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Abstract: The proliferation of large language models represents a paradigm shift 
in the landscape of automated essay scoring (AES) systems, fundamentally 
elevating their accuracy and efficacy. This study presents an extensive examination 
of large language models, with a particular emphasis on the transformative 
influence of transformer-based models, such as BERT, mBERT, LaBSE, and GPT, 
in augmenting the accuracy of multilingual AES systems. The exploration of these 
advancements within the context of the Turkish language serves as a compelling 
illustration of the potential for harnessing large language models to elevate AES 
performance in in low-resource linguistic environments. Our study provides 
valuable insights for the ongoing discourse on the intersection of artificial 
intelligence and educational assessment. 

1. LANGUAGE MODELS IN AUTOMATED ESSAY SCORING  
Automated essay scoring (AES) is a sub-task of text classification that uses computer 
algorithms to score essays written by humans automatically. Machine and deep learning 
algorithms are often utilized to build a scoring engine that can model the scoring performance 
of human raters. The model is then employed to classify essays into different score classes (i.e., 
score categories). AES systems typically work by analyzing the text of an essay and applying 
a set of linguistic features to assess its quality. These features may include grammar, 
vocabulary, sentence structure, coherence, and the presence of relevant arguments or evidence. 
The AES system builds the scoring model using techniques and procedures from the fields of 
natural language processing (NLP) and computational linguistics where linguistic features are 
extracted from the instances of human-scored essays (i.e., labeled data) and turned into 
numerical representations that a machine or deep learning model can process. The most 
common NLP techniques for feature extraction include text length features, bag of words, and 
pre-trained large language models such as Bidirectional Encoder Representations from 
Transformers (BERT; Devlin et al., 2018). 
Text length features are simple and effective in general text analysis and AES (Fleckenstein et 
al., 2020; Hussein et al., 2019), as they have been widely used to evaluate essays based on their 
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length and structure. These features include, for example, the average number of words per 
paragraph, or the average number of characters per word. Using text length features, AES 
systems compare the length of each essay to the length of the essay prompt or an ideal essay 
length with a high score in the training corpus. Text length features are typically used in 
conjunction with other syntactic properties, such as part of speech (POS) and discourse 
characteristics of a text, including cohesion and coherence. Statistical language models are used 
to analyze the syntactic properties in a text (e.g., Rodriguez et al., 2019).  N-gram is an example 
of the statistical model that captures the likelihood of a sequence of n words occurring in a 
given text based on the frequency of those word sequences in a training corpus. Practically, the 
syntactical property of texts is assessed using the existing natural language toolkit libraries in 
programming languages, such as the NLTK library in Python (Bird, 2006). In addition, the 
linguistic and discourse characteristics of written texts in English can be assessed using text 
analysis tools, such as Coh-Metrix (Graesser et al., 2004), which were developed and used for 
the English language.  
Word embeddings have become fundamental in various NLP applications, including AES. 
Word embedding models, such as Word2vec and GloVe embeddings, are a class of NLP 
techniques to represent words as dense vectors in a continuous vector space (Firoozi et al., 
2022). These vectors capture hidden information about a language, like word analogies or 
semantics. The information can be used to examine the proximity of the semantic relationship 
between the word and the context.  For example, in a well-trained word embedding model, the 
vectors for "king" and "queen" would be closer together than the vectors for "king" and "car." 
Calculating the proximity in the vector space allows the model to capture semantic 
relationships, such as analogies ("king" is to "queen" as "man" is to "woman"). This knowledge 
is learned in pre-trained word embedding models through unsupervised learning using large 
amounts of text corpus. Depending on the corpus and the learning techniques, the word 
embedding models capture different information in the vectors.  The most popular word 
embedding language models are Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 
2014), and FastText (Bojanowski et al., 2017) developed by Google Inc., Stanford University, 
and Facebook AI Research, respectively. The models were pre-trained using different corpora 
and learning techniques.  
Word2Vec pre-trained vectors were trained on a part of the Google News dataset with about 
100 billion words. Mikolov et al. (2013) proposed two model architectures, including a 
continuous bag of words (CBOW) and Skip-gram, for learning distributed representations of 
words. CBOW predicts a word in a sequence of words given the average distributed 
representation of all the surrounding words in the sequence. A word is predicted based on the 
largest semantic similarity between the word vector and the average distributed representation 
vector of the surrounding words in context. The Skip-gram model is similar to CBOW, but 
instead of predicting a word based on the surrounding sequence of words, it tries to predict the 
surrounding words of a given word in a sentence. 
 FastText (Bojanowski et al., 2017) has a similar training process (i.e., CBOW and Skip-gram) 
as Word2Vec. FastText differs from Word2Vec regarding the corpora used for training and 
word representation technique. FastText is trained on Wikipedia data in nine different 
languages: Arabic, Czech, German, English, Spanish, French, Italian, Romanian, Russian, and 
Turkish (Kuyumcu et al., 2019). FastText represents words as bags of character n-grams 
(subword units). In this technique, words are decomposed into character-level n-grams (e.g., 
"apple" -> {ap, ppl, ple}), including both prefixes and suffixes. Word representations are then 
generated by summing or averaging the vectors of these n-grams. The character level 
representation in FastText enables the model to capture morphological and semantic 
information even for out-of-vocabulary words. 
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The training process of the Glove model (Pennington et al., 2014) is different from Word2Vec. 
The GloVe model combines the matrix factorization methods (Cai et al., 2009) and the window-
based methods to consider both the statistical and contextual information of words in 
calculating word vectors. Hence, GloVe learns the embeddings based on a co-occurrence matrix 
showing the count of the overall statistics of how often words appear together in a text based 
on their semantic similarity. The vector spaces of the word embedding techniques can be trained 
on AES datasets with different sizes to fine-tune the pre-trained parameters.  
The word embedding models use Recurrent Neural Network (RNN) models for training (Liu et 
al., 2015). RNN models are neural network models containing a hidden layer that auto-
regressively updates the conditional probability of the output vector (e.g., a word or the context 
of a word) given the hidden state in the next step. The RNN model updates the prediction 
weights based on the errors it receives in the following steps.  While RNN-based models 
revolutionized the Google translation engines in 2016, they have two main problems. First, 
these models suffer from the vanishing gradient problem, making it very difficult to capture 
long-range dependencies within the text (Hochreiter et al., 2001). For instance, if a system is 
developed to predict the next word in a sentence, the network must have a better knowledge of 
the preceding words in the text for more accurate predictions. In RNN, the hidden weights are 
updated recurrently to decrease the error function. In long texts with more hidden weights at 
different time steps, the initial weights are multiplied by the updated weight. However, because 
the initial weights are small, this multiplication quickly decreases the gradient value, leading to 
the early termination of model training before the model can learn the whole text. This problem 
with sequential training was solved using a parallel structure in encoding the input sequence of 
different lengths (Vaswani et al., 2017). 

2. TRANSFORMER_BASED LANGAUGE MODELS 
Research studies on AES skyrocketed in 2018 when the transformer models (Vaswani et al., 
2017) were introduced (Ramesh & Sanampudi, 2022). Transformer-based models have 
revolutionized the field of NLP by offering powerful tools for training language models that 
significantly increase the accuracy of the pre-trained models in text classification tasks, 
including AES (Devlin et al., 2018). Transformers are encoder-decoder-based neural networks 
that solve sequence processing problems by finding a mapping function from an input sequence 
of vectors (e.g., word or sentence) to the output sequence of vectors (e.g., essay labels). The 
architecture consists of an encoder and a decoder comprising multiple layers of multi-head 
attention-based blocks. The encoder takes the input sequence and processes it by repeatedly 
applying the multi-head attention block to the input sequence of tokens. The attention 
mechanism in transformers can capture all of the contextual information within a text to 
calculate the weighted sum of values for each token (e.g., words) in a sequence of input (e.g., 
sentence). For example, in the sequence of input = “I want to buy a car,” the representation of 
the fourth word “buy” depends not only on the adjacent words, including “I,” “want,” “to,” “a,” 
and “car” in the sequence, but also on all other words in the text. This feature allows for the 
modeling of global dependencies in all sequential inputs without regard to their distance in the 
input or output sequences. Hence, in encoding or decoding the representation of an input 
sequence, the attention mechanism allows transformers to learn the context of the input by 
parallelizing all the surrounding inputs within training examples (Wolf et al., 2020). The 
decoder takes the output sequence generated by the encoder and processes it by attending to the 
encoder's output and the previous tokens in the decoder's input sequence. This allows the 
decoder to generate each output token by selectively attending to different parts of the input 
sequence. During training, the model learns to assign appropriate weights to the tokens in each 
layer of the encoder and decoder in order to minimize a given loss function (e.g., cross-entropy 
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loss) between the predicted output sequence and the ground truth output sequence (Han et al., 
2022). 
Using this training approach, transformer-based language models can accurately capture the 
linguistic patterns in a language by learning the long-range dependencies and semantic 
relationships between tokens (e.g., words/subwords or sentences) in texts (Bouschery et al., 
2023). Hence, by transferring the knowledge in these pre-trained language models to the 
targeted AES task, the accuracy of the AES systems improves significantly without using a 
large number of labeled essays for training. Unlike the text length and word embedding models 
that were language-specific and mainly developed and used for the English language, 
transformer-based models were also trained on languages other than English. Hence, the low-
resource languages can benefit from transformer-based language models, including BERT, 
LaBSE, and GPT, for transfer learning in AES (Firoozi et al., 2023). Low-resource languages 
are less studied, less digitized, less privileged, less commonly taught, and less accessible 
compared to English (Cieri et al., 2016; Magueresse et al., 2019). 
BERT (Devlin et al., 2018) is a transformer-based encoder model for language representation 
that uses a multi-head attention mechanism and a bidirectional approach to learn the contextual 
relations between words and sentences in a text for an accurate representation of the entire text. 
Multi-head attention is a mechanism for training transformers that compares each input vector 
with all other text vectors to consider the context in word representations. The bidirectional in 
BERT refers to the training process where the transformers can generate contextual embeddings 
based on previous and next tokens of the text (Kenton & Toutanova, 2019). BERT can be 
trained in different languages. BERT is trained using two approaches. The first approach is 
masked language modeling (MLM). MLM predicts a missing word in a sentence by randomly 
masking 15% of the words and running all the masked sentences through the model to predict 
the masked words. The second approach is next sentence prediction (NSP). NSP is predicting 
if one sentence naturally follows another. In NSP, the model learns to understand longer-term 
dependencies across sentences. Using the NSP technique allows the model to predict each two-
sentence sequence that follows one another in a text. BERT learns this knowledge by receiving 
masked sentence embeddings concatenated in pairs as inputs during pre-training. Half of the 
embeddings are random, and the other half are actual sentence pairs from the pool of training 
data. For example, the model receives sentence A and sentence B to predict whether sentence 
B is the next sentence or whether it is not the next sentence. This process continues, and the 
model learns from the error rates in each prediction until it fully predicts the accurate sequence 
of sentences in a text (Devlin et al., 2018). 
The version of the BERT model using multilingual text is called mBERT (Devlin et al., 2018). 
mBERT contains the lexical, linguistic, and grammatical knowledge for 104 different 
languages. The languages in this model were selected because they contain the largest number 
of Wikipedia entries. mBERT was trained using MLM and NSP, and it implements a 
monolingual text stream process in which each language's pre-training process is conducted 
separately. As a result, the feature space for each language is not shared with any other language 
in the model. mBERT can be used to overcome the problem of data sparsity. For example, 
Firoozi and Gierl (in press) used mBERT to score essays written in Persian. Persian is a low-
resource language that has proven challenging for traditional automated text analysis methods 
(Roshanfekr et al., 2017). Firoozi and Gierl (In press) compared the result of the mBERT 
language model with a word-embedding language model. The mBERT model (Quadratic 
Weighted Kappa =0.84) significantly outperformed the word embedding model (Quadratic 
Weighted Kappa = 0.75). The Quadratic Weighted Kappa (QWK) is a statistic that measures 
the agreement between two sets of ratings or classifications. It is commonly used in the field of 
inter-rater reliability to assess the agreement between human raters or between a human rater 
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and an automated system. QWK considers quadratic weights for misclassifications based on 
how close the ratings are to the correct class using an ordinal scale. In the current study, QWK 
is the main evaluation metric in AES systems because it can easily be used to compare the 
performance of our model with the performance of models used in similar studies. QWK varies 
from 0 (random agreement between raters) to 1 (complete agreement between raters). Typically, 
values between 0.60 and 0.80 QWK are used as a lower bound estimate for an acceptable 
reliability outcome using human raters in a high-stakes testing situation (Williamson et al., 
2012). 
Another BERT model that uses multilingual text is called language-agnostic BERT sentence 
embedding or LaBSE (Feng et al., 2020). LaBSE is an extension of mBERT where, instead of 
considering monolingual text streams, bilingual text streams are created by using parallel 
data—a collection of texts in two or more languages aligned at a sentence or phrase level—in 
the learning process of the model. This sentence embedding method is called translation 
language modeling (TLM) (Lample & Conneau, 2019). LaBSE uses TLM and MLM for 
training by randomly masking words in both the source- and target-language sentences. For 
example, when Italian and German serve as the source and target languages, respectively, 
LaBSE can predict a word masked in a sentence written in Italian either by attending to the 
surrounding words written in Italian or by attending to the parallel surrounding words written 
in German thereby allowing the model to align the Italian and German text representations.   
A critical benefit of using LaBSE is that the model can leverage information from the 
multilingual context to improve its ability to learn the text (Chi et al., 2020). For example, the 
model can use the German language context to infer the masked Italian word if the Italian 
language context is not sufficient to infer the masked Italian words. By training LaBSE on 
parallel sentences using TLM and MLM, the model learns the lexical, linguistic, and 
grammatical knowledge for each language and connects the knowledge between the two 
languages, thereby providing a shared embedding space for both languages in the model. 
Because LaBSE is pre-trained on 109 languages, many different LaBSE-based language models 
can be fine-tuned using different numbers and types of languages on downstream tasks. The 
knowledge transfer between languages is essential when considering low-resource languages. 
Training a language model like LaBSE on several languages with adequate supervised 
resources allows building AES systems on low-resource languages using their limited data. 
LaBSE serves as another example of how language models can be used to facilitate transfer 
learning (Ranathunga et al., 2023). 
GPT (Generative Pre-trained Transformer) is another recent groundbreaking transformer-based 
language model (Radford et al., 2019) developed by OpenAI. Like the BERT models, the core 
idea behind training GPT models is the attention mechanism introduced by transformers. GPT 
models differ from BERT-based models in terms of training methods and the dataset used for 
training. Unlike BERT, a bidirectional transformer-based architecture, GPT is a unidirectional 
transformer-based architecture trained on texts from start to end. In addition, GPT models use 
a different training method than mask language modeling used in BERT. GPT models are 
autoregressive language models that generate text by predicting the next word in a sequence 
given the previous words (Black et al., 2022; Brown et al., 2020). This type of training enables 
GPT models not only to understand but also to generate texts. 
GPT models are trained unsupervised on a vast amount of textual data available on the internet. 
GPT was trained on a much larger corpus than the one used for BERT. For example, GPT-3 
(Generative Pre-trained Transformer 3), the third version of the GPT series of language models 
introduced by OpenAI in 2020, contains 175 billion parameters that enable it to generate 
coherent and fluent text outputs such as text generation, language translation, and question-
answering in a human-like manner. While BERT-based models can mainly be utilized for 
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transfer learning in scoring students’ written tasks, the GPT models' capabilities to generate text 
make them useful for transferring their knowledge to generate detailed feedback to students 
(Mayer et al., 2023). GPT-3's remarkable capabilities come with computational resource 
requirements and limitations. The model size and complexity make it computationally 
intensive, requiring significant computational power to train and deploy effectively. 
Additionally, GPT-3 text generation can sometimes exhibit biases in the training data, and it 
may generate plausible but incorrect or misleading information (Mizumoto & Eguchi, 2023). 
GPT is just a member of a larger category of models called Large Language Models (LLMs) 
(MacNeil et al., 2022). As the name suggests, LLMs are large models trained to contain the 
structure and knowledge of natural languages. Similar to variations of GPT, these models 
contain billions of parameters and are trained on massive corpora using self-supervised 
methods. As a result, these models acquire a deep and rich understanding of their target 
languages. However, as these models are trained on text with a wide range of topics and 
structures, they have gained a unique generalizability and multitasking ability (Bubeck et al., 
2023). These models can be prompted and interactively trained to perform entirely new tasks. 
One example of such a task could be AES. Like humans, the model will gradually acquire the 
ability to do AES by prompting a language model to score an essay and providing constructive 
feedback. LLMs can utilize their comprehensive knowledge of language, common sense, and 
communication skills to acquire AES skills without needing to be explicitly trained on AES in 
a supervised fashion (Mizumoto & Eguchi, 2023). Hence, LLMs can be trained as an AES 
chatbot that scores essays and provides detailed and personalized feedback for each essay. The 
chatbot can also be prompted for further feedback and automated improvements through a 
natural language conversation. 

3. AUTOMATED ESSAY SCORING IN TURKISH LANAGUGE 
Turkish is a language in the Turkic family of Altaic languages, which over 80 million people 
speak in Turkey, the Middle East, and Western European countries. Despite being the native 
language of more than 80 million people, like other low-resource languages, Turkish is also 
relatively less studied and benefited from the developed NLP tools and resources (Oflazer & 
Saraçlar, 2018). The Turkish language has certain morphological features, such as multiple 
derivations of a given word via prefixes and suffixes, making language processing more 
challenging (Koskenniemi, 1983). For example, the single word “ruhsatlandırılmamak” 
includes five suffixes. Despite these language challenges, NLP research and tools in the Turkish 
language are growing thanks to the unsupervised learning algorithms that overcome the 
problem of data sparsity in NLP tasks, such as speech recognition (e.g., Arslan & Barışçı, 2020) 
and sentiment analysis (e.g., Gezici & Yanıkoğlu, 2018).  
Research on Turkish AES has been the focus of very few studies (Cetin & Ismailova, 2019; 
Dikli, 2006; Uysal & Doğan, 2021). Cetin and Ismailova (2019) attempted to develop a 
language tool to automatically evaluate students' essays in Turkish. They used the existing NLP 
tools for the Turkish language, including Zemberek (Akın & Akın, 2007), to extract mechanical 
features of the language, such as word count, spelling error, and number of sentences for 
evaluation of written essays. In another study, Uysal and Doğan (2021) compared different 
machine learning (ML) algorithms, including support vector machines, logistic regression, 
multinominal Naive Bayes, long-short term memory (LSTM), and bidirectional long-short term 
memory (BILSTM) to score open-ended response items in the Turkish language. They also 
used the existing NLP tools in the Turkish language for text representations. Uysal and Doğan 
(2021) concluded that the BLSTM model outperformed (QWK=0.77) the other models, 
including Logistic regression (QWK=0.70), Naïve Bayes (QWK=0.64), support vector 
machine (QWK=0.69), and LSTM (QWK=0.58) in terms of scoring accuracy.  
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Despite the popularity of AES models, they have not been studied widely in the Turkish 
language. One reason is that the NLP tools for feature extraction in low-resource languages 
such as Turkish are limited (Cetin & Ismailova, 2019). In addition, there are very few, if any, 
labeled essays available for public research. For example, in the Turkish language, the available 
few labeled data (e.g., Benchmark Data†) are developed for text analysis tasks, such as 
sentiment analysis (Kavi, 2020), and there are no labeled essays that can be used for AES 
tasks. Given that the recent large language models such as mBERT and LaBSE are trained in 
hundreds of languages, including Turkish, the rich knowledge in these LLMs can be transferred 
to downstream tasks such as AES using even a few training data (Firoozi et al., 2022). The 
existing challenges in the Turkish AES research, including the limited NLP tools for feature 
extraction and the insufficient labeled essays available for public research, can be solved by 
using the large language models, such as mBERT and LaBSE, which were reviewed in the 
current study. Using transformers, like mBERT, can help decrease the gap in the AES literature 
between English and low-resource languages. The following steps summarize the process of 
applying the mBERT model to the Turkish Language using Python. 
3.1. Installing Transformers Library 
Google Colab (https://colab.research.google.com/) gives free access to writing and executing 
arbitrary Python code through the browser. It also provides easy-to-use hardware acceleration 
for deep learning models. First, on the Google Colab page, we install transformers with pip 
package manager and import the installed packages (Figure 1). The Tensorflow package is a 
computational graph processor–a fundamental tool for implementing and using deep learning 
models in Python. The Transformers package by Hugging Face also enables us to employ the 
latest transformer models and their pre-trained weights. 

Figure 1. Installing libraries. 

!pip install tensorflow 
!pip install transformers 
 

import tensorflow as tf 
from transformers import AutoTokenizer 
from transformers import TFAutoModelForSequenceClassification 

3.2. Loding Turkish Dataset 
The code snippet in Figure 2 shows how to write a Python function to read the Turkish AES 
dataset and return two lists: one containing the texts and one containing the labels. The Turkish 
AES dataset is a collection of texts in the Turkish language and their corresponding AES scores. 

Figure 2. Loading datasets. 
def read_texts(path=ADDR_TURKISH): 
    with open(path, "rb") as file: 
        dataset_turkish = pickle.load(file) 
    texts = [item[0] for item in dataset_turkish]) 
    labels = [round(float(item[1]) for item in dataset_turkish]) 
 

    return texts, labels 

 

 

 

† https://www.kaggle.com/datasets/savasy/ttc4900 

https://colab.research.google.com/
https://www.kaggle.com/datasets/savasy/ttc4900
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3.3. Data Preprocessing  
For tokenization, we can use either mBERT Tokenizer or one of the existing Turkish-specific 
language models, such as BERTurk (https://huggingface.co/dbmdz/bert-base-turkish-cased), 
using the codes in Figure 3. 

Figure 3. Data preprocessing. 
 tokenizer = AutoTokenizer.from_pretrained( 
    " bert-base-multilingual-cased" 
) 

Or 

tokenizer = AutoTokenizer.from_pretrained( 
    " dbmdz/bert-base-turkish-cased" 
) 

 
Text tokenization is the process of splitting a text into smaller units, such as words or subwords, 
that can be mapped to numerical representations. Different methods of text tokenization for 
transformers are: 
Byte-Pair Encoding (BPE): This method uses a statistical algorithm to learn a fixed-size 
vocabulary of subword units from a large corpus of text. It starts with a set of characters as the 
initial vocabulary and then iteratively merges the most frequent pair of symbols until the 
vocabulary reaches the desired size. BPE can handle rare or unknown words by breaking them 
into smaller subwords. BPE is used by models such as GPT-2 and RoBERTa1. 
WordPiece: This method is similar to BPE, but instead of merging the most frequent pair of 
symbols, it merges the pair that maximizes the likelihood of the data. WordPiece also uses a 
special symbol to mark the beginning of a word so that it can distinguish between different 
occurrences of the same subword in different words. WordPiece can also handle rare or 
unknown words by breaking them into smaller subwords. WordPiece is used by models such 
as BERT and DistilBERT1. 
SentencePiece: This method is a generalization of BPE and WordPiece, which can operate on 
raw texts without pre-tokenization or pre-segmentation. SentencePiece can learn a vocabulary 
of subword units from any language and encode texts into sequences of subwords or characters. 
SentencePiece can also handle rare or unknown words by breaking them into smaller subwords 
or characters. SentencePiece is used by models such as ALBERT and XLNet1. An example of 
how a word piece tokenizer—which is used in our sample—might work on a Turkish language 
sentence is as follows. In the sentence “Türkiye'nin en büyük şehri İstanbul'dur,” means “The 
largest city of Turkey is Istanbul,” the word piece tokenizer would first split the sentence into 
words by whitespace as: [Türkiye'nin, en, büyük, şehri, İstanbul'dur.] 
3.4. Model Training 
BERTurk‡ is a cased BERT model for the Turkish language that can be used for tokenization. 
The model is trained on various free-access Turkish corpora, including a filtered and sentence-
segmented version of Turkish open parallel corpus (OPUS), OSCAR corpus, and a special local 
corpus. The final training corpus has a size of 35GB and 44,04,976,662 tokens§. The following 
codes can be used for tokenization using BERTurk. 
To load the BERTurk model using the Hugging Face’s transformers package, we need to use 
the AutoModel and AutoTokenizer classes from the transformers module. Given the model’s 

 

‡ https://github.com/stefan-it/turkish-bert 
§ https://huggingface.co/dbmdz/bert-base-turkish-cased 

https://huggingface.co/dbmdz/bert-base-turkish-cased
https://github.com/stefan-it/turkish-bert
https://huggingface.co/dbmdz/bert-base-turkish-cased
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name or path, these classes can automatically load any model from the huggingface model hub. 
The BERTurk model is available on the model hub under “dbmdz/bert-base-turkish-cased.” We 
can load this model using the codes in Figure 4. 

Figure 4. Importing a pretarined model. 
 from transformers import AutoModel, AutoTokenizer 

 

tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-

cased") 

model = AutoModel.from_pretrained("dbmdz/bert-base-turkish-cased") 

The codes in Figure 5 is an example of how to train the BERTurk model using PyTorch. The 
code defines the loss function, optimizer, and scheduler for the training process. The loss 
function is a cross-entropy loss, which measures how well the model predicts the correct class 
for each text. The optimizer is an AdamW optimizer–a stochastic gradient descent method that 
updates the model parameters based on the gradients of a loss function. The scheduler is a linear 
schedule with a warmup, which adjusts the learning rate during the training process. The code 
also defines a training loop, which iterates over the batches of data and labels, feeds them to the 
model, computes the loss, and updates the model parameters using the optimizer and the 
scheduler. 
Cross-entropy loss is a standard loss function used in machine learning, especially for 
classification tasks. It measures how well a model predicts the correct class for a given input 
by comparing the probability distribution output of the model with the true distribution of the 
classes. The lower the cross-entropy loss, the better the model predicts the correct class. In the 
context of AES, cross-entropy loss can be used to train a model that assigns scores to essays as 
an alternative to human grading. AES is a challenging task that requires a model to understand 
the content, structure, and style of an essay, and to compare it with a predefined rubric or 
criteria. One way to approach this task is to formulate it as a classification problem, where each 
possible score is treated as a class. For example, if the scoring scale is from one to fix, then 
there are six classes to predict. 

Figure 5. Model training. 
# Define data and labels 

texts = ["Bu bir örnek cümledir.", "Bu başka bir örnek cümledir.", ...] 

# Your texts here 

labels = [0, 1, ...] # Your labels here 

 

# Encode data and labels 

inputs = tokenizer(texts, padding=True, truncation=True, 

return_tensors="pt") 

labels = torch.tensor(labels) 

 

# Create data loader 

batch_size = 32 

data_loader = DataLoader(list(zip(inputs["input_ids"], 

inputs["attention_mask"], labels)), batch_size=batch_size) 

 

# Define loss function, optimizer, and scheduler 

loss_fn = CrossEntropyLoss() 
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optimizer = AdamW(model.parameters(), lr=2e-5) 

total_steps = len(data_loader) * epochs 

scheduler = get_linear_schedule_with_warmup(optimizer, 

num_warmup_steps=0, num_training_steps=total_steps) 

 

# Define training loop 

epochs = 4 

for epoch in range(epochs): 

  # Train model on batches of data 

  for batch in data_loader: 

    # Get batch data and labels 

    input_ids, attention_mask, labels = batch 

 

    # Forward pass 

    outputs = model(input_ids=input_ids, attention_mask=attention_mask) 

    logits = outputs[0] 

 

    # Compute loss 

    loss = loss_fn(logits, labels) 

 

    # Backward pass and update parameters 

    loss.backward() 

    optimizer.step() 

    scheduler.step() 

 

    # Reset gradients 

    optimizer.zero_grad() 

3.5. Model Evaluation 
The codes in Figure 6 can be implemented to evaluate the BERTurk model on the AES dataset. 
The code defines the evaluation metrics and writes a function to compute them for a given data 
loader and model. The code uses accuracy, F1-score, QWK, or Kappa as the evaluation metrics, 
which measure how well the model predicts the scores of the essays. The code then writes a 
function that loops over the batches in the data loader, computes the logits (output scores) of 
the model, gets the predicted labels by taking the argmax of the logits, and calculates the metrics 
for the predictions and the true labels. The code then runs this function on the test and validation 
sets and prints the results. 
The evaluation metrics used in the context of automated essay scoring are measures of how 
well the automated system can mimic human raters in grading essays. Each metric captures a 
different aspect of writing quality and can be used to compare the performance of different 
models or systems. Here is a brief explanation of why each metric was used: 
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Figure 6. Model Evaluation. 
# Import the libraries 

from sklearn.metrics import accuracy_score, f1_score, cohen_kappa_score 

 

# Define the evaluation metrics 

metrics = {"accuracy": accuracy_score, "f1": f1_score, "kappa": cohen_kappa_score} 

 

# Write a function to compute predictions for a given data loader and model 

def evaluate(dataloader, model): 

  # Set the model to evaluation mode 

  model.eval() 

  # Initialize empty lists to store the predictions and the true labels 

  preds = [] 

  truths = [] 

  # Loop over the batches in the data loader 

  for batch in dataloader: 

    # Get the inputs and labels from the batch 

    input_ids = batch["input_ids"] 

    attention_mask = batch["attention_mask"] 

    labels = batch["labels"] 

    # Move them to the device (cpu or gpu) 

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

    input_ids = input_ids.to(device) 

    attention_mask = attention_mask.to(device) 

    labels = labels.to(device) 

    # Compute the logits (output scores) with no gradient calculation 

    with torch.no_grad(): 

      outputs = model(input_ids, attention_mask) 

      logits = outputs.logits 

    # Get the predicted labels by taking the argmax of the logits 

    pred_labels = torch.argmax(logits, dim=1) 

    # Append the predictions and the true labels to the lists 

    preds.extend(pred_labels.tolist()) 

    truths.extend(labels.tolist()) 

  # Compute the metrics for the predictions and the true labels 

  results = {} 

  for name, metric in metrics.items(): 

    results[name] = metric(truths, preds) 

  # Return a dictionary of results 

  return results 

 

# Run the evaluation function on the test and validation sets and print the results 

test_results = evaluate(test_loader, model) 

valid_results = evaluate(valid_loader, model) 

print("Test results:") 

print(test_results) 

print("Validation results:") 

print(valid_results) 

Accuracy: Accuracy is the simplest and most intuitive metric. It measures how often the 
automated system assigns the same score as the human rater. Accuracy is easy to calculate and 
interpret, but it does not account for the variability or agreement among human raters, nor does 
it reflect the severity of errors made by the system. 
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F1-score: The F1-score is the harmonic mean of precision and recall. Precision measures how 
many of the essays scored by the system are correct, while recall measures how many of the 
correct essays are scored by the system. F1-score balances both aspects and gives a higher score 
to precise and recall-oriented systems. F1-score is useful for evaluating systems that assign 
binary or categorical scores, such as pass/fail or low/medium/high. 
QWK or Kappa: QWK or kappa is a measure of agreement between two raters that accounts 
for the chance agreement. It compares the observed agreement with the expected agreement 
under random scoring. QWK or kappa ranges from -1 to 1, where 1 means perfect agreement, 
0 means no agreement beyond chance, and negative values mean worse than a chance 
agreement. QWK or Kappa is useful for evaluating systems that assign ordinal or numerical 
scores, such as 1 to 6 or 0 to 100. It also takes into account the magnitude of disagreement, such 
that a small difference in scores is less penalized than a large difference. 

4. DISCUSSION and CONCLUSION 
Pre-trained language models, encompassing both word embedding techniques and transformer-
based architectures, present a robust foundation for harnessing extensive knowledge to enhance 
the efficacy and efficiency of AES models (Singh & Mahmood, 2021). This is especially 
pertinent in scenarios where data is scarce or challenging to procure. BERT-based language 
models, in particular, offer a versatile and potent framework for capitalizing on large-scale pre-
training to optimize the performance of AES models, even in resource-constrained 
environments. 
The inherent flexibility of BERT-based models extends beyond mere performance 
enhancement (Devlin et al., 2018). These models facilitate knowledge transfer across languages 
by undergoing training on a shared set of parameters. Subsequently, this knowledge can be fine-
tuned for specific languages or tasks. Our paper succinctly encapsulates key language models 
that have transformative implications for AES applications in both English and non-English 
contexts. Furthermore, we expound upon the practical application of mBERT in the Turkish 
language, displaying its adaptability across linguistic landscapes. As a forward-looking 
proposition, this research lays the groundwork for future endeavors to implement the 
methodologies outlined herein. Researchers can utilize the provided codebase to analyze essays 
written in Turkish, potentially culminating in the development of the inaugural Turkish AES 
system employing large language models." 
Future studies can explore the applicability of alternative transformer-based models, including 
LaBSE and GPT, to assess their efficacy within the Turkish language. Furthermore, delving 
into the ramifications of domain-specific fine-tuning on these models' performance in the realm 
of Turkish essay scoring holds promise for yielding valuable insights. 
The scalability of the proposed methodology across diverse languages, coupled with its 
adaptability to various educational levels and essay genres, opens compelling avenues for 
subsequent research. Undertaking comparative studies that scrutinize different language models 
in terms of computational efficiency, interpretability, and bias mitigation could significantly 
contribute to honing the selection of models tailored for specific AES applications (Yang et al., 
2020). 
In conclusion, the substantial language models expounded upon in this study serve as a 
springboard for future AES research across a spectrum of linguistic and educational contexts. 
Harnessing the capabilities of large language models can empower researchers to actively 
contribute to the evolution of sophisticated and flexible AES systems, effectively tackling the 
distinct challenges posed by diverse languages and educational landscapes. 
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