
 
 

 
www.ijtes.net  

Frameworks and Challenges for 
Implementing Machine Learning 
Curriculum in Secondary Education 
 
Fletcher Wadsworth  
University of Wyoming, USA 
 
Josh Blaney  

University of Wyoming, USA 
 
Matthew Springsteen  

University of Wyoming, USA 
 
Bruce Coburn   
University of Wyoming, USA 
 
Nischal Khanal  
University of Wyoming, USA 
 
Tessa Rodgers  
University of Wyoming, USA 
 
Chase Livingston  
University of Wyoming, USA 
 
Suresh Muknahallipatna  
University of Wyoming, USA 

 
 
To cite this article:  
 
Wadsworth, F., Blaney, J., Springsteen, M., Coburn, B., Khanal, N., Rodgers, T., Livingston, 
C., & Muknahallipatna, S. (2024). Frameworks and challenges for implementing machine 
learning curriculum in secondary education. International Journal of Technology in 

Education and Science (IJTES), 8(1), 164-181. https://doi.org/10.46328/ijtes.531 
 
 
 

The International Journal of Technology in Education and Science (IJTES) is a peer-reviewed scholarly 
online journal. This article may be used for research, teaching, and private study purposes. Authors alone 
are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher 
shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or 
howsoever caused arising directly or indirectly in connection with or arising out of the use of the research 
material. All authors are requested to disclose any actual or potential conflict of interest including any 
financial, personal or other relationships with other people or organizations regarding the submitted work. 

 
 

 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 
 

 

http://www.ijtes.net/


 

International Journal of Technology in Education and Science 

2024, Vol. 8, No. 1, 164-181 https://doi.org/10.46328/ijtes.531 
 

164 

Frameworks and Challenges for Implementing Machine Learning 

Curriculum in Secondary Education 
 

Fletcher Wadsworth, Josh Blaney, Matthew Springsteen, Bruce Coburn, Nischal Khanal, Tessa Rodgers, 

Chase Livingston, Suresh Muknahallipatna 

 

Article Info  Abstract 
Article History 

Received: 

08 August 2023 

Accepted: 

14 November 2023 

 

 Artificial Intelligence (AI) and, more specifically, Machine Learning (ML) 

methodologies have successfully tailored commercial applications for decades. 

However, the recent profound success of large language models like ChatGPT and 

the enormous subsequent funding from governments and investors have 

positioned ML to emerge as a paradigm-shifting technology across numerous 

domains in the coming years. To cultivate a competent workforce and prepare 

students for success in this new AI-focused evolving world, the integration of ML 

is proposed to begin in compulsory education rather than in college courses or 

expensive boot camps. Unfortunately, ML is a complex and intimidating topic for 

high school teachers to engage with, let alone high school students. Based on our 

experiences hosting Machine Learning for High School Teachers (ML4HST) 

workshops for teachers teaching ML topics at our institution, we present in this 

paper various considerations for educating educators on the topic of ML. In 

particular, we discuss (a) overarching pedagogic strategies, (b) accessibility of 

resources such as computational hardware and datasets, (c) balancing theory and 

implementation, (d) appropriate selection of topics and activities for fostering 

understanding and engagement, and perhaps most importantly, (e) a compilation 

of pitfalls to avoid. Synthesizing these insights, we propose a framework for 

successfully empowering educators to introduce ML in the classroom. 
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Introduction 

Machine Learning 

 

Artificial intelligence, the discipline of empowering machines or software to behave intelligently, began as a field 

of study in 1956. Soon after, in 1959, the term machine learning was coined by Arthur Samuel at IBM (Samuel, 

1959). Currently, ML is a subdiscipline of AI, specifically referring to the development of algorithms in a new 

way; instead of designing algorithms to transform data by hand, which is often time-consuming and infeasible for 

experts, the ML approach allows data to guide the learning of an algorithm or mathematical transformation. 

Alpaydin (2020) describes ML as follows: 

Roughly speaking, our approach starts from a very general model with many parameters, and that general 

model can do all sorts of tasks depending on how its parameters are set. Learning corresponds to adjusting 
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the values of those parameters so that the model matches best with the data it sees during training. Based 

on this training data, the general model, through a particular setting of its parameters, becomes 

specialized to the particular task that underlies the data. That version of the model we get after training, 

that particular instantiation of the general template, becomes the algorithm for that task (p. 1). 

 

As it turns out, these general models with many parameters come in many varieties, and certain model 

architectures have proven to be sufficiently general, powerful, and scalable to allow ML to tackle broader and 

deeper problems. In particular, the artificial neural network (ANN or NN) is a methodology that has developed 

over decades into the field of Deep Learning (DL). The simplest kind of ANN is a linear network, which 

implements a linear regression or method of least squares, used by Legendre and Gauss in the late 18th and early 

19th centuries. However, the first network, which resembles a modern deep learning network, comprised of 

multiple layers of neurons (deep NN or DNN) and trained by stochastic gradient descent, was proposed by Shun-

Ichi Amari in 1967 (Schmidhuber, 2022). After the 1982 proposal of training neural networks efficiently with 

backpropagation, the basis for an ML model possessing the generalizability and predictive power to be widely 

applied to computational tasks was formed. 

 

Since then, computational power has been the driving factor in the continued integration and development of ML 

models and applications. In recent years, adapting the Graphics Processing Unit (GPU) to perform highly parallel 

computations allowed deep learning research to accelerate dramatically, allowing faster training and, thus, bigger 

and more expressive models. After NVIDIA released Compute Unified Device Architecture (CUDA) as a C 

language extension for general-purpose GPU programming in 2007 and the GPU-accelerated library of deep 

neural network primitive operations, called CuDNN, in 2014 (Pandey et al., 2022), highly optimized deep learning 

routines were available to practitioners, and efficacy of deep learning models exploded. Although the basic neural 

network still uses DNN model architectures and training, many variations have been developed. Data structuring 

and model operation changes have allowed networks to leverage the properties of different applications and data 

types more effectively. Some key examples of model and training development are described in Table 1. 

 

Table 1: Notable Deep Learning Model Developments 

Model Architecture Changes Application 

Convolutional Neural Network 

(CNN) 

Convolution with kernels instead of 

weights 

Data with grid-like topology, e.g. 

image data 

Recurrent Neural Network 

(RNN) 

Hidden state shared between steps 

of sequences in data 

Data with sequential dependencies, 

e.g., time series data 

Autoencoders Encoding and decoding learn 

efficient representations of data 

Dimensionality reduction, feature 

learning 

Generative Adversarial Network 

(GAN) 

The game between the generator 

and discriminator network 

Image generation, data 

augmentation 

Transformer with self-attention Assign weight to different elements 

of the input sequence 

Natural language processing, large 

language models (GPT) 
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Many popular ML algorithms do not fall under the umbrella of deep learning, which is still used today. Examples 

include decision trees, support vector machines, Bayesian networks, etc. These approaches are generally simpler 

to describe, train, and interpret than cutting-edge deep learning models. However, our focus is primarily on deep 

learning due to its comparatively high predictive power and the continuing dominance of deep learning models in 

industry and research. With all breakthrough ML technologies primarily driven by deep learning techniques, we 

feel it is prudent to focus on the more powerful and commercially successful domain of deep learning when 

deciding what topics to cover when educating our future workforce. 

 

Education 
 

As quickly as AI develops as a field and the ever-changing landscape of ML theory and application progresses, it 

isn't easy to pin down what ML education in K-12 consists of beyond short-lived trends and their broad contours. 

With the landmark achievements in ML that supersede the results of classical AI rule-based systems, initiatives, 

including the more mathematically intensive ML models, have been filtered into AI education. Marques et al. 

(2020) identified 30 initiatives focusing on ML basics and neural networks for K-12 cohorts. Specifically, at the 

high school level, efforts to clarify the key topics of ML in the curriculum have been made by various researchers 

(Yu & Chen, 2018). 

 

As ML model complexity and performance have increased, so too have the toolkits that empower amateur 

programmers, domain experts, and educators to more easily access or cultivate datasets and implement 

sophisticated models without a deep understanding of the underlying computations. Some ML applications may 

require complex or custom workflows, allowing scripting language libraries such as PyTorch, scikit-learn, and 

others to abstract much of the underlying operations. For more classical applications, many projects have further 

hidden the complexity of the model architecture and training algorithms, such as block programming (Estevez et 

al., 2019) and web-based ML platforms, including but not limited to those used in our workshop (see Appendix 

A). 

 

One group characterized the five “big ideas” in AI for childhood education: computer perception through sensors, 

representing the world with models, computers learning from data, making AI properly interact with humans, and 

positive and negative influences of AI in society (Touretzky et al., 2019). There is a clear tradeoff when educating 

broadly about a set of technologies as impactful as AI/ML; with limited time, an educator must decide between 

depth and breadth, focusing on the theory and implementation of ML models or speaking to the societal impacts 

of human-computer interaction and ethical concerns regarding AI systems. Our expertise lends us to concentrate 

on the technical aspects of ML and leave the social aspects to others more qualified, but we would be remiss not 

to emphasize its importance. The modern citizen is inundated by decision-making machines, from image hosting 

platforms recognizing the people in one’s photos to streaming services and social media outlets recommending 

content based on what a user will likely engage with. In understanding the mechanisms underlying these opaque 

and unnerving prediction machines from a young age, these technologies can be demystified to educated young 

adults, and their harmful effects on the individual’s privacy and autonomy can be curtailed.        
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Method 

Workshop 

 

In the summers of 2021, 2022, and 2023, we hosted Machine Learning for High School Teachers (ML4HST), an 

interactive workshop intended to broadly educate high school teachers in concepts of machine learning, with a 

pronounced focus on deep learning. The ML portion of the workshop totaled four days of demonstration and 

activities, which will be detailed here: 

 

Day 1 

 

 Introduction to AI and ML - introductory lecture to definitions, examples, and paradigms of AI and 

ML 

 Online ML activities – Quick, Draw! by Google, Scroobly, Thing Translator, Lobe AI  

 ML fundamentals – lecture providing ML and DL terminology and explaining the broad contours of 

datasets, learning, and neural networks. 

 Introduction to Perceptron – lecture providing the mathematical formulation of the artificial neuron 

 Rock, Paper, Scissors – training classifier with Lobe AI for gesture recognition and playing it on 

Raspberry Pi 

 Iris/Animal classifier with scikit-learn – interactive demonstration on classification tasks using 

scikit-learn logistic regression and support vector machine models 

 Temperature trends –interactive demonstration for polynomial regression with scikit-learn 

 Handwritten digit classification – interactive demonstration for image classification with multilayer 

perceptron model in scikit-learn 

 

Day 2 

 

 Face tracking – interactive demo for object detection with Haar cascade 

 ChatGPT – interactive lecture on ChatGPT capabilities, limitations, and use in the classroom 

 Intro to PyTorch – interactive lecture on basic model building and training with PyTorch 

 Bird sound identification – interactive demo for a pre-trained RNN to identify bird calls 

 PyTorch Lightning and Copilot – interactive demo on using lightning and copilot to increase ease of 

programming models and training algorithms. 

 Vehicle detection – interactive demo on transfer learning with R-CNN to detect vehicles in videos 

with PyTorch 

 

Day 3 

 

 Melody harmonization – interactive demo on transformer model to generate harmonies using 

PyTorch 
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 Plant identification – interactive demo on transfer learning to identify 50+ plant species using 

PyTorch 

 Introduction to CNNs – lecture with demonstration of convolutional neural networks 

 Advanced ML architectures – interactive lecture on RNN and GAN models with PyTorch 

 TurboPi – face tracking with Raspberry Pi-based mobile platform 

 

Day 4 

 

 TurboPi – line following with Raspberry Pi-based mobile platform 

 Obstacle avoidance – CNN classifier to avoid objects with DJI Tello EDU drone 

 JetHexa – Gesture tracking and robot maneuvering with NVIDIA Jetson-based hexapod mobile 

platform 

 PuppyPi – CNN classifier for ball following with Raspberry Pi-based quadruped mobile platform 

 

There were 14 participants in the workshop: 10 high school educators, three accompanying students, and one 

professor in the field of engineering with no ML experience. The workshop was all in person at the University of 

Wyoming. The modules were presented in a computer lab, with each participant accessing a computer running 

Windows 11, with an AMD Ryzen 7 5800X 8-core processor and NVIDIA RTX A6000 GPU. Other applied 

modules, including modules on robotic platforms, were conducted in laboratories with laptops remotely connected 

to the platform computer. 

 

Observations 

 

It is important to note that our workshop contained no assessment of participant comprehension and mastery of 

presented topics. We lack the counterfactual evidence to state whether the workshop produced a measurable effect 

on the effectiveness of these educators in teaching ML topics. Our results and discussion are informed primarily 

by the authors’ assessment of the teachers’ comprehension. Additionally, we released a questionnaire that asked 

several open-ended questions on the perceived efficacy of the workshop material and presentation; direct 

quotations from the feedback will be used to support claims as needed. See Appendix C for the list of feedback 

questions. 

  

Pedagogic Strategies 

Lecture 

 

There is no obvious way to teach an inherently mathematical topic without some form of lecture; interactivity can 

be incorporated, yet unheard concepts must be explained. All workshop modules that introduced a new topic, be 

that a new model architecture or concept in ML, began with a lecture. As will be discussed, balancing theory and 

implementation is critical to keeping learners engaged, and effort was made to keep the lectures brief, stimulating, 

and at an appropriate level of depth. 
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Interactive Learning 

 

The clearest observation we made throughout the workshop is that interactive lessons are preferred to lecture-type 

presentations. In the context of machine learning, interactive can be seen as a function of integrating data 

collection, labeling, and processing into the lesson, having participants write code for takeaway concepts 

themselves, and lesson dependent user interaction with model prediction.  

 

Regarding data set curation, some but not all demonstrations presented in the workshop included a component of 

data collection (see Table 3) and exploration. Despite data collection generally being the most arduous step in the 

ML workflow, participants found the process valuable to understand ML as a fundamentally data-driven enterprise 

better. In the feedback questionnaire, one participant wrote, “I felt that by using pictures/videos collected by us, I 

had a vested interest in seeing what happened or what was being processed by the programs.” 

 

Concerning students writing code themselves, this is a difficult balance to be struck. Too little programming leaves 

the ML process opaque and does not empower students to explore model creation and training led by their 

curiosity. On the contrary, expecting students to type many lines of code is futile; it is unlikely that even a small 

minority of ML beginners will have appreciable experience in programming to avoid unnecessary frustration in 

writing and debugging. Our interactive sessions had various amounts of exposure to the underlying scripts, and 

depending on the topic's complexity, variable success kept participants from becoming discouraged. 

 

User interaction with the trained model is likely the most important consideration in devising educational 

strategies for ML; without demonstrating how trained model behaves with new data, there is scarcely a point in 

introductory ML education since ML is fundamentally a discipline of engineering solutions. By assessing topic 

selection and presentation with this in mind regarding our workshop, we conclude that integrating the trained 

model into an application is crucial for students to internalize the broad contours of ML. Some of our modules, 

particularly the classifier models, demonstrated the trained model by running predictions on some testing data and 

presenting statistics such as prediction accuracy. While this does demonstrate that a model has learned something 

from the data, it can fail to exhibit the purpose of developing the model in the first place. Why does one need a 

computer program to tell them that a picture is of a cat or a dog? Other modules demonstrated the trained model 

more vividly, such as detecting and localizing cars in videos collected by participants or allowing participants to 

generate harmonies to their music melodies. This approach firmly associated the unfortunately tedious ML 

workflow with an application that students can interact with; they can present their data to the model, investigate 

in what situation the model succeeds and fails, and strategize about improving its performance, all guided by their 

interests and curiosities. 

 

Integrating data collection and labeling into an ML module depends entirely on the topic of interest and the method 

used. In ML, a data set is typically split into training and test data, where training data is presented to the model 

to adjust the model parameters and test data is used to assess the model’s predictivity on yet unseen data. For 

certain applications, assembling a training data set can be tedious due to the need for data labels (sorting data 

samples by class membership, annotating images with bounding boxes, etc.). For other applications, collecting 
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data is quite straightforward, e.g., collecting a short video of vehicles on the road for vehicle detection. It may be 

prudent for the training data to be assembled completely and allow students to collect a small amount of data to 

augment the training data or serve as test samples.  

 

All but the simplest implementations of custom ML models and training loops require competency in 

programming tools and environments, particularly Python, and a considerable amount of time is needed for 

writing and debugging complex scripts. Appropriate exposure to the code is a critical question; asking teachers or 

students to implement and train a neural network from scratch is prohibitive, and hiding the entirety of the code 

does not empower students to explore or understand ML. Hiding boilerplate and tedious code while allowing 

access to key concepts in the training and testing scripts is the tradeoff we are trying to find the appropriate balance 

point. 

 

It is not uncommon for lessons to focus too much on the details and fail to instill the overall context of the lesson. 

Students often lose the thread of a lesson and eventually question why they must learn the tedious specifics of a 

topic. This is a devastating trap in ML education. Machine learning is inherently complex, and a trained model 

returning prediction metrics on test data is only of interest to those who have intrinsic motivation to learn about 

ML. Thus, reconnecting the trained model to a demonstration of its predictions in an appropriate ML application 

is essential. 

 

Computational and Data Resources 

 

Due to the machines provided to our workshop participants, which possess capable and costly GPUs, our selection 

of topics, model architectures, and training parameters was not limited to the extent that educators using district-

provided hardware would likely be. This was particularly evident in several of the workshop modules. 

 

Bird sound identification used a large time-series classifier model (e.g., RNN) on high-fidelity sound data. Due 

to the large input data size and model complexity needed to parse it, available hardware would significantly impact 

training and prediction time. Additionally, such sequential models are less parallelizable and thus less amenable 

to speed-up with accelerators such as GPUs. 

 

Vehicle detection employed R-CNN, a large pre-trained object detection model. When performing predictions on 

a single image, this model must pass a high-resolution image through a large convolutional network and region 

of interest proposal networks to generate an arbitrary list of predictions for bounding boxes for each object 

detected in the image. Fine-tuning only a single layer of weights on the workshop systems took around 30 minutes. 

While popular object detection models are available for download with pre-trained parameters, eliminating the 

need for coding the model and time-intensive training blocks, simple prediction on multiple images may require 

significant hardware resources rendering these models infeasible on non-specialized machines. 

 

Data availability is critical for implementing ML models for tasks not amenable to self-curated data. Many data 

sets exist and are publicly available on websites like Kaggle; sets including student exam performance, customer 
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personality traits, face mask detection, popular song streaming, food choices, and others can be found and easily 

downloaded to use in educational settings. However, with every new data set comes the arduous process of 

wrangling the data structures to suit the needs of the particular lesson, which can require patience and expertise 

in data manipulation tools such as Python’s pandas library.  Workshop modules that used prebuilt public datasets 

are listed (see Table 2). 

 

Table 2. Workshop Modules Using Public Datasets 

Module Data sets 

Iris classifier Kaggle - Tabular data on iris flower petal and sepal characteristics 

Handwritten digit classifier 

PyTorch Lightning 

Advanced ML arch. (GANs) 

 

MNIST - Handwritten Digits 

Bird sound identification Cornell - Bird sound files 

Vehicle detection  KITTI – Object detection images (used for training) 

Melody Harmonization J.S.B. Chorales – symbolic music in array notation 

Plant Identification PlantNet-300k – Images of 1000+ plant species 

 

The other option for data sets is for the educator and students to cultivate the data samples collaboratively. While 

this can add time and logistical obstacles to an ML project, it tends to be more engaging for students to have a 

role in project success. Data curation and cleaning are also crucial components of the typical ML workflow. Since 

the success of ML applications is largely determined by the size, quality, and variety of training data, ML 

education cannot be complete without understanding the approaches and challenges of collecting data samples. 

Workshop modules in which participants collected or augmented the training data are detailed in Table 3. All 

modules not mentioned in Tables 2 and 3 either contained no model training or leveraged an in-house dataset. 

 

Table 3. Workshop Modules with Participant-Curated Data Sets 

Module Data sets Collection Time 

Online ML activities 

Intro to Lobe AI 

Rock Paper Scissors 

Module dependent images  Captured during workshop via webcam 

Polynomial regression Twice daily temperature measurements Recorded by participants before the 

workshop 

Vehicle detection Videos of traffic conditions (used for 

prediction only) 

recorded by participants before the 

workshop  

Melody 

Harmonization 

Song requests 

(used for prediction only) 

Sent by participants and encoded 

before the workshop 

TurboPi Images of line-following tracks Collected during the workshop  

Obstacle avoidance Images with and without obstacles Collected during the workshop  

PuppyPi Images with the ball in various positions Collected during the workshop  
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Balancing Theory and Implementation 

 
The modules we presented varied widely in the amount of ML theory presented and the degree to which each 

module resulted in a functional model. Some modules, including ML fundamentals, were entirely theoretical and 

intended to develop key mathematical concepts for M, such as model construction and optimization. In contrast, 

the robotic platform modules (TurboPi, object avoidance, etc.) focused on the practical implementation of 

previously discussed concepts, with participants actively collecting and labeling data, constructing and training 

models in Python, and integrating the applied models into application code to perform an intelligent task. 

However, most of the modules were a mix of theory and implementation. These modules introduced a new model 

architecture or ML paradigm, discussed the mathematical underpinnings at a level of depth constrained by the 

workshop schedule, and implemented an example model aimed at some engaging application. 

 

Our workshop participants were high school educators, and they varied significantly in their comfort with math 

theory and programming. One might assume that teachers would prefer more application-centered demonstrations 

since these are more engaging, easier to replicate, and certainly easier to impart to high school students. However, 

participant feedback indicated that our participants intuitively understood the need for more challenging 

theoretical lectures and discussions. In response to the survey question, “How do you feel about the balance 

between ML theory (mathematics) and application (programming) in this workshop?” teachers responded: 

 

 “I think it [the balance] was necessary and well done.” 

 “This year was a great balance of math and programming. I felt I have a much better understanding of 

what is happening.” 

 “…Understanding the mathematics behind the algorithms is a step towards explainable AI and a better 

spread of these applications in various industries.” 

 

Even the most basic ML algorithms, such as linear regression, require a reasonably sophisticated grasp of 

mathematical concepts, including linear algebra, calculus, and mathematical optimization, to fully understand how 

a machine learns decision rules are formed from data. Since these concepts are unlikely to be ubiquitously grasped 

within a cohort of high school students, balancing theory and practice becomes not unlike machine learning itself; 

there are no solutions, only tradeoffs. The exact placement of the fulcrum point in this balancing act can be 

challenging. Too much theory leaves learners overwhelmed with abstract and perplexing mathematics, which 

makes it difficult to internally reconnect with the overarching purpose of an ML project or lesson. Conversely, 

too little theory can result in superficial learning, where models are successfully implemented with little 

understanding of their internal mechanisms, capabilities, and limitations. Either extreme fails to precipitate a 

practical understanding of machine learning, or thus, care must be made to find the proper inflection point. 

 

Appropriate Selection of Topics 

 

All educators must contend that any unit on any topic must be forced into a finite amount of time. From this, it is 

clear that careful consideration must be made to choose the topics most pertinent to student understanding of the 
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topic broadly and to choose topics that are likely to be digestible and engaging. We chose to focus primarily on 

deep learning for the following reasons: DL models have higher predictive power than “classical” ML approaches, 

DL models are becoming easier to implement with the ongoing development of toolkits and programming 

libraries, and DL models are the de facto standard approach for the fascinating applications of ML, including 

intelligent tasks related to image, time series, and natural language processing. 

 

Except for the iris classifier, animal classifier, temperature trends, and face tracking, all our workshop 

demonstrations leverage deep learning approaches to perform the task at hand. Since we covered only a small 

sample of ML topics, it isn't easy to make quantitative or qualitative observations about the effectiveness of one 

topic over another concerning participant engagement and understanding. We can state that no feedback, in 

conversation nor through the questionnaire responses, indicated that participants would have preferred to spend 

more time on classical ML algorithms. This aligns with our predictions since the limitations of these algorithms 

are evident even on toy datasets. In contrast, the superior predictive capabilities of DL models let machine learning 

amateurs approach more interesting problems and exceed performance expectations relative to the monotony of 

implementing the model. We feel that this greatly improves engagement and excitement about the possibilities of 

deep learning specifically. More about topic selection will be discussed in the next section. 

 

Pitfalls 

 
Perhaps the main mistake one could make in designing an educational module on ML is not selecting an 

appropriate depth with which to explore a topic. As previously mentioned, limiting the amount of mathematical 

theory in a lesson is crucial to retain student intrigue; equally important is discernment as to which topics are too 

abstruse to be distilled into a lesson intended for ML novices. The reverse also seems to be true, in that an ML 

topic must also surpass some unquantifiable floor of complexity to deliver sufficient results that make the lesson 

worth teaching. 

 

Some of our workshop modules were just too ambitious, both from the conceptual understanding standpoint and 

workload volume. Take, for example, the melody harmonization demonstration, in which we used a transformer 

with a self-attention model framework to predict harmonic accompaniment to a given input melody. While 

participants appeared enthusiastic about the prospect of computer-generated music, the lesson fell flat in 

generating any interest and curiosity to under the model. Transformers and self-attention are novel and highly 

intricate models, and even a cursory overview of the theoretical background was too high for those lacking ML 

experience to engage. To add to the monotony, relating the encoding and decoding of music symbolically into an 

array format suitable for ML required further investment of time. Finally, to generate interest, participants were 

encouraged to submit song requests to test the trained model performance. Still, these melodies had to be hand-

translated into the appropriate format. This task reduces the likelihood that a teacher without extensive musical 

and programming experience would wish to replicate such a lesson. These issues sum up to making a module that 

we predicted to be a success but was frustrating and boring. This module demonstrated an amusing topic but 

resulted in surface-level learning due to its difficulty and laborious implementation. 
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Another facet of difficulty is somewhat intrinsic to the practical reality of machine learning. Some models require 

large datasets and elite computational hardware to produce reasonable results on all but the most banal 

applications. This is more of an imbalance of difficulty and results, such that the outcome of training a complex 

model on a toy dataset generates uninteresting or flawed results due to the mismatch in model selection and 

available resources. Such an imbalance is exemplified in our workshop's advanced ML architectures module, 

particularly the exploration of generative adversarial networks (GANs). Training a GAN is somewhat of a game, 

where two deep networks are trained in tandem, with a generator that learns to transform an arbitrary noise input 

into a sample that resembles the training data and a discriminator that learns to discern real data samples from 

fake samples from the generator. The inherent difficulty in constrained optimization of two agents with different 

goals makes training GANs to produce reasonable fake data very challenging. Typically, a basic GAN performs 

poorly on any high-dimensional data set. In our workshop, we demonstrated GAN training on the MNIST 

handwritten digit data, consisting of low-resolution images of handwritten digits 0-9. The result was generated 

images that begin to resemble digits but are easily distinguishable and unimpressive. This illustrates that 

implementing a generative model like a GAN is too difficult to justify the mediocre results since improving the 

generated images requires larger models and more training time, which may be unavailable to a high school 

teacher. To summarize, classroom ML projects are ideally chosen with a balance in mind, which has a high ceiling 

and low floor for success, in that models are likely to learn interesting predictive or generative capabilities while 

avoiding unnecessary complexity. This may rule out some advanced ML paradigms as impractical to properly 

teach in a resource-constrained classroom. 

 

ML projects must also produce results that interest the uninitiated to inspire interest in students. This is the main 

concern with classical ML techniques like basic regression models; they lack the predictive capabilities to impress 

someone without intrinsic motivation or other incentives to learn about ML. Despite the relatively straightforward 

implementation of such models, which might be appealing for ML beginners on a surface level, our participants 

did not express interest in learning more about these topics because they lack the predictive power to compel 

learners to do the difficult work of understanding foreign concepts. 

 

A final pitfall that must be addressed is burying students too deeply into ML implementation mechanisms, 

primarily programming syntax and semantics. While a language like Python is readable and uncomplicated 

compared to other scripting alternatives, programming, and ML are ultimately disparate skill sets. Our approach 

was to create template code for the workshop participants, with much of the boilerplate code prewritten; students 

are only responsible for writing code corresponding to key ML concepts like model construction and training 

loops. We observed that the participants, some of whom had some background knowledge in Python, still 

expressed frustration at writing too much code without assistance. One survey respondent said, “When the code 

being added didn’t have [an] arrow to tell me what I was adding specifically, I was very lost.”  

 

A given machine learning model, such as a multilayer perceptron network, is an apt metaphor for machine 

learning. At a high level, it has a relatively simple definition and abstract construction, underneath which lies a 

world of complexity that is impossible to comprehend concisely. Due to this complexity, it is difficult to partition 

ML into subcategories with members that are similar to each other and dissimilar to members of other categories, 
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not unlike trying to unravel the operations of a trained model to determine which input features correspond to 

which outputs.  

 

Discussion 
Pedagogic Strategies 

 

Integrating data collection and labeling into an ML module depends entirely on the topic of interest and the method 

used. In ML, a data set is typically split into training and test data, where training data is presented to the model 

to adjust the model parameters and test data is used to assess the model’s predictivity on yet unseen data. For 

certain applications, assembling a training data set can be tedious due to the need for data labels (sorting data 

samples by class membership, annotating images with bounding boxes, etc.). For other applications, collecting 

data is quite straightforward, e.g., collecting a short video of vehicles on the road for vehicle detection. It may be 

prudent for the training data to be assembled completely, allowing students to collect a small amount of data to 

augment the training data or serve as test samples.  

 

All but the simplest implementations of custom ML models and training loops require competency in 

programming tools and environments, particularly Python, and a considerable amount of time is needed for 

writing and debugging complex scripts. Appropriate exposure to the code is a critical question; asking teachers or 

students to implement and train a neural network from scratch is prohibitive, and hiding the entirety of the code 

does not empower ML students to explore or understand. Hiding boilerplate and tedious code while allowing 

access to key concepts in the training and testing scripts is the tradeoff when we are trying to find the appropriate 

balance point. 

 

It is not uncommon for lessons to focus too much on the details and fail to instill the overall context of the lesson. 

Students often lose the thread of a lesson and eventually question why they must learn the tedious specifics of a 

topic. This is a devastating trap in ML education. Machine learning is inherently complex, and a trained model 

returning prediction metrics on test data is only of interest to those who have intrinsic motivation to learn about 

ML. Thus, reconnecting the trained model to a demonstration of its predictions in an appropriate ML application 

is essential. This is quite evident in projects involving robotic platforms. Machine learning fits neatly into the 

environment-sensing component of robotic navigation so that students will more quickly grasp the role of ML in 

our world and experience feelings of ownership and investment in their engagement with these topics. 

 

Computational and Data Resources 

 

Due to the growing complexity of cutting-edge ML models, computational resources can become a primary 

constraint on teaching ML. As models become more capable due to their increasing number of parameters and 

operations, model prediction (i.e., forward pass of a single data sample) can have several seconds of latency, 

reducing the use cases of model application in a resource-limited setting. For example, a sophisticated object 

detection model like YOLO or R-CNN may be unable to perform and display inferences on a high frame-rate 

video in real-time on a low-cost classroom laptop such as an average Chromebook. Of course, model training is 
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much more computationally demanding than inference; with a sufficiently complex model, training time may be 

a lesson bottleneck akin to leaving a science experiment overnight to develop results, further complicating the 

logistical planning necessary to execute an ML unit.  

 

It is also worth noting that, in addition to the multitude of online activities available for educators to showcase the 

capabilities of ML, there are also web-based resources for training custom models using cloud hardware resources. 

Google Colab is a cloud service that allows users to run Jupyter Notebooks (a user and education-oriented Python 

scripting interface) on freely accessible remote hardware. This and other similar services can raise the ceiling on 

possible ML projects by empowering educators to explore ML projects without concern about hardware 

limitations. 

 

As discussed, many free and easily accessible data sets cover many application areas. These may be used for 

demonstrations of various ML topics. However, we feel that ML projects in the classroom should lean towards 

using data sets that are curated or at least augmented by students due to the sense of ownership of the project 

outcome and improved understanding of the role of data in a world increasingly driven by intelligent computers. 

 

Balancing Theory and Implementation 

 

This is an ever-present concern of STEM education, which we make no claims of cleanly delineating. ML is a 

mathematically intensive discipline; most high school students likely lack the math background and intrinsic 

motivation to engage deeply with these topics. Thus, these abstract concepts should be limited to the extent 

necessary to foster a high-level comprehension of the topic. A mathematical baseline is, however, required to 

avoid superficial learning. In avoiding presenting the underlying technical aspects of ML to students, educators 

run the risk of teaching students nothing more than they already know from interacting with ML in other contexts, 

including those available on technology that students use daily, which are manifold. 

 

Appropriate Selection of Topics 

 

A combination of the other considerations made here, topic selection depends on several factors. First, an ML 

topic should have a clear path to make it as interactive as possible, particularly interaction with the trained model 

predictions. It is certainly recommended to allow students to participate in deciding on an application that they 

find interesting, perhaps constrained by a broad area such as image classification, allowing them to suggest ideas 

for what domains of data to investigate. 

 

Second, topics should be practical to implement given the time and computing constraints that an educator is 

subject to; experimentation with different ML domains and data types can give educators insight into which ML 

applications may be feasible (e.g., smaller models with simple data sets) and which are not (e.g., large sequence 

models like Transformers, RNNs). Cursory online research will likely be a valuable tool in understanding which 

classes of problems are suitable for resource-limited classroom ML projects. 
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Third, perhaps more than many other educational domains, it is important not to bite off more than one can chew 

with ML due to its inherent complexity and opacity. It is imperative to ground ML lessons in the broad context of 

how it solves problems and the key distinctions between ML and other computing fields, mainly that it is data-

driven at its core. Theory should be introduced as needed and only as needed, and the lessons should otherwise 

focus on practical realization.  

 

Finally, we feel that a powerful guideline for topic selection is that of the low floor and high ceiling (Resnick & 

Silverman, 2005). Simply put, models with the potential for compelling predictive capacity and that do not require 

extensive background knowledge or burdensome implementation are an optimal starting point in searching for 

appropriate ML topics. We feel that simpler deep learning models like DNNs and CNNs provide a low floor for 

entry and a high ceiling for performance with the greatest chances of successful delivery and reception to high 

school students. 

 

Other Considerations 

 

Being that our group lacks expertise in the art and science of education, there are conversations about ML 

education that we neglected here. Computational topics in K-12 education often deal with notional machines 

(Tedre et al., 2021), a mental model of how a piece of code is executed in a computer. Machine learning differs 

greatly from the notional model of classical computer instructions; instead of basic operations organized by 

looping and branching, ML models (especially DL models) perform a task by performing an enormous chain of 

uninterpretable operations to transform data into predictions. This new mental model is not incomprehensible, but 

attention must be paid to the departure from how people understand computers as programmable and sequential 

rule followers. 

 

Another consideration is that machine learning occupies a strange place in STEM education, particularly from 

classical computer programming, in that ML systems possess different targets from these other fields. Whereas 

the outcome of a scientific experiment, mathematical procedure, or rule-based computer program has some sense 

of objective correctness or lack thereof, ML shifts the quality of system performance from “correctness to 

effectiveness” (Tedre et al., 2021). The acceptable level of ML system performance is not binary but statistically 

and ethically determined by its approximate effectiveness. This is because a trained model will never achieve 

100% prediction accuracy on new inputs, and in many cases, the definitions of these quality metrics are not so 

easily characterized. Contending this key difference between ML and other STEM fields complicates ML 

education, requiring application-dependent discussions about acceptable levels of legitimacy. 

 

Perhaps the most pressing issue in AI by investors, practitioners, educators, and students alike is the ethical issue. 

Determining the ethical considerations of where to apply AI and ML mitigating societal bias and inequity in the 

model training itself, is a societal and cultural conversation that is nowhere near settled. An ML model inevitably 

appropriates the biases present in its training data, an issue whose amelioration requires more input from 

policymakers and social justice advocates than ML practitioners. We do not address these considerations here, 

but we must mention that AI and ML ethics are a non-negotiable component of responsible AI education. 
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Conclusion  
 

After three years of implementing and refining the Machine Learning for High School Teachers workshop we 

have received positive feedback from secondary educators on our selection of topics and methodologies for 

introducing machine learning and deep learning into high school curriculum. From the perspective of practical 

domain expertise, rather than STEM pedagogy, insights from the teacher participants of the workshops can be 

summarized as follows: 

 

 Teaching modalities which promote active learning are preferable to lecture. This implies project-based 

implementations, where underlying ML theory is introduced only as necessary. Projects should be data 

driven, with students participating in collecting and/or analyzing a data set. Interaction with the trained 

model in a tangible way should be emphasized, making applications involving computer vision or 

robotics a sensible starting point. 

 Simple DNNs and CNNs are reasonable model selections, as they offer high performance potential 

without being entirely opaque. This motivates students to engage with machine learning material and 

observe the capabilities of such models and decreases the likelihood of student’s becoming frustrated 

with complex theoretical topics. 

 Computational resources and data availability are key ingredients for successfully training a ML model. 

and if an educator lacks these resources, publicly available datasets and cloud computation services are 

often suitable for use in secondary education. 

 

Recommendations 

 

Additional surveys which examine the observations, challenges, and missing resources of high school educators 

integrating machine learning would help focus the attention of STEM education researchers and developers of 

educational ML tools. Further research which investigates the success of various ML initiatives in secondary 

education would assist in clarifying which collections of topics and classroom modalities are best suited for 

fostering engagement and understanding in high school students. 

 

It is important to recognize that the landscape of AI/ML K-12 education evolves very quickly as new toolkits and 

services are developed, which despite overwhelming educators with an excess of options, opens new applications 

and possibilities for machine learning education. 
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Appendix 

 

A – Online ML activities 

 

 Quick, Draw! is a web-based ML activity where users are prompted to draw different objects in 20 

seconds. After drawing the objects, the online ML model will attempt to classify the sketches correctly. 

After classification, users can see example drawings of the prompts used to train the model and how the 

model assessed the incorrectly classified drawings. Quick, Draw! was developed by Google Creative 

Lab and is available at https://quickdraw.withgoogle.com/. 

 Scroobly is a web-based ML activity requiring a webcam. Users are prompted to draw a humanoid 

doodle, and the ML models map the user’s live motion, captured by the webcam, onto the doodle. 

Scroobly was developed by Google Partner Innovation and bit.studio and is available at 

https://www.scroobly.com/. 

 Thing Translator is an online ML activity requiring a camera. Users are prompted to take pictures of 

objects in their environment, and the ML model identifies and translates the object’s name to a language 

specified by the user. Dan Motzenbecker and Google Creative Labs developed Thing Translator, 

available at https://experiments.withgoogle.com/thing-translator. 

 Lobe AI is an application that allows users to create and train models without programming. Users can 

take or upload images, label images by class, and train a classifier model using a streamlined graphical 

user interface. Microsoft developed lobe AI, which is available for download at https://www.lobe.ai/. 

 

B – Drones and Robotic Platforms 

 

 The DJI Tello EDU is a quadcopter drone designed for programming and robotics education. It has an 

inbuilt camera with 720P HD video transmission. The Tello may be interfaced with a mobile application 

or programmed and controlled using Python, Scratch, or Swift. 

 The TurboPi is a wheeled robot car kit with a Raspberry Pi as the platform controller. TurboPi has 

omnidirectional mecanum wheels for simplified control, as well as a camera, ultrasonic distance sensor, 

and color detector comprising its interfaceable sensors. TurboPi is developed by Hiwonder. 

 The PuppyPi is a quadruped robot controlled with a Raspberry Pi using the Robotic Operating System 

(ROS) software platform. Navigation is actuated with 8 coreless servo motors, and a camera and 2-D 

LiDAR sensor provide the main sensor fusion. PuppyPi is developed by Hiwonder. 

 The JetHexa is a hexapod robotic platform controlled with a NVIDIA Jetson Nano using the ROS 

software platform. Similar actuators and sensors as on the PuppyPi are available on the JetHexa. JetHexa 

is developed by Hiwonder. 

 

https://quickdraw.withgoogle.com/
https://www.scroobly.com/
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