (Figure 1). The area of
triangle DEF is designated by A1.1

Question 1

Is there any connection between A1 and A0?

Answer 1

Using dynamic software (for example, the
Geometry Inventor of Logal Company, Israel) it
is easy to find out that A1/A0 = 7, regardless of
the side lengths of triangle ABC. 

Exploring 

Figure 1

ATARA SHRIKI & ILANA LAVY

1. After completing the above activity we found out that in 1997
a similar unpublished activity related only to modification 1
was developed by Ziva Levin in the framework of ‘mahar 98’
— workshops for mathematics teachers.

MATHEMATICAL 
PATTERNS

using 
dynamic geometry software
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Modification 1

In this stage it seems natural to repeat the
process and lengthen each side to three times
its length, four times its length, and so on.
Consequently we obtain triangles GHI, JKL
and MNP such that 

BA = AD = DG = GJ = JM; 
AC = CE = EH = HK = KN and 
CB = BF = FI = IL = LP (Figure 2). 

The areas of triangles GHI, JKL and MNP are
A2, A3 and A4 respectively.

Answer 3

If the ratios are to be taken as subsequent
terms of a sequence then we get: 

a0 = 1, a1 = 7, a2 = 19, a3 = 37, and a4 = 61. 

The sequence of differences is: 

b1 = 6, b2 = 12, b3 = 18, b4 = 24… 

which are subsequent terms of an arithmetic
sequence with difference 6. 
Thus, for n = 1, 2, 3, 4… we get: 

an = (1 + 6) + 12 + 18 + 24 + … + 6n
= 1 + 6 × 1/2 × n(n + 1) 
= 3n2 + 3n + 1. 

Question 4

Can we establish this formula for an mathe-
matically?

Answer 4

The answer to this question is ‘Yes,’ and is
based on simple trigonometric considerations.
Referring to Figure 3:

Let ∠BAC = α; ∠CBA = β; ∠ACB = γ. Then: 

(1) A0 = area (∆ABC) 
= 1/2 bc sin α
= 1/2 ac sin β
= 1/2 ab sin γ

Figure 2

Question 2

Is there any connection between 
A0, A1, A2, A3, … An?

Answer 2

Using the software we are surprised to see that
starting with any initial triangle, the ratios
remain constant: A1/A0 = 7, A2/A0 = 19, 
A3/A0 = 37, A4/A0 = 61…

Question 3

Is there any algebraic pattern that can
describe the obtained ratios?

Figure 3
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(2) area (∆ADE) = 1/2 2bc sin (180 – α) 
= bc sin α
= 2A0

(3) area (∆DBF) = 1/2 2ca sin (180 – β) 
= ac sin β
= 2A0

(4) area (∆EFC) = 1/2 2ab sin (180 – γ) 
= ab sin γ
= 2A0

From (1) – (4) we get: 

A1 = area (∆DEF) 
= A0 + 2A0 + 2A0 + 2A0

= 7A0

so a1 = 7 as required.

Similarly, for the nth triangle we get: 

An = area (nth triangle) 
= 1/2 nc(n + 1)b sin α

+ 1/2 na(n + 1)c sin β
+ 1/2 nb(n + 1)a sin γ + 1/2 bc sin α

= 1/2 n(n + 1) 
[cb sin a + ac sin β + ba sin γ] 
+ 1/2 bc sin a

= 1/2 n(n + 1) [2A0 + 2A0 + 2A0] + A0

= [3n(n + 1) + 1] A0

or an = 3n2 + 3n + 1.

Thus we get: 

an = 3n2 + 3n + 1. 

This checks for the first four cases, and we
have proved the generalised case.

Note: 
We have been considering terms in a
sequence, so n is a natural number.
Nevertheless, in the general proof we do not
limit n to be a natural number. As a conse-
quence, if we look at the result in its
geometrical sense, it is clear that n can be any
positive number. 

We now propose a number of further exten-
sions, giving the answers without proof. Each
of these can be explored using dynamic geom-
etry software, and then verified
mathematically, with trigonometric proofs of
increasing length!

Modification 2

Question 5

What connections will be discovered if we
lengthen one of the sides k times its length,
one of the sides l times its length and one of
the sides m times its length? 

Figure 4

In Figure 4, BF = ka, CE = lb, AD = mc. 

Answer 5

You can show that 

a1 = A1/A0

= (kl + lm + mk) + (k + l + m) + 1,

and more generally,

an = An/A0

= (kl + lm + mk)n2 + (k + l + m)n + 1.

Notice how nicely this extends Modification 1.
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Modification 3

Question 6

The last unexpected result motivates our next
question: what connections can be discovered
if we replicate the process using a quadrangle
in place of the initial triangle?

Answer 6

Repeating the above procedure (Figure 5), we
get: 

A1 = area (EFGH) = 5 A0,
A2 = area (IJKL) = 13 A0,
A3 = area (NPQM) = 25 A0,
A4 = area (SVUT) = 41 A0,

or a1 = 5, a2 = 13, a3 = 25, a4 = 41…

Arguing as in Answer 3, we now conjecture
that an = 2n2 + 2n + 1, for n = 1, 2, 3… and this
can be established with some easy but lengthy
trigonometric calculation. 

Modification 4

An obvious extension for the quadrangle case
is the following question.

Question 7

What connections will be discovered if we
lengthen one of the sides k times its length,
one of the sides l times its length, one of the
sides m times its length, and one of the sides
p times its length? 

Modification 5

In this stage we begin to develop the expecta-
tion that it would be possible to find a suitable
pattern for the relations between areas for any
polygon that is built in the described manner.

Question 8

What connections can be discovered if we
replicate the process using a pentagon in place
of the initial triangle?

Answer 8

Using the software we quickly realise that for
any initial polygon with more than four sides
the ratio A1/A0 changes as the side lengths are
modified.

Question 9

We usually tend to ignore results that do not
fulfil our expectations. It is no less important,
however, to be able to explain why patterns
can be found in certain conditions whereas
they do not exist in others. The essential ques-
tion hence is: why does the ratio An/A0 not
depend on the lengths of the sides in case of
triangle and quadrangle, but does depend on
their lengths in the cases of other polygons?

Answer 9

In order to answer that question, we return to
the first two cases, and examine the meaning
of the obtained results in a geometrical
manner. Answer 4 explains why area(∆ECF) =
area(∆DAE) = area(∆FBD) = 2area(∆ABC). As

Figure 5
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for the quadrangle, looking at Figure 5 it is
easy to verify that 

area(∆BEF) = 2area(∆ABC); 
area(∆HGD) = 2area(∆ADC); 
area(∆HAE) = 2area(∆ABD); and 
area(∆FCG) = 2area(∆BCD). 

Adding, this explains the result A1 = 5A0. 

Summary

In this paper we have demonstrated that
posing problems can lead to some unexpected
results. When students experience the joy of
discovering unknown patterns, no doubt they
will alter their attitude towards mathematics. 

One of the National Council of Teachers of
Mathematics’ (2000) recommendations
concerns connections: 

An emphasis on mathematical connections

helps students recognise how ideas in

different areas are related. Students should

come both to expect and to exploit connec-

tions, using insights gained in one context to

verify conjectures in another. 

In our case, we began with a geometrical
problem. During the process of asking ques-
tions that were based on that problem, we
obtained algebraic patterns, which were
proved by using trigonometric arguments. The
whole process reveals the beauty that can be
found in mathematics, since it exhibits
connectivity among its various areas. 

The whole process was enabled by the use
of dynamic computer software. The possibility
of easily verifying the existence of a certain
phenomenon by the software motivated the
search for a formal proof. Presumably without
the software the whole process might never
have been initiated. 
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Figure 6

Relating to the pentagon in Figure 6, the
difference between the cases of the triangle
and quadrangle and the case of the pentagon
can be seen. In this figure we can show that:

area(∆JAI) = 2area(∆EBA); 
area(∆BIH) = 2area(∆ABC); 
area(∆CHG) = 2area(∆BCD); 
area(∆FDG) = 2area(∆CDE); and
area(∆FJE) = 2area(∆DEA). 

The area of the inner pentagon PKLMN has
no connection to the triangles that are adja-
cent to the pentagon. Consequently the ratio
An/A0 depends on the pentagon’s sides and
angles. Note that dividing the pentagon into
three triangles (using three diagonals) and
using trigonometric considerations (the sine
and cosine rules) it can be shown that the
ratio An/A0 is a function of the pentagon’s
sides and angles. We leave the reader to
complete this proof. 
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