

International Journal of Assessment Tools in Education

 2023, Vol. 10, Special Issue, 148–162

https://doi.org/10.21449/ijate.1394194

Published at https://ijate.net/ https://dergipark.org.tr/en/pub/ijate Research Article

 148

Language models in automated essay scoring: Insights for the Turkish
language

Tahereh Firoozi 1*, Okan Bulut 1, Mark J. Gierl 1

1University of Alberta, Edmonton, Alberta, Canada

ARTICLE HISTORY

Received: Nov. 22, 2023
Accepted: Dec. 17, 2023

Keywords:
Automated essay scoring,

Word embedding,
Transformers,
BERT,
Turkish AES.

Abstract: The proliferation of large language models represents a paradigm shift
in the landscape of automated essay scoring (AES) systems, fundamentally
elevating their accuracy and efficacy. This study presents an extensive examination
of large language models, with a particular emphasis on the transformative
influence of transformer-based models, such as BERT, mBERT, LaBSE, and GPT,
in augmenting the accuracy of multilingual AES systems. The exploration of these
advancements within the context of the Turkish language serves as a compelling
illustration of the potential for harnessing large language models to elevate AES
performance in in low-resource linguistic environments. Our study provides
valuable insights for the ongoing discourse on the intersection of artificial
intelligence and educational assessment.

1. LANGUAGE MODELS IN AUTOMATED ESSAY SCORING
Automated essay scoring (AES) is a sub-task of text classification that uses computer
algorithms to score essays written by humans automatically. Machine and deep learning
algorithms are often utilized to build a scoring engine that can model the scoring performance
of human raters. The model is then employed to classify essays into different score classes (i.e.,
score categories). AES systems typically work by analyzing the text of an essay and applying
a set of linguistic features to assess its quality. These features may include grammar,
vocabulary, sentence structure, coherence, and the presence of relevant arguments or evidence.
The AES system builds the scoring model using techniques and procedures from the fields of
natural language processing (NLP) and computational linguistics where linguistic features are
extracted from the instances of human-scored essays (i.e., labeled data) and turned into
numerical representations that a machine or deep learning model can process. The most
common NLP techniques for feature extraction include text length features, bag of words, and
pre-trained large language models such as Bidirectional Encoder Representations from
Transformers (BERT; Devlin et al., 2018).
Text length features are simple and effective in general text analysis and AES (Fleckenstein et
al., 2020; Hussein et al., 2019), as they have been widely used to evaluate essays based on their

*CONTACT: Tahereh FIROOZI tahereh.firoozi@ualberta.ca University of Alberta, Edmonton,

Alberta, Canada

e-ISSN: 2148-7456 /© IJATE 2023

https://doi.org/10.21449/ijate.1394194
https://ijate.net/
https://dergipark.org.tr/en/pub/ijate
https://orcid.org/0000-0002-6947-0516
https://orcid.org/0000-0001-5853-1267
https://orcid.org/0000-0002-2653-1761

Int. J. Assess. Tools Educ., Vol. 10, Special Issue, (2023) pp. 148–162

 149

length and structure. These features include, for example, the average number of words per
paragraph, or the average number of characters per word. Using text length features, AES
systems compare the length of each essay to the length of the essay prompt or an ideal essay
length with a high score in the training corpus. Text length features are typically used in
conjunction with other syntactic properties, such as part of speech (POS) and discourse
characteristics of a text, including cohesion and coherence. Statistical language models are used
to analyze the syntactic properties in a text (e.g., Rodriguez et al., 2019). N-gram is an example
of the statistical model that captures the likelihood of a sequence of n words occurring in a
given text based on the frequency of those word sequences in a training corpus. Practically, the
syntactical property of texts is assessed using the existing natural language toolkit libraries in
programming languages, such as the NLTK library in Python (Bird, 2006). In addition, the
linguistic and discourse characteristics of written texts in English can be assessed using text
analysis tools, such as Coh-Metrix (Graesser et al., 2004), which were developed and used for
the English language.
Word embeddings have become fundamental in various NLP applications, including AES.
Word embedding models, such as Word2vec and GloVe embeddings, are a class of NLP
techniques to represent words as dense vectors in a continuous vector space (Firoozi et al.,
2022). These vectors capture hidden information about a language, like word analogies or
semantics. The information can be used to examine the proximity of the semantic relationship
between the word and the context. For example, in a well-trained word embedding model, the
vectors for "king" and "queen" would be closer together than the vectors for "king" and "car."
Calculating the proximity in the vector space allows the model to capture semantic
relationships, such as analogies ("king" is to "queen" as "man" is to "woman"). This knowledge
is learned in pre-trained word embedding models through unsupervised learning using large
amounts of text corpus. Depending on the corpus and the learning techniques, the word
embedding models capture different information in the vectors. The most popular word
embedding language models are Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al.,
2014), and FastText (Bojanowski et al., 2017) developed by Google Inc., Stanford University,
and Facebook AI Research, respectively. The models were pre-trained using different corpora
and learning techniques.
Word2Vec pre-trained vectors were trained on a part of the Google News dataset with about
100 billion words. Mikolov et al. (2013) proposed two model architectures, including a
continuous bag of words (CBOW) and Skip-gram, for learning distributed representations of
words. CBOW predicts a word in a sequence of words given the average distributed
representation of all the surrounding words in the sequence. A word is predicted based on the
largest semantic similarity between the word vector and the average distributed representation
vector of the surrounding words in context. The Skip-gram model is similar to CBOW, but
instead of predicting a word based on the surrounding sequence of words, it tries to predict the
surrounding words of a given word in a sentence.
 FastText (Bojanowski et al., 2017) has a similar training process (i.e., CBOW and Skip-gram)
as Word2Vec. FastText differs from Word2Vec regarding the corpora used for training and
word representation technique. FastText is trained on Wikipedia data in nine different
languages: Arabic, Czech, German, English, Spanish, French, Italian, Romanian, Russian, and
Turkish (Kuyumcu et al., 2019). FastText represents words as bags of character n-grams
(subword units). In this technique, words are decomposed into character-level n-grams (e.g.,
"apple" -> {ap, ppl, ple}), including both prefixes and suffixes. Word representations are then
generated by summing or averaging the vectors of these n-grams. The character level
representation in FastText enables the model to capture morphological and semantic
information even for out-of-vocabulary words.

Firoozi, Bulut & Gierl

 150

The training process of the Glove model (Pennington et al., 2014) is different from Word2Vec.
The GloVe model combines the matrix factorization methods (Cai et al., 2009) and the window-
based methods to consider both the statistical and contextual information of words in
calculating word vectors. Hence, GloVe learns the embeddings based on a co-occurrence matrix
showing the count of the overall statistics of how often words appear together in a text based
on their semantic similarity. The vector spaces of the word embedding techniques can be trained
on AES datasets with different sizes to fine-tune the pre-trained parameters.
The word embedding models use Recurrent Neural Network (RNN) models for training (Liu et
al., 2015). RNN models are neural network models containing a hidden layer that auto-
regressively updates the conditional probability of the output vector (e.g., a word or the context
of a word) given the hidden state in the next step. The RNN model updates the prediction
weights based on the errors it receives in the following steps. While RNN-based models
revolutionized the Google translation engines in 2016, they have two main problems. First,
these models suffer from the vanishing gradient problem, making it very difficult to capture
long-range dependencies within the text (Hochreiter et al., 2001). For instance, if a system is
developed to predict the next word in a sentence, the network must have a better knowledge of
the preceding words in the text for more accurate predictions. In RNN, the hidden weights are
updated recurrently to decrease the error function. In long texts with more hidden weights at
different time steps, the initial weights are multiplied by the updated weight. However, because
the initial weights are small, this multiplication quickly decreases the gradient value, leading to
the early termination of model training before the model can learn the whole text. This problem
with sequential training was solved using a parallel structure in encoding the input sequence of
different lengths (Vaswani et al., 2017).

2. TRANSFORMER_BASED LANGAUGE MODELS
Research studies on AES skyrocketed in 2018 when the transformer models (Vaswani et al.,
2017) were introduced (Ramesh & Sanampudi, 2022). Transformer-based models have
revolutionized the field of NLP by offering powerful tools for training language models that
significantly increase the accuracy of the pre-trained models in text classification tasks,
including AES (Devlin et al., 2018). Transformers are encoder-decoder-based neural networks
that solve sequence processing problems by finding a mapping function from an input sequence
of vectors (e.g., word or sentence) to the output sequence of vectors (e.g., essay labels). The
architecture consists of an encoder and a decoder comprising multiple layers of multi-head
attention-based blocks. The encoder takes the input sequence and processes it by repeatedly
applying the multi-head attention block to the input sequence of tokens. The attention
mechanism in transformers can capture all of the contextual information within a text to
calculate the weighted sum of values for each token (e.g., words) in a sequence of input (e.g.,
sentence). For example, in the sequence of input = “I want to buy a car,” the representation of
the fourth word “buy” depends not only on the adjacent words, including “I,” “want,” “to,” “a,”
and “car” in the sequence, but also on all other words in the text. This feature allows for the
modeling of global dependencies in all sequential inputs without regard to their distance in the
input or output sequences. Hence, in encoding or decoding the representation of an input
sequence, the attention mechanism allows transformers to learn the context of the input by
parallelizing all the surrounding inputs within training examples (Wolf et al., 2020). The
decoder takes the output sequence generated by the encoder and processes it by attending to the
encoder's output and the previous tokens in the decoder's input sequence. This allows the
decoder to generate each output token by selectively attending to different parts of the input
sequence. During training, the model learns to assign appropriate weights to the tokens in each
layer of the encoder and decoder in order to minimize a given loss function (e.g., cross-entropy

Int. J. Assess. Tools Educ., Vol. 10, Special Issue, (2023) pp. 148–162

 151

loss) between the predicted output sequence and the ground truth output sequence (Han et al.,
2022).
Using this training approach, transformer-based language models can accurately capture the
linguistic patterns in a language by learning the long-range dependencies and semantic
relationships between tokens (e.g., words/subwords or sentences) in texts (Bouschery et al.,
2023). Hence, by transferring the knowledge in these pre-trained language models to the
targeted AES task, the accuracy of the AES systems improves significantly without using a
large number of labeled essays for training. Unlike the text length and word embedding models
that were language-specific and mainly developed and used for the English language,
transformer-based models were also trained on languages other than English. Hence, the low-
resource languages can benefit from transformer-based language models, including BERT,
LaBSE, and GPT, for transfer learning in AES (Firoozi et al., 2023). Low-resource languages
are less studied, less digitized, less privileged, less commonly taught, and less accessible
compared to English (Cieri et al., 2016; Magueresse et al., 2019).
BERT (Devlin et al., 2018) is a transformer-based encoder model for language representation
that uses a multi-head attention mechanism and a bidirectional approach to learn the contextual
relations between words and sentences in a text for an accurate representation of the entire text.
Multi-head attention is a mechanism for training transformers that compares each input vector
with all other text vectors to consider the context in word representations. The bidirectional in
BERT refers to the training process where the transformers can generate contextual embeddings
based on previous and next tokens of the text (Kenton & Toutanova, 2019). BERT can be
trained in different languages. BERT is trained using two approaches. The first approach is
masked language modeling (MLM). MLM predicts a missing word in a sentence by randomly
masking 15% of the words and running all the masked sentences through the model to predict
the masked words. The second approach is next sentence prediction (NSP). NSP is predicting
if one sentence naturally follows another. In NSP, the model learns to understand longer-term
dependencies across sentences. Using the NSP technique allows the model to predict each two-
sentence sequence that follows one another in a text. BERT learns this knowledge by receiving
masked sentence embeddings concatenated in pairs as inputs during pre-training. Half of the
embeddings are random, and the other half are actual sentence pairs from the pool of training
data. For example, the model receives sentence A and sentence B to predict whether sentence
B is the next sentence or whether it is not the next sentence. This process continues, and the
model learns from the error rates in each prediction until it fully predicts the accurate sequence
of sentences in a text (Devlin et al., 2018).
The version of the BERT model using multilingual text is called mBERT (Devlin et al., 2018).
mBERT contains the lexical, linguistic, and grammatical knowledge for 104 different
languages. The languages in this model were selected because they contain the largest number
of Wikipedia entries. mBERT was trained using MLM and NSP, and it implements a
monolingual text stream process in which each language's pre-training process is conducted
separately. As a result, the feature space for each language is not shared with any other language
in the model. mBERT can be used to overcome the problem of data sparsity. For example,
Firoozi and Gierl (in press) used mBERT to score essays written in Persian. Persian is a low-
resource language that has proven challenging for traditional automated text analysis methods
(Roshanfekr et al., 2017). Firoozi and Gierl (In press) compared the result of the mBERT
language model with a word-embedding language model. The mBERT model (Quadratic
Weighted Kappa =0.84) significantly outperformed the word embedding model (Quadratic
Weighted Kappa = 0.75). The Quadratic Weighted Kappa (QWK) is a statistic that measures
the agreement between two sets of ratings or classifications. It is commonly used in the field of
inter-rater reliability to assess the agreement between human raters or between a human rater

Firoozi, Bulut & Gierl

 152

and an automated system. QWK considers quadratic weights for misclassifications based on
how close the ratings are to the correct class using an ordinal scale. In the current study, QWK
is the main evaluation metric in AES systems because it can easily be used to compare the
performance of our model with the performance of models used in similar studies. QWK varies
from 0 (random agreement between raters) to 1 (complete agreement between raters). Typically,
values between 0.60 and 0.80 QWK are used as a lower bound estimate for an acceptable
reliability outcome using human raters in a high-stakes testing situation (Williamson et al.,
2012).
Another BERT model that uses multilingual text is called language-agnostic BERT sentence
embedding or LaBSE (Feng et al., 2020). LaBSE is an extension of mBERT where, instead of
considering monolingual text streams, bilingual text streams are created by using parallel
data—a collection of texts in two or more languages aligned at a sentence or phrase level—in
the learning process of the model. This sentence embedding method is called translation
language modeling (TLM) (Lample & Conneau, 2019). LaBSE uses TLM and MLM for
training by randomly masking words in both the source- and target-language sentences. For
example, when Italian and German serve as the source and target languages, respectively,
LaBSE can predict a word masked in a sentence written in Italian either by attending to the
surrounding words written in Italian or by attending to the parallel surrounding words written
in German thereby allowing the model to align the Italian and German text representations.
A critical benefit of using LaBSE is that the model can leverage information from the
multilingual context to improve its ability to learn the text (Chi et al., 2020). For example, the
model can use the German language context to infer the masked Italian word if the Italian
language context is not sufficient to infer the masked Italian words. By training LaBSE on
parallel sentences using TLM and MLM, the model learns the lexical, linguistic, and
grammatical knowledge for each language and connects the knowledge between the two
languages, thereby providing a shared embedding space for both languages in the model.
Because LaBSE is pre-trained on 109 languages, many different LaBSE-based language models
can be fine-tuned using different numbers and types of languages on downstream tasks. The
knowledge transfer between languages is essential when considering low-resource languages.
Training a language model like LaBSE on several languages with adequate supervised
resources allows building AES systems on low-resource languages using their limited data.
LaBSE serves as another example of how language models can be used to facilitate transfer
learning (Ranathunga et al., 2023).
GPT (Generative Pre-trained Transformer) is another recent groundbreaking transformer-based
language model (Radford et al., 2019) developed by OpenAI. Like the BERT models, the core
idea behind training GPT models is the attention mechanism introduced by transformers. GPT
models differ from BERT-based models in terms of training methods and the dataset used for
training. Unlike BERT, a bidirectional transformer-based architecture, GPT is a unidirectional
transformer-based architecture trained on texts from start to end. In addition, GPT models use
a different training method than mask language modeling used in BERT. GPT models are
autoregressive language models that generate text by predicting the next word in a sequence
given the previous words (Black et al., 2022; Brown et al., 2020). This type of training enables
GPT models not only to understand but also to generate texts.
GPT models are trained unsupervised on a vast amount of textual data available on the internet.
GPT was trained on a much larger corpus than the one used for BERT. For example, GPT-3
(Generative Pre-trained Transformer 3), the third version of the GPT series of language models
introduced by OpenAI in 2020, contains 175 billion parameters that enable it to generate
coherent and fluent text outputs such as text generation, language translation, and question-
answering in a human-like manner. While BERT-based models can mainly be utilized for

Int. J. Assess. Tools Educ., Vol. 10, Special Issue, (2023) pp. 148–162

 153

transfer learning in scoring students’ written tasks, the GPT models' capabilities to generate text
make them useful for transferring their knowledge to generate detailed feedback to students
(Mayer et al., 2023). GPT-3's remarkable capabilities come with computational resource
requirements and limitations. The model size and complexity make it computationally
intensive, requiring significant computational power to train and deploy effectively.
Additionally, GPT-3 text generation can sometimes exhibit biases in the training data, and it
may generate plausible but incorrect or misleading information (Mizumoto & Eguchi, 2023).
GPT is just a member of a larger category of models called Large Language Models (LLMs)
(MacNeil et al., 2022). As the name suggests, LLMs are large models trained to contain the
structure and knowledge of natural languages. Similar to variations of GPT, these models
contain billions of parameters and are trained on massive corpora using self-supervised
methods. As a result, these models acquire a deep and rich understanding of their target
languages. However, as these models are trained on text with a wide range of topics and
structures, they have gained a unique generalizability and multitasking ability (Bubeck et al.,
2023). These models can be prompted and interactively trained to perform entirely new tasks.
One example of such a task could be AES. Like humans, the model will gradually acquire the
ability to do AES by prompting a language model to score an essay and providing constructive
feedback. LLMs can utilize their comprehensive knowledge of language, common sense, and
communication skills to acquire AES skills without needing to be explicitly trained on AES in
a supervised fashion (Mizumoto & Eguchi, 2023). Hence, LLMs can be trained as an AES
chatbot that scores essays and provides detailed and personalized feedback for each essay. The
chatbot can also be prompted for further feedback and automated improvements through a
natural language conversation.

3. AUTOMATED ESSAY SCORING IN TURKISH LANAGUGE
Turkish is a language in the Turkic family of Altaic languages, which over 80 million people
speak in Turkey, the Middle East, and Western European countries. Despite being the native
language of more than 80 million people, like other low-resource languages, Turkish is also
relatively less studied and benefited from the developed NLP tools and resources (Oflazer &
Saraçlar, 2018). The Turkish language has certain morphological features, such as multiple
derivations of a given word via prefixes and suffixes, making language processing more
challenging (Koskenniemi, 1983). For example, the single word “ruhsatlandırılmamak”
includes five suffixes. Despite these language challenges, NLP research and tools in the Turkish
language are growing thanks to the unsupervised learning algorithms that overcome the
problem of data sparsity in NLP tasks, such as speech recognition (e.g., Arslan & Barışçı, 2020)
and sentiment analysis (e.g., Gezici & Yanıkoğlu, 2018).
Research on Turkish AES has been the focus of very few studies (Cetin & Ismailova, 2019;
Dikli, 2006; Uysal & Doğan, 2021). Cetin and Ismailova (2019) attempted to develop a
language tool to automatically evaluate students' essays in Turkish. They used the existing NLP
tools for the Turkish language, including Zemberek (Akın & Akın, 2007), to extract mechanical
features of the language, such as word count, spelling error, and number of sentences for
evaluation of written essays. In another study, Uysal and Doğan (2021) compared different
machine learning (ML) algorithms, including support vector machines, logistic regression,
multinominal Naive Bayes, long-short term memory (LSTM), and bidirectional long-short term
memory (BILSTM) to score open-ended response items in the Turkish language. They also
used the existing NLP tools in the Turkish language for text representations. Uysal and Doğan
(2021) concluded that the BLSTM model outperformed (QWK=0.77) the other models,
including Logistic regression (QWK=0.70), Naïve Bayes (QWK=0.64), support vector
machine (QWK=0.69), and LSTM (QWK=0.58) in terms of scoring accuracy.

Firoozi, Bulut & Gierl

 154

Despite the popularity of AES models, they have not been studied widely in the Turkish
language. One reason is that the NLP tools for feature extraction in low-resource languages
such as Turkish are limited (Cetin & Ismailova, 2019). In addition, there are very few, if any,
labeled essays available for public research. For example, in the Turkish language, the available
few labeled data (e.g., Benchmark Data†) are developed for text analysis tasks, such as
sentiment analysis (Kavi, 2020), and there are no labeled essays that can be used for AES
tasks. Given that the recent large language models such as mBERT and LaBSE are trained in
hundreds of languages, including Turkish, the rich knowledge in these LLMs can be transferred
to downstream tasks such as AES using even a few training data (Firoozi et al., 2022). The
existing challenges in the Turkish AES research, including the limited NLP tools for feature
extraction and the insufficient labeled essays available for public research, can be solved by
using the large language models, such as mBERT and LaBSE, which were reviewed in the
current study. Using transformers, like mBERT, can help decrease the gap in the AES literature
between English and low-resource languages. The following steps summarize the process of
applying the mBERT model to the Turkish Language using Python.
3.1. Installing Transformers Library
Google Colab (https://colab.research.google.com/) gives free access to writing and executing
arbitrary Python code through the browser. It also provides easy-to-use hardware acceleration
for deep learning models. First, on the Google Colab page, we install transformers with pip
package manager and import the installed packages (Figure 1). The Tensorflow package is a
computational graph processor–a fundamental tool for implementing and using deep learning
models in Python. The Transformers package by Hugging Face also enables us to employ the
latest transformer models and their pre-trained weights.

Figure 1. Installing libraries.

!pip install tensorflow
!pip install transformers

import tensorflow as tf
from transformers import AutoTokenizer
from transformers import TFAutoModelForSequenceClassification

3.2. Loding Turkish Dataset
The code snippet in Figure 2 shows how to write a Python function to read the Turkish AES
dataset and return two lists: one containing the texts and one containing the labels. The Turkish
AES dataset is a collection of texts in the Turkish language and their corresponding AES scores.

Figure 2. Loading datasets.
def read_texts(path=ADDR_TURKISH):
 with open(path, "rb") as file:
 dataset_turkish = pickle.load(file)
 texts = [item[0] for item in dataset_turkish])
 labels = [round(float(item[1]) for item in dataset_turkish])

 return texts, labels

† https://www.kaggle.com/datasets/savasy/ttc4900

https://colab.research.google.com/
https://www.kaggle.com/datasets/savasy/ttc4900

Int. J. Assess. Tools Educ., Vol. 10, Special Issue, (2023) pp. 148–162

 155

3.3. Data Preprocessing
For tokenization, we can use either mBERT Tokenizer or one of the existing Turkish-specific
language models, such as BERTurk (https://huggingface.co/dbmdz/bert-base-turkish-cased),
using the codes in Figure 3.

Figure 3. Data preprocessing.
 tokenizer = AutoTokenizer.from_pretrained(
 " bert-base-multilingual-cased"
)

Or

tokenizer = AutoTokenizer.from_pretrained(
 " dbmdz/bert-base-turkish-cased"
)

Text tokenization is the process of splitting a text into smaller units, such as words or subwords,
that can be mapped to numerical representations. Different methods of text tokenization for
transformers are:
Byte-Pair Encoding (BPE): This method uses a statistical algorithm to learn a fixed-size
vocabulary of subword units from a large corpus of text. It starts with a set of characters as the
initial vocabulary and then iteratively merges the most frequent pair of symbols until the
vocabulary reaches the desired size. BPE can handle rare or unknown words by breaking them
into smaller subwords. BPE is used by models such as GPT-2 and RoBERTa1.
WordPiece: This method is similar to BPE, but instead of merging the most frequent pair of
symbols, it merges the pair that maximizes the likelihood of the data. WordPiece also uses a
special symbol to mark the beginning of a word so that it can distinguish between different
occurrences of the same subword in different words. WordPiece can also handle rare or
unknown words by breaking them into smaller subwords. WordPiece is used by models such
as BERT and DistilBERT1.
SentencePiece: This method is a generalization of BPE and WordPiece, which can operate on
raw texts without pre-tokenization or pre-segmentation. SentencePiece can learn a vocabulary
of subword units from any language and encode texts into sequences of subwords or characters.
SentencePiece can also handle rare or unknown words by breaking them into smaller subwords
or characters. SentencePiece is used by models such as ALBERT and XLNet1. An example of
how a word piece tokenizer—which is used in our sample—might work on a Turkish language
sentence is as follows. In the sentence “Türkiye'nin en büyük şehri İstanbul'dur,” means “The
largest city of Turkey is Istanbul,” the word piece tokenizer would first split the sentence into
words by whitespace as: [Türkiye'nin, en, büyük, şehri, İstanbul'dur.]
3.4. Model Training
BERTurk‡ is a cased BERT model for the Turkish language that can be used for tokenization.
The model is trained on various free-access Turkish corpora, including a filtered and sentence-
segmented version of Turkish open parallel corpus (OPUS), OSCAR corpus, and a special local
corpus. The final training corpus has a size of 35GB and 44,04,976,662 tokens§. The following
codes can be used for tokenization using BERTurk.
To load the BERTurk model using the Hugging Face’s transformers package, we need to use
the AutoModel and AutoTokenizer classes from the transformers module. Given the model’s

‡ https://github.com/stefan-it/turkish-bert
§ https://huggingface.co/dbmdz/bert-base-turkish-cased

https://huggingface.co/dbmdz/bert-base-turkish-cased
https://github.com/stefan-it/turkish-bert
https://huggingface.co/dbmdz/bert-base-turkish-cased

Firoozi, Bulut & Gierl

 156

name or path, these classes can automatically load any model from the huggingface model hub.
The BERTurk model is available on the model hub under “dbmdz/bert-base-turkish-cased.” We
can load this model using the codes in Figure 4.

Figure 4. Importing a pretarined model.
 from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-

cased")

model = AutoModel.from_pretrained("dbmdz/bert-base-turkish-cased")

The codes in Figure 5 is an example of how to train the BERTurk model using PyTorch. The
code defines the loss function, optimizer, and scheduler for the training process. The loss
function is a cross-entropy loss, which measures how well the model predicts the correct class
for each text. The optimizer is an AdamW optimizer–a stochastic gradient descent method that
updates the model parameters based on the gradients of a loss function. The scheduler is a linear
schedule with a warmup, which adjusts the learning rate during the training process. The code
also defines a training loop, which iterates over the batches of data and labels, feeds them to the
model, computes the loss, and updates the model parameters using the optimizer and the
scheduler.
Cross-entropy loss is a standard loss function used in machine learning, especially for
classification tasks. It measures how well a model predicts the correct class for a given input
by comparing the probability distribution output of the model with the true distribution of the
classes. The lower the cross-entropy loss, the better the model predicts the correct class. In the
context of AES, cross-entropy loss can be used to train a model that assigns scores to essays as
an alternative to human grading. AES is a challenging task that requires a model to understand
the content, structure, and style of an essay, and to compare it with a predefined rubric or
criteria. One way to approach this task is to formulate it as a classification problem, where each
possible score is treated as a class. For example, if the scoring scale is from one to fix, then
there are six classes to predict.

Figure 5. Model training.
Define data and labels

texts = ["Bu bir örnek cümledir.", "Bu başka bir örnek cümledir.", ...]

Your texts here

labels = [0, 1, ...] # Your labels here

Encode data and labels

inputs = tokenizer(texts, padding=True, truncation=True,

return_tensors="pt")

labels = torch.tensor(labels)

Create data loader

batch_size = 32

data_loader = DataLoader(list(zip(inputs["input_ids"],

inputs["attention_mask"], labels)), batch_size=batch_size)

Define loss function, optimizer, and scheduler

loss_fn = CrossEntropyLoss()

Int. J. Assess. Tools Educ., Vol. 10, Special Issue, (2023) pp. 148–162

 157

optimizer = AdamW(model.parameters(), lr=2e-5)

total_steps = len(data_loader) * epochs

scheduler = get_linear_schedule_with_warmup(optimizer,

num_warmup_steps=0, num_training_steps=total_steps)

Define training loop

epochs = 4

for epoch in range(epochs):

 # Train model on batches of data

 for batch in data_loader:

 # Get batch data and labels

 input_ids, attention_mask, labels = batch

 # Forward pass

 outputs = model(input_ids=input_ids, attention_mask=attention_mask)

 logits = outputs[0]

 # Compute loss

 loss = loss_fn(logits, labels)

 # Backward pass and update parameters

 loss.backward()

 optimizer.step()

 scheduler.step()

 # Reset gradients

 optimizer.zero_grad()

3.5. Model Evaluation
The codes in Figure 6 can be implemented to evaluate the BERTurk model on the AES dataset.
The code defines the evaluation metrics and writes a function to compute them for a given data
loader and model. The code uses accuracy, F1-score, QWK, or Kappa as the evaluation metrics,
which measure how well the model predicts the scores of the essays. The code then writes a
function that loops over the batches in the data loader, computes the logits (output scores) of
the model, gets the predicted labels by taking the argmax of the logits, and calculates the metrics
for the predictions and the true labels. The code then runs this function on the test and validation
sets and prints the results.
The evaluation metrics used in the context of automated essay scoring are measures of how
well the automated system can mimic human raters in grading essays. Each metric captures a
different aspect of writing quality and can be used to compare the performance of different
models or systems. Here is a brief explanation of why each metric was used:

Firoozi, Bulut & Gierl

 158

Figure 6. Model Evaluation.
Import the libraries

from sklearn.metrics import accuracy_score, f1_score, cohen_kappa_score

Define the evaluation metrics

metrics = {"accuracy": accuracy_score, "f1": f1_score, "kappa": cohen_kappa_score}

Write a function to compute predictions for a given data loader and model

def evaluate(dataloader, model):

 # Set the model to evaluation mode

 model.eval()

 # Initialize empty lists to store the predictions and the true labels

 preds = []

 truths = []

 # Loop over the batches in the data loader

 for batch in dataloader:

 # Get the inputs and labels from the batch

 input_ids = batch["input_ids"]

 attention_mask = batch["attention_mask"]

 labels = batch["labels"]

 # Move them to the device (cpu or gpu)

 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

 input_ids = input_ids.to(device)

 attention_mask = attention_mask.to(device)

 labels = labels.to(device)

 # Compute the logits (output scores) with no gradient calculation

 with torch.no_grad():

 outputs = model(input_ids, attention_mask)

 logits = outputs.logits

 # Get the predicted labels by taking the argmax of the logits

 pred_labels = torch.argmax(logits, dim=1)

 # Append the predictions and the true labels to the lists

 preds.extend(pred_labels.tolist())

 truths.extend(labels.tolist())

 # Compute the metrics for the predictions and the true labels

 results = {}

 for name, metric in metrics.items():

 results[name] = metric(truths, preds)

 # Return a dictionary of results

 return results

Run the evaluation function on the test and validation sets and print the results

test_results = evaluate(test_loader, model)

valid_results = evaluate(valid_loader, model)

print("Test results:")

print(test_results)

print("Validation results:")

print(valid_results)

Accuracy: Accuracy is the simplest and most intuitive metric. It measures how often the
automated system assigns the same score as the human rater. Accuracy is easy to calculate and
interpret, but it does not account for the variability or agreement among human raters, nor does
it reflect the severity of errors made by the system.

Int. J. Assess. Tools Educ., Vol. 10, Special Issue, (2023) pp. 148–162

 159

F1-score: The F1-score is the harmonic mean of precision and recall. Precision measures how
many of the essays scored by the system are correct, while recall measures how many of the
correct essays are scored by the system. F1-score balances both aspects and gives a higher score
to precise and recall-oriented systems. F1-score is useful for evaluating systems that assign
binary or categorical scores, such as pass/fail or low/medium/high.
QWK or Kappa: QWK or kappa is a measure of agreement between two raters that accounts
for the chance agreement. It compares the observed agreement with the expected agreement
under random scoring. QWK or kappa ranges from -1 to 1, where 1 means perfect agreement,
0 means no agreement beyond chance, and negative values mean worse than a chance
agreement. QWK or Kappa is useful for evaluating systems that assign ordinal or numerical
scores, such as 1 to 6 or 0 to 100. It also takes into account the magnitude of disagreement, such
that a small difference in scores is less penalized than a large difference.

4. DISCUSSION and CONCLUSION
Pre-trained language models, encompassing both word embedding techniques and transformer-
based architectures, present a robust foundation for harnessing extensive knowledge to enhance
the efficacy and efficiency of AES models (Singh & Mahmood, 2021). This is especially
pertinent in scenarios where data is scarce or challenging to procure. BERT-based language
models, in particular, offer a versatile and potent framework for capitalizing on large-scale pre-
training to optimize the performance of AES models, even in resource-constrained
environments.
The inherent flexibility of BERT-based models extends beyond mere performance
enhancement (Devlin et al., 2018). These models facilitate knowledge transfer across languages
by undergoing training on a shared set of parameters. Subsequently, this knowledge can be fine-
tuned for specific languages or tasks. Our paper succinctly encapsulates key language models
that have transformative implications for AES applications in both English and non-English
contexts. Furthermore, we expound upon the practical application of mBERT in the Turkish
language, displaying its adaptability across linguistic landscapes. As a forward-looking
proposition, this research lays the groundwork for future endeavors to implement the
methodologies outlined herein. Researchers can utilize the provided codebase to analyze essays
written in Turkish, potentially culminating in the development of the inaugural Turkish AES
system employing large language models."
Future studies can explore the applicability of alternative transformer-based models, including
LaBSE and GPT, to assess their efficacy within the Turkish language. Furthermore, delving
into the ramifications of domain-specific fine-tuning on these models' performance in the realm
of Turkish essay scoring holds promise for yielding valuable insights.
The scalability of the proposed methodology across diverse languages, coupled with its
adaptability to various educational levels and essay genres, opens compelling avenues for
subsequent research. Undertaking comparative studies that scrutinize different language models
in terms of computational efficiency, interpretability, and bias mitigation could significantly
contribute to honing the selection of models tailored for specific AES applications (Yang et al.,
2020).
In conclusion, the substantial language models expounded upon in this study serve as a
springboard for future AES research across a spectrum of linguistic and educational contexts.
Harnessing the capabilities of large language models can empower researchers to actively
contribute to the evolution of sophisticated and flexible AES systems, effectively tackling the
distinct challenges posed by diverse languages and educational landscapes.

Firoozi, Bulut & Gierl

 160

Declaration of Conflicting Interests and Ethics
The authors declare no conflict of interest. This research study complies with research
publishing ethics. The scientific and legal responsibility for manuscripts published in IJATE
belongs to the authors.
Contribution of Authors
Tahereh Firoozi: Investigation, Resources, Visualization, Software, Formal Analysis, and
Writing-original draft. Okan Bulut: Methodology, Supervision, and Writing-original draft.
Mark J. Gierl: Methodology, Supervision, and Writing-original draft.
Orcid
Tahereh Firoozi https://orcid.org/0000-0002-6947-0516
Okan Bulut https://orcid.org/0000-0001-5853-1267
Mark J. Gierl https://orcid.org/0000-0002-2653-1761

REFERENCES
Akın, A.A., & Akın, M.D. (2007). Zemberek, an open source NLP framework for Turkic

languages. Structure, 10(2007), 1-5.
Arslan, R.S., & Barişçi, N. (2020). A detailed survey of Turkish automatic speech

recognition. Turkish Journal of Electrical Engineering and Computer Sciences, 28(6),
3253-3269.

Bird, S. (2006, July). NLTK: the natural language toolkit. In Proceedings of the COLING/ACL
2006 Interactive Presentation Sessions (pp. 69-72).

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao, L., Golding, L., ... & Weinbach, S.
(2022). Gpt-neox-20b: An open-source autoregressive language model. arXiv preprint
arXiv:2204.06745.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5,
135–146.

Bouschery, S.G., Blazevic, V., & Piller, F.T. (2023). Augmenting human innovation teams with
artificial intelligence: Exploring transformer‐based language models. Journal of Product
Innovation Management, 40(2), 139-153.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., ... & Amodei, D.
(2020). Language models are few-shot learners. Advances in Neural Information
Processing Systems, 33, 1877-1901.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., ... & Zhang, Y.
(2023). Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv
preprint arXiv:2303.12712.

Cai, D., He, X., Wang, X., Bao, H., & Han, J. (2009, June). Locality preserving nonnegative
matrix factorization. In Twenty-first International Joint Conference on Artificial
Intelligence.

Cetin, M.A., & Ismailova, R. (2019). Assisting tool for essay grading for Turkish language
instructors. MANAS Journal of Engineering, 7(2), 141-146.

Chi, Z., Dong, L., Wei, F., Yang, N., Singhal, S., Wang, W., ... & Zhou, M. (2020). InfoXLM:
An information-theoretic framework for cross-lingual language model pre-training. arXiv
preprint arXiv:2007.07834.

Conneau, A., & Lample, G. (2019). Cross-lingual language model pretraining. Advances in
Neural Information Processing Systems, 32.

Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

https://orcid.org/0000-0002-6947-0516
https://orcid.org/0000-0001-5853-1267
https://orcid.org/0000-0002-2653-1761

Int. J. Assess. Tools Educ., Vol. 10, Special Issue, (2023) pp. 148–162

 161

Dikli, S. (2006). Automated essay scoring. Turkish Online Journal of Distance Education, 7(1),
49-62.

Firoozi, T., Bulut, O., Epp, C.D., Naeimabadi, A., & Barbosa, D. (2022). The effect of fine-
tuned word embedding techniques on the accuracy of automated essay scoring systems
using Neural networks. Journal of Applied Testing Technology, 23, 21-29.

Firoozi, T., & Gierl, M.J. (in press). Scoring multilingual essays using transformer-based
models. Invited chapter to appear in M. Shermis & J. Wilson (Eds.), The Routledge
International Handbook of Automated Essay Evaluation. New York: Routledge.

Firoozi, T., Mohammadi, H., & Gierl, M.J. (2023). Using Active Learning Methods to
Strategically Select Essays for Automated Scoring. Educational Measurement: Issues
and Practice, 42(1), 34-43.

Feng, F., Yang, Y., Cer, D., Arivazhagan, N., & Wang, W. (2020). Language-agnostic BERT
sentence embedding. arXiv preprint arXiv:2007.01852.

Fleckenstein, J., Meyer, J., Jansen, T., Keller, S., & Köller, O. (2020). Is a long essay always a
good essay? The effect of text length on writing assessment. Frontiers in Psychology, 11,
562462.

Gezici, G., & Yanıkoğlu, B. (2018). Sentiment analysis in Turkish. In K. Oflazer & M. Saraçlar
(Eds.) Turkish Natural Language Processing. Theory and Applications of Natural
Language Processing (pp. 255-271). Springer, Cham.

Graesser, A.C., McNamara, D.S., Louwerse, M.M., & Cai, Z. (2004). Coh-Metrix: Analysis of
text on cohesion and language. Behavior Research Methods, Instruments, & Computers,
36(2), 193-202.

Han, T., & Sari, E. (2022). An investigation on the use of automated feedback in Turkish EFL
students’ writing classes. Computer Assisted Language Learning, 1-24.

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. Neural Computation, 9(8):1735–
1780.

Hussein, M.A., Hassan, H., & Nassef, M. (2019). Automated language essay scoring systems:
A literature review. PeerJ Computer Science, 5, e208.

Kavi, D. (2020). Turkish Text Classification: From Lexicon Analysis to Bidirectional
Transformer. arXiv preprint arXiv:2104.11642.

Kenton, J.D.M.W.C., & Toutanova, L.K. (2019, June). Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of naacL-HLT, 1(2).

Koskenniemi K (1983) Two-level morphology: A general computational model for word-form
recognition and production. PhD dissertation, University of Helsinki, Helsinki.

Kuyumcu, B., Aksakalli, C., & Delil, S. (2019, June). An automated new approach in fast text
classification (fastText) A case study for Turkish text classification without pre-
processing. In Proceedings of the 2019 3rd International Conference on Natural
Language Processing and Information Retrieval (pp. 1-4).

Liu, P., Joty, S., & Meng, H. (2015, September). Fine-grained opinion mining with recurrent
neural networks and word embeddings. In Proceedings of the 2015 Conference on
Empirical Methods İn Natural Language Processing (pp. 1433-1443).

MacNeil, S., Tran, A., Mogil, D., Bernstein, S., Ross, E., & Huang, Z. (2022, August).
Generating diverse code explanations using the gpt-3 large language model. In
Proceedings of the 2022 ACM Conference on International Computing Education
Research-Volume 2 (pp. 37-39).

Mayer, C.W., Ludwig, S., & Brandt, S. (2023). Prompt text classifications with transformer
models: An exemplary introduction to prompt-based learning with large language
models. Journal of Research on Technology in Education, 55(1), 125-141.

Firoozi, Bulut & Gierl

 162

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in Neural
Information Processing Systems, 26.

Mizumoto, A., & Eguchi, M. (2023). Exploring the potential of using an AI language model
for automated essay scoring. Research Methods in Applied Linguistics, 2(2), 100050.

Oflazer, K., & Saraçlar, M. (Eds.). (2018). Turkish natural language processing. Springer
International Publishing.

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (pp. 1532-1543).

Ramesh, D., & Sanampudi, S.K. (2022). An automated essay scoring systems: a systematic
literature review. Artificial Intelligence Review, 55(3), 2495-2527.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models
are unsupervised multitask learners. OpenAI Blog, 1(8), 9.

Ranathunga, S., Lee, E.S.A., Prifti Skenduli, M., Shekhar, R., Alam, M., & Kaur, R. (2023).
Neural machine translation for low-resource languages: A survey. ACM Computing
Surveys, 55(11), 1-37.

Rodriguez, P.U., Jafari, A., & Ormerod, C.M. (2019). Language models and automated essay
scoring. arXiv preprint arXiv:1909.09482.

Roshanfekr, B., Khadivi, S., & Rahmati, M. (2017). Sentiment analysis using deep learning on
Persian texts. 2017 Iranian Conference on Electrical Engineering (ICEE).

Singh, S., & Mahmood, A. (2021). The NLP cookbook: modern recipes for transformer based
deep learning architectures. IEEE Access, 9, 68675-68702.

Uysal, I., & Doğan, N. (2021). How Reliable Is It to Automatically Score Open-Ended Items?
An Application in the Turkish Language. Journal of Measurement and Evaluation in
Education and Psychology, 12(1), 28-53.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., ... & Polosukhin,
I. (2017). Attention is all you need. Advances in Neural Information Processing Systems,
30.

Williamson, D.M., Xi, X., & Breyer, F.J. (2012). A framework for evaluation and use of
automated scoring. Educational Measurement: Issues and Practice, 31(1), 2-13.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., ... & Rush, A.M. (2020,
October). Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations (pp. 38-45).

Yang, R., Cao, J., Wen, Z., Wu, Y., & He, X. (2020, November). Enhancing automated essay
scoring performance via fine-tuning pre-trained language models with combination of
regression and ranking. In Findings of the Association for Computational Linguistics:
EMNLP 2020 (pp. 1560-1569).

	Figure_1
	Figure_2
	Figure_3
	Figure_4
	Figure_5
	Figure_6

