
	 74

DESIGN AND DEVELOPMENT OF A DIGITAL PERSONALIZED
LEARNING TRACK: BRIDGING THE GAP BETWEEN TEXTUAL AND
VISUAL PROGRAMMING
Rani Van Schoors*1,2, Sohum M. Bhatt*1,3, Jan Elen1,2, Annelies Raes1,2, Wim Van den Noortgate1,3 & Fien Depaepe1,2
1itec–imec research group at KU Leuven; 2Centre for Instructional Psychology and Technology at KU Leuven;
3Methodology of Educational Sciences Research Group at KU Leuven

Due to swift technological changes in society, programming
tasks are proliferating in formal and informal education
around the globe. However, challenges arise regarding
the acquisition of programming skills. Many students are
unequipped to develop programming skills due to limited
instruction or background and therefore feel insecure when
encountering programming in higher education. Some
after-school initiatives focus on teaching younger students
programming skills, however, not all students have the
opportunity to attend. It can also be very challenging for
teachers to teach programming—even more so due to
significant differences in students’ knowledge and interests.
To alleviate these challenges, we designed and developed a
digital personalized learning (DPL) track for programming in
the first grade of secondary education (12–14 year-old stu-
dents) with a threefold purpose: (a) to encourage students
bridging the gap between visual and more general-purpose
textual programming languages (b) to meet differences in
students’ programming knowledge by challenging them,
albeit on their own pace, and subsequently (c) to support
teachers in the delivery of programming education with
relevant supportive learning materials. The design was tested
by students and teachers, both of varying technical abilities.
Assessments of the DPL-track were positive, with students
identifying the tasks as challenging and the tools as moti-
vating. Teachers praised the adaptivity, as well as the gradual
transition from visual to textual programming. We present
several suggestions for design improvement and dilemmas
while reflecting on our design case.

Rani Van Schoors is a postdoctoral researcher in the itec–imec
research group and the CIP&T research group at the Katholieke
Universiteit (KU) Leuven. Interests include digital personalized
learning and artificial intelligence in education.

Sohum M. Bhatt is a Ph.D. researcher in statistical modelling in
the itec - imec research group and Methodology of Educational
Sciences research group at the Katholieke Universiteit (KU) Leuven.
Interests include user modeling and recommender systems.

Jan Elen is a full Professor in the CIP&T research group at the
Katholieke Universiteit (KU) Leuven. Interests include the design
of learning environments for complex learning, such as critical
thinking.

Annelies Raes is an Assistant Professor in the CIP&T research
group at the Katholieke Universiteit (KU) Leuven. Interests include
innovative learning models, active learning and problem-based
collaborative learning.

Wim Van den Noorgate is a full Professor in the itec–imec
research group and Methodology of Educational Sciences research
group at the Katholieke Universiteit (KU) Leuven. Interests include
statistical modeling of clustered data using multilevel models, with
a special focus on learning analytics and meta-analyses.

Fien Depaepe is a professor at itec–imec research group and
CIP&T research group at the Katholieke Universiteit (KU) Leuven.
Interests include instructional design and educational effectiveness
of technology-enhanced learning environments.

*Rani Van Schoors and Sohum M. Bhatt are both considered first
authors.

INTRODUCTION
The context of this design case is situated in the field of
computational thinking and programming in education. We
understand from the literature that, while the concept of
computational thinking (CT) was first mentioned by Papert

Copyright © 2024 by the International Journal of Designs for Learning,
a publication of the Association of Educational Communications and
Technology. (AECT). Permission to make digital or hard copies of portions of
this work for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page in print
or the first screen in digital media. Copyrights for components of this work
owned by others than IJDL or AECT must be honored. Abstracting with
credit is permitted.

https://doi.org/10.14434/ijdl.v15i1.35224

2024 | Volume 15, Issue 1 | Pages 74-9574

https://doi.org/10.14434/ijdl.v15i1.35224

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 75

(1980), it was Wing (2006) who (re)popularised it in educa-
tion by describing CT most eloquently as a new basic skill
alongside reading, writing, and arithmetic. She summarises
CT as a process of thought involved in formulating problems
and subsequent solutions to be effectively carried out by
information-processing technology (Wing, 2006). Similarly,
we noticed that programming—often regarded as the
central practice of CT—also gained popularity in literature
(Tedre & Denning, 2021). As Grover and Pea (2013, p. 40)
state: “Programming is not only a fundamental skill of com-
puter science and a key tool for supporting the cognitive
tasks involved in CT but a demonstration of computational
competencies as well.” Programming gained currency in
standards for primary and secondary education as well
as a primary focus of EdTech companies and after-school
learning initiatives (Falkner et al., 2015). Despite the ubiquity,
various sources inform us that students’ programming
acquisition is hampered by three distinct difficulties that we
aim to account for during the development and design of
our case: (a) difficulty of content, (b) variation in student prior
knowledge and (c) difficulty in teaching programming.

Driven by sources such as Govender (2006) and Jenkins
(2004), we could distinguish a first difficulty that is endemic
to computer science: learning how to program is difficult
due to the multitude of skills and involved thought process-
es. Specifically textual programming is difficult to acquire as
it requires syntax and logic to build programs. Kelleher and
Pausch (2005) indicate that this increases students’ cognitive
demands. Despite the growth of programming courses
for younger students, pass rates of introductory courses
in higher education are still low (Bennedsen & Caspersen,
2019). Drawing upon our theoretical understanding, we
believe that one plausible explanation is that students
struggle to apply previously learned logic and simplified
syntax (generally limited to visual programming via graphical
elements) in other (textual) abstract syntax contexts (Saeli et
al., 2011). Therefore, when building tools for programming,
a design challenge emerges to include more adequate
teaching approaches regarding introductory programming
instruction, more specifically with special attention to ease
the transition (less abrupt, more seamlessly) from visual to
textual programming (Bennedsen & Caspersen, 2019; Bruce,
2018; Noone & Mooney, 2018).

The second difficulty that we distinguish is a substantial
divide in students’ programming knowledge and interests.
Informal learning initiatives arise which aim to engage
younger programming novices. Such endeavors enable
interested students to get acquainted with programming
outside of the classroom. However, as not all learners are
able (or eager) to attend informal programming activities,
a divide can be noticed in programming knowledge and
interests between students (Salac et al., 2021). Therefore,
when building tools for heterogeneous student groups, a
design challenge emerges to facilitate the personalization

of the learning experience according to students’ needs. The
field of digital personalized learning (DPL) proliferates and
subsequently, many personalization types arise (Bernacki et
al., 2021; FitzGerald et al., 2018). Based on this evidence in
the literature, we pose an additional challenge: recognizing
different personalization types and selecting the most fitting
one for the target audience.

Finally, the preceding two difficulties coalesce into a third
issue, which pertains to the difficulty of teaching program-
ming. Teachers often feel distressed and unprepared because
programming is an unfamiliar subject in their training (Brown
et al., 2014). In recognizing this, we focus on an additional
design challenge: when building tools for programming,
it is important to create materials that support teachers
to adequately teach programming. Also, as explained, it is
important to consider that class contexts usually comprise
students with different knowledge levels and interests,
which challenges the teachers’ role even more.

THE DESIGN OF THE DPL-TRACK AS AN ELEMENT OF A
DBR-INITIATIVE

To alleviate the difficulties and accompanying design
challenges, we pursued the design and development of a
DPL-track (a personalized sequence of activities adapted to
students’ knowledge) for programming in the first grade of
secondary education (12–14-year-old students). The context
giving rise to this design endeavor is the research project
(i-Learn) in which the design team explored the needs of
teachers regarding digital personalized learning. As the
previously mentioned difficulties (introduction) matched the
teachers’ needs, the design and development of the track
-which is the foreground element of this article- unfolded.
To do so, we took into principles of design-based research
(DBR). McKenney and Reeves (2014) describe DBR as: “a
genre of research in which the iterative development of
solutions to practical and complex educational problems
provides the setting for scientific inquiry” (p. 3). The develop-
ment of DBR-solutions involves the aims of improving prac-
tice and contributing to theoretical understanding in close
collaboration with corresponding stakeholders (McKenney &
Reeves, 2012; Van den Akker, 1999). For this track, the design
team consists of two researchers who worked together
with software developers, teachers, and students. After
developing the first prototype, a two-fold testing and evalua-
tion cycle was set up. First, the DPL-track was first tested
by seventeen students (12–14-year-old, 2 females and 15
males) and later evaluated through focus group discussions.
Next, nine ICT/STEM teachers (four female and five male)
evaluated the DPL-track and were likewise interviewed,
albeit one-on-one. In terms of programming competencies,
one teacher estimated himself as highly skilled, while four
teachers rated themselves as moderately skilled, and four
other teachers considered themselves to have low skills
in programming. All evaluation moments served as solid

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 76

‘co-learning’ moments, as observations and dialogue gave
insights into the needs and perceptions regarding the user
experience and the design of the DPL-track.

Noteworthy, the expertise of the two main researchers is
complementary: One researcher has a background in statisti-
cal modeling and is experienced in programming. The other
has a background in educational technology and focuses
on DPL. As programming and DPL are the twofold basis
of the DPL-track, we will first elaborate on accompanying
programming and DPL-theory which guided design choices
concerning the prototype. Subsequently, we will elaborate
on the design of the prototype and further elaborate on
the development and refinement based on teachers’ and
students’ comments.

PROGRAMMING AND DPL IN EDUCATION

Programming

Myers (1990) describes the act of programming as “submit-
ting a set of statements as a unit to a computer system to
direct the behaviour of that system” (p. 98). How program-
ming is introduced in the classroom is often through visual
programming to obtain an understanding of the basic
principles before learning textual programming. However,
the transfer between textual and visual programming is a
common struggle for students because of great discrepan-
cies in syntax and semantics (Homer & Noble, 2017; Noone
& Mooney, 2018; Tóth & Lovászová, 2018). To ease students
in this transfer, hybrid programming can provide a middle
ground. These three types of programming are further
explained and depicted in more detail as they also appear in
our DPL-track.

Visual programming

Visual programming operates via graphical elements, mostly
symbols or icons, which represent codes and can be manip-
ulated to build programs. Visual programming environments
(e.g. Scratch, see Figure 1) are often used as an introduction
for novice programmers as it is more inherently engaging
and easier to understand than textual programming given
the decreased cognitive demands and easier language
rules (also known as syntax) dictating the structure of code
combinations (Grover & Pea, 2013; Lye & Koh, 2014). The
visuals allow for simpler debugging and testing as students
can easily simulate the outcome of their code in the pro-
duced animation. Despite the benefits, visual programming
languages have been relegated to teaching tools and are
unsuitable for general programming in authentic computer
systems (Lye & Koh, 2014).

FIGURE 1. A view of Scratch; a visual programming environment in which students can produce small films, games, etc.

FIGURE 2. A view of Python; a textual programming environment.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 77

Textual programming

Unlike visual programming languages, textual programming
languages are used generally and professionally (Chen et al.,
2019). Instead of symbols or icons, written text is being used
to build programs and applications (see Figure 2). Frequently
used examples of textual programming languages are C,
Java, and Python (Chen et al., 2019). Each one has its specific
syntax which makes it difficult to learn for students. In
addition, the textual and detailed nature of these programs
involves more effort to understand and debug code (Lye &
Koh, 2014).

Hybrid programming

Whereas visual programming can be a gentle introduction to
programming, transitioning from visual to textual program-
ming languages is a common struggle for students (Homer
& Noble, 2017; Noone & Mooney, 2018; Tóth & Lovászová,
2018). To bridge this gap, hybrid programming has recently
been developed (Noone & Mooney, 2018). These hybrid
programming environments combine visual and textual
programming: students can explore and edit visual con-
structs and simultaneously see reciprocal changes in the
corresponding textual constructs (see Figure 3). In doing so,
they learn textual languages’ syntax, order of command exe-
cutions, and other textual considerations (Robinson, 2016).

Programming in Flemish Education

In the setting of our design case, the government of
Flanders (Belgium) announced new educational standards
concerning CT and programming for the first grade (12-to-
14-year-old students) in September 2019. The standards
comprise two vague competencies: (a) Students can identify
the foundations of digital systems and (b) students can
apply a simple self-designed algorithm to solve a digital or
non-digital problem. Often, teachers find it challenging to

implement programming lessons into their curricula: many
feel unprepared as CT and programming are not always fully
included in their training (Sands et al., 2018). Nonetheless,
by providing new educational standards, the government
aims to integrate programming transversally, across multiple
courses by teachers with different backgrounds (Flemish
Government, 2019; Flemish Parliament, 2018). However, only
a few Flemish schools have adopted programming into their
curricula, mostly limited to very basic learning content in vi-
sual programming environments and taught by ICT teachers.
In addition, teaching programming can be complicated by
large heterogeneous classes, involving students with various
knowledge levels and interests (Capovilla et al., 2015; Gomes
et al., 2012). With all of this taken into consideration, a clear
need arises for new learning tools, which can be tailored
according to student’s needs and are in line with the gov-
ernment’s standards. To meet this, we integrated adaptivity
within the DPL-track, based on DPL-characteristics.

DPL

In the last 25 years, much research has been done on
DPL (Bernacki et al., 2021; FitzGerald et al., 2018; Major &
Francis, 2020; Xie et al., 2019). We use the definition of DPL
defined by Van Schoors et al. (2021, p. 14), who reviewed
53 manuscripts during that period and concluded on the
following characteristics: “Unlike conventional learning,
digital personalized learning takes place in a digital learning
environment that adapts to the individual learner in the
function of optimizing individual and/or collaborative learn-
ing processes focusing on cognitive, affective, motivational,
metacognitive and/or efficiency outcomes. This adaptation/
personalization: (a) can take into account cognitive, affective,
motivational, and metacognitive characteristics of the
learner; (b) can relate to all aspects of the learning environ-
ment, more specifically the (nature, number, and sequence
of) learning tasks, the content as well as the instruction and
support provided by the learning environment; (c) can be
the result of information provided by the teacher or the
learner himself/herself, but also information collected by the
digital environment; and (d) can be enhanced by the teacher
through the effective use of data derived from the digital
personalized tools).”.

Prior research found limited teacher awareness of DPL in
Flanders, resulting in low use of DPL-tools. However, partici-
pants showed positive perceptions and an active willingness
to implement DPL-tools in their future lessons. A clear need
was detected for tools focusing on (relatively new) subjects
that are technology-related. With this respect, the need for
adaptive material to teach CT was frequently mentioned by
participants (Van Schoors et al., 2023a).

All needs concerning programming and DPL bring us to
the goal of this design case: the development of a DPL-track
for CT in the first grade of secondary education. During the

FIGURE 3. A view of a hybrid programming environment for
Python.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 78

development, the design challenges from the introduction
(transition from visual to textual programming, personaliza-
tion, and support teachers’ role) will be considered. The goal
of the DPL-track is to allow students to learn programming
more easily and prepare them for learning real-life program-
ming syntax. It also aims to support teachers in the delivery
of programming education with adaptive learning materials.

EXPERIENCE OF THE DESIGN

GENERAL STRUCTURE

The DPL-track is a multi-pathway sequence of learning
activities that consist of programming-related practice and
instructions (see Figure 4). To offer personalized tracks based
on student’s individual needs, the DPL-track was built in
i-Learn. I-Learn is a platform that aims for personalized learn-
ing in primary and secondary education. To realize this aim,
i-Learn was established with a range of existing and qualified

= Keymoments

= Increasing difficulty of tasks and instructions

4
2

Start

Finish

FIGURE 4. An overview of the DPL-track structure.

5

Phase 1:
Visual programming

Phase 2:
Hybrid programming

Phase 3:
Textual programming

Medium level tasks,
instructions, …

Hard level tasks,
instructions, …

Low level tasks,
instructions, …

FIGURE 5. An overview of the learning environments: FTRPRF, Minecraft and Dodona.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 79

educational tools, activities within these tools, and learning
tracks holding sequences of such activities. The i-Learn plat-
form functions not only as a tool, activity, and learning track
library, but teachers can also create or customize learning
tracks themselves. All learning tracks offer built-in adaptivity
facilitated through ‘key moments’ which mostly comprise
quizzes or questions and consider cognitive, metacognitive,

FIGURE 6. Example of an instruction in FTRPRF, focus on loops.

FIGURE 7. Example of an exercise in Minecraft Education,
focus on loops.

What code fits best to the following statement: “when you click on the green flag,
the variable x is assigned the value 7 and this value is displayed”
What code fits best to the following statement:
“when you click on the green flag,
the variable x is assigned the value 7 and this value is displayed”?

When Is clicked

Make

Display variable

Display variable

Display variable

I don’t know the answer

Make

Make

When Is clicked

When Is clicked

x 7

x

7

7

x

xy

y

FIGURE 8. Example of an instruction in Dodona, focus on
debugging.

FIGURE 9. Example of quiz question in key moment A.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 80

or affective learner characteristics as a source
to personalize the learning track.

Figure 4 illustrates a simplified overview of our
DPL-track. We also use this simplified overview
to explain design choices later in this paper.
The Figure contains (a) key moments (red
dots) facilitating adaptivity and (b) learning
activities such as introduction videos, theoret-
ical sections, programming tasks, and quizzes.
The key moments guide students to different
phases of varying difficulty (see the range of
blue dots, also corresponding to Figure 5).
These learning activities are further discussed
later is this paper.

LEARNING ACTIVITIES

Learning activities contain either practice
or instruction. Students practice through
programming tasks. These programming tasks
become unobtrusively more difficult, ranging
from visual, hybrid, and textual programming.
To create these tasks, different programming
environments were selected (see Figure 5): (a)
FTRPRF for visual programming, (b) Minecraft
Education for hybrid programming, and (c)
Dodona for textual programming.

Next to practice, there are instructions
providing students with introductions, theory,
tutorials, simulations, etc., through text or
videos (see examples depicted in Figures 6,
7, and 8). Instruction does not only include
information about the three learning environ-
ments, but also covers programming-specific
knowledge with explanations of (a) basic
concepts in CT used for programming such
as decomposition, algorithmic thinking, and
pattern recognition, (b) basic programming
functions such as loops and iterations, and
(c) basic Python syntax such as the functions
print() and len().

KEY MOMENTS

Key moments were integrated both at the
start and throughout the DPL-track. When
arriving at a key moment, students encounter
(quiz) questions examining cognitive aspects
(such as programming knowledge) or meta-
cognitive aspects (such as self-estimation of
programming knowledge). Based on their
answers, students are unobtrusively guided to DPL-tracks
with personalized instructions and tasks (see example quiz
question in Figure 9).

The sequencing of the DPL-track

Figure 10 provides a more detailed overview of the DPL-
track. The different elements including learning activities
(yellow and dark blue dots) and key moments (red dots in

FIGURE 10. A more detailed version of the DPL-track.

FIGURE 11. The first slide of the DPL-track.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 81

Figure 4, here blue) are explained later in this paper. Using
this figure, the user experience is further described.

Introduction

When opening the DPL-track in i-Learn, students arrive at a
general introduction. The learning material is displayed like a
slideshow (see Figure 11) and presented via text, images, and
videos. Students have the option to use a read-aloud func-
tion when encountering text. Other features are navigation
buttons, by which students can operate through the slides.
The slides occasionally contain practice buttons that lead
to the learning environments FTRPRF, Minecraft Education
Edition, or Dodona.

After a short introduction to CT and programming, students
encounter ‘key moment A’ in which their prior knowledge
regarding programming is tested via a short quiz. The quiz
tests knowledge concerning sequence, conditions, loops,
and specific Python syntax. For visual programming ques-
tions, a section of the Test of Basic Programming Concepts
(Tsai, 2019) was modified. For the textual programming
question, a section of the Prepared for Future Learning
(PFL) test (Grover & Pea, 2013) was selected and adapted.
After completion, instead of receiving scores, students are
matched with a specific robot corresponding to students’
cognitive level: Students who answered all questions
correctly scored four points, were categorized as high-skilled,
and were matched with robot So12 (see Figure 12 and 14).
These students were sent to the introduction of phase 2
but then automatically skipped some low-level beginning

tasks (see track 2 from Figure 14). Students who scored three
points were considered medium-skilled. They were matched
with robot YuZu and were sent to the beginning of phase 2.
Finally, students with lower scores were matched with robot
Ra28 and started at the beginning of phase 1 (see track 1
from Figure 12). Students are not aware of the level to which
they are attributed.

FIGURE 12. An overview of phase 1 of the DPL-track.

FIGURE 13. Example of an unfinished programming task in
FTRPRF.

FIGURE 14. An overview of phase 2 of the DPL-track.

FIGURE 15. An example instruction in BookWidgets (visual
programming).

FIGURE 16. An example solution of a task in Minecraft.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 82

Phase 1: Visual programming

In phase one, students interact with the learning environ-
ment FTRPRF (see Figure 13). FTRPRF resembles Scratch and
allows students to manipulate visual elements (blocks repre-
senting codes) when developing animations and games.

In FTRPRF, students are introduced to a built-in story as they
learn about a group of avatars who want to go on a space
mission. Practice and instructions relate to that engaging
story: For example, when students learn about loops, they
use loops to help guide an avatar to a spaceship. Phase 1
holds four lessons (or ‘space missions’) covering concepts
such as algorithmic thinking, pattern recognition, abstrac-
tion, and includes tasks related to building general code
structures and easy loops.

Phase 2: Hybrid programming

In the second phase (see Figure 14), students are provided
with a summary of theory (programming concepts and
meanings) from Phase 1. In doing so, students who scored
medium or high on the prior knowledge quiz from key
moment A do not miss instruction. After that recap, students
move on to the second programming environment, i.e.,
Minecraft: Education Edition, which is an educational adapta-
tion of the popular game Minecraft (Kuhn, 2018).

In Minecraft: Education Edition, students can explore pro-
cedurally generated lands and build block-based structures
in a first-person game environment. Students can also press
a button on the keyboard and switch from visual program-
ming language to textual programming language (Python).
For example, one task can be to build a compass via visual
programming and then change the material or coordinates

Extra Python task:
Switch the code builder to Python.You will see something like this:

Can you adapt the coordinates of the compass, to make the lines longer (15 unites
instead of 10 units)?

FIGURE 17. An example instruction in BookWidgets (textual programming).

FIGURE 18. Question during key moment B.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 83

of the compass via textual programming (see Figures 15, 16,
and 17).

Since Minecraft can only be used as a practice platform and
does not allow for the presentation of instruction via visuals,
we used an additional tool to present students with accom-
panying instructions. BookWidgets is a Belgian educational
content authoring tool that can be used to present text,
images, and videos (BookWidgets, n.d.).

During Phase 2 students are presented with key moments B
and C that contain questions to self-estimate their program-
ming knowledge (key moment B relates to coordinates and
key moment C to variables, see Figure 18). According to their

desire, students are presented with easier/harder tasks and
more/less instruction.

Phase 2 holds five lessons (or ‘challenges’) covering a
summary of the learned concepts from phase 1 (algorithmic
thinking, pattern recognition, and abstraction) and tasks
related to events, coordinates, variables, iterations, and
conditionals.

Phase 3: Textual programming

In the third phase (see Figure 19), students are provided with
learning materials in Dodona.

Dodona is a textual programming learning environment
(see Figure 20) resembling a more traditional developer
environment (Van Petegem et al., 2022). It contains DPL-
features such as automatic programming assessment (label
pass/fail), advanced logging of student program submissions
and time on task, and the presentation of lesson materials in
programming with appropriate syntax highlighting (display-
ing components of code in colors according to categories of
terms).FIGURE 19. An overview of phase 3 of the DPL-track.

errors

This is an example of another error; can you solve the error?

Solution pageTask

FIGURE 20. An example task in Dodona.

DIFFICULTY DESIGN CHALLENGE DESIGN CHOICE FRAMEWORK

Challenging learning
material (Govender, 2006;
Jenkins, 2004).

Transitioning from visual to
textual programming

Scaffold students from using
code to creating code and
connect previous materials
in visual programming to
textual programming

Use-modify-create (Lee et al.,
2011) and PRADA (Dong et
al., 2019)

Large variation in previous
knowledge (Salac et al.,
2021).

Personalise learning mate-
rials according to previous
knowledge

Add system-controlled
cognitive adaptivity and
learner-controlled metacog-
nitive adaptivity

Vandewaetere and
Clarebout, 2014

Difficulty in teaching (Brown
et al., 2014)

Create materials to support
teachers' role

Add system-controlled
cognitive adaptivity and
learner-controlled metacog-
nitive adaptivity

Vandewaetere and
Clarebout, 2014

TABLE 1. Overview design decisions and frameworks used.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 84

Phase 3 holds four lessons (or ‘challenges’) covering all
concepts from Phase 1 together with Python concepts such
as ‘syntax’ and tasks related to basic functions such as print()
to display text, len() to measure the length of lists as well as
tasks related to debugging and variables.

The time to complete all three phases is estimated at four to
five hours, depending on the student’s prior knowledge and
interests.

DESIGN PROCESS AND DESIGN CHOICES

The Design Process

Designing learning activities was a collaboration with soft-
ware developers (from FTRPRF, Minecraft Education Edition,
and Dodona). They provided existing learning materials and
ideas, which were then substantially modified. For example,
the selected FTRPRF learning material was intended for
slightly younger students (around 7-10 years old) as it
originally held 12 lessons and more low-level programming
exercises. These lessons were shortened to four lessons while
learning activities were rewritten to be more suitable for our
target audience.

Design choices (see Table 1) are discussed in the following
section. After developing the prototype, teachers and stu-
dents evaluated it (see further in the failure analysis section).

Choices Based on Research Literature

Programming

Given the focus on the design challenges regarding the
difficult shift from visual to textual programming, we based
our scaffolding on previous efforts to scaffold from simple
to complex. For example, we used the ‘use-modify-create’
framework, which represents a pattern of engagement and
is often used as a basis for support in multiple programming
courses (Lee et al., 2011). This three-phased framework com-
prises a beginning phase in which students ‘use’ pre-built
blocks of code or applications. Over time, students move to
the second phase to ‘modify’ the visual programming cre-
ations with textual programming, usually by first changing
simple parameters. In doing so, they gain an understanding
of programming and develop new programming skills.
Finally, in the last phase, students ‘create’ new materials,
functions, or even artifacts. The three phases are based
on the premise that these aids for sequentially acquiring
knowledge, termed scaffolding, strengthen the acquisition
of programming and work to reduce anxiety for novice pro-
grammers (Lee et al., 2011). We applied the ‘use-modify-cre-
ate’ framework in the DPL-track to help students retain and
apply new knowledge while moving from visual to textual
programming language. When students enter the second
phase and open Minecraft Education Edition, they first
encounter visual programming tasks, in which they can use

pre-built blocks to construct a program (‘use’). After many
practice opportunities, students move on and encounter
hybrid programming tasks. These allow students to practice
and modify existing visual codes, by altering parameters
in the textual interface and demonstrating the similarities
between blocks and textual programming (‘modify’). After
Minecraft, students navigate to Dodona where they build
programs (‘create’). Following this structure, the DPL-track
provides scaffolding as described in the ‘use-modify-create’
framework.

Next to the ‘use-modify-create’ framework, we also selected
the Pattern Recognition, Abstraction, Decomposition,
Algorithms (PRADA) framework (Dong et al., 2019) which
aims to describe and clarify specific subskills of CT to
increase integration in K-12 classes. In the design, the
PRADA-framework was consulted to connect disparate
programming concepts and explain their use for students no
matter the language. The subskills in the PRADA-framework
are:

•	 Decomposition: Analysing a problem to break it down
into smaller parts.

•	 Pattern recognition: Recognizing patterns from data.
•	 Abstraction: Identifying the underlying principles that

generate observed patterns.
•	 Algorithms: Creating clear, step-by-step instructions for

solving problems.

These subskills were used to structure lessons in each of the
three phases by connecting previously understood visual
programming material (for example the coding of loops or
repetition of code—related to the subskill pattern recogni-
tion- in FTRPRF) to a new textual programming language
(loops in Dodona). As such, connections were made to ex-
plain syntax and useful commands in textual programming
languages with direct comparisons to previously learned
visual programming languages.

By consulting both frameworks during the design of tasks
and structure, the design principle ‘a gentle transition from
visual to textual programming’ was pursued.

DPL

Given the focus on the two design challenges regarding
‘personalization to meet differences in students’ knowledge
and interests’ and ‘supporting the teacher role’, we again con-
sulted literature to build on. To think about different types of
adaptivity for the key moments, we used the framework of
Vandewaetere and Clarebout (2014)—which describes four
dimensions of adaptivity. As we describe the outcome of the
design according to the framework, a summary is given: In
sum, adaptivity can differ according to target, method, time,
and source (Vandewaetere & Clarebout, 2014). With respect
to (a) target, the framework identifies targets of adaptivity

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 85

such as level of tasks, presentation format, or degree of
instruction. Regarding (b) method, different methods of
how adaptation is initiated are identified e.g., by the learner
(learner-controlled) or system (system-controlled), or both.
For (c) time, the framework refers to when the adaptivity
takes place, which can be before (static), during (dynamic)
the learning activity or both (dual pathway). Finally, (d)
the source relates to different origins of adaptivity such as
cognitive or metacognitive learning characteristics, but also
learner-system parameters such as time spent on a task.

To acknowledge students’ prior knowledge and interests
(beginners as well as experienced programmers), three key
moments (A, B, and C) are integrated which guide students
to personalized tracks. Key moment A (see Figure 21) focuses
solely on prior knowledge assessment (cognitive learner
parameter as the source of adaptivity) at the beginning of
the track (static adaptivity) and leads students to separate
tracks within the DPL-track in which they are provided with
different learning environments, support/instruction and
difficulty of tasks (adaptation of content, presentation and

4
7

Start

Finish

Static adaptivity: quiz to evaluate
prior programming knowledge.

Example question: What description is fitting for this program?

Description A <…>
Description B <…>
Description C <…>

I don’t know

What Robot did you get at the end of the quiz?

FIGURE 21. Key moment A within the DPL-track.

Start

FinishLearner-controlled adaptivity
Example question: Do you want some
more information about coordinates?

Additional
instructions and tasks

FIGURE 22. Key moment B and C within the DPL-track.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 86

support/instruction). Students cannot change this track
(program-controlled adaptivity).

As we aimed for a variation of adaptations (not only sys-
tem-controlled and focussed on cognitive learner param-
eters), key moments B and C (see Figure 22) were added
which hold metacognitive questions (source of adaptivity:
metacognitive learner parameters). If desired (learner-con-
trolled), students get both additional instructions and tasks
(adapted content and support/instruction) before moving
on to harder challenges. Therefore, both key moments
add to learner control for adaptivity in the DPL-track
(Vandewaetere & Clarebout, 2014).

By providing key moments both before (A) and during
the DPL-track (B and C) dual pathways and shared-control
adaptivity are pursued (see Vandewaetere & Clarebout,
2014). Besides the key moments, there are other features that
contribute to adaptivity. For example, the i-learn platform
contains a button that can be activated by students to
turn written text into audio (student-controlled adaptivity).
Another example is a feature within Dodona, which facili-
tates automatic programming assessment (program-con-
trolled). Personalization of tasks or support/instruction does
not only meet differences between students but can also
support teachers when teaching heterogeneous classes
(Holmes et al., 2018; Major & Francis, 2020). Tools can assist
teachers by immediately tailoring the learning process.
Furthermore, when collaboration or synergy occurs between
teachers and tools, students receive multiple forms of scaf-
folds which can enhance the learning process (Tabak, 2004).

By considering manifold adaptivity during the design of tasks
and structure, the design principles ‘personalize learning
experiences for students’ and ‘support teachers in their
teaching practice’ were pursued.

FAILURE ANALYSIS

Evaluation of the DPL-track

As the development of the DPL-track reflected DBR princi-
ples (in which “development-evaluation-refinement” is the
key development process), we focused heavily on evalua-
tion. In doing so, the goal was to improve the design both
motivational and functional by assessing seven aspects:

•	 General: How did they like the DPL-track?
•	 Learning content: What did they think about the provid-

ed theory?
•	 Tasks: What did they think about the provided tasks?
•	 Clarity of learning goals: Did they think the main purpose

of the DPL-track is clear enough?
•	 Support/instructions: What did they think of the provided

support and instruction?

•	 Evaluation: How did they experience the quiz questions
during the key moments?

•	 Personalization: How did they like the built-in-adaptivity?

We tested the track in two phases: first with students, and
then with teachers. We mainly wanted to see if the DPL-track
matched teacher and student expectations, which was
a concern given the variation in previous programming
experience. With 17 students, we observed their use of the
DPL-track, asked ad-hoc questions during their use, and
then conducted two focus groups guided by questions on
the previous seven evaluation aspects (See Appendix A for
interview protocol). One focus group had four high-skilled
students, and another had thirteen low to medium-skilled
students. Students were enrolled in the first grade of
secondary education and were majority male (only three
students were female). These students were recruited from
an after-school coding camp and had diverse levels of
programming knowledge, skills, and interests.

In the second cycle, we individually interviewed 9 ICT/STEM
teachers after they evaluated the DPL-track on their own.
Interview questions again followed the major themes previ-
ously mentioned. For interview protocol, see Appendix A. All
teachers received a dummy i-Learn student account to test
the DPL-track and a digital manual encompassing all practice
and instructions from the track. The selection of teachers
was also diverse: One highly experienced teacher frequently
taught programming and even developed a syllabus himself.
He was categorized as high-skilled. Six teachers had some
programming experience and were accordingly categorized
as medium-skilled. Finally, two teachers with no program-
ming experience were categorized as low-skilled.

Evaluation by students

Hereafter, we describe how students evaluated the design
along the previous themes.

General Evaluation

We observed that students experienced the DPL-track as en-
gaging, supportive, and challenging. They confirmed these
positive perceptions multiple times during the discussions.

Learning Content

Low-skilled students (who start in FTRPRF) liked the engag-
ing story of the space mission which guided them through
the learning content. Students applauded FTRPRF for the
clear explanations and summarizations of basic theoretical
concepts. However, as a point of improvement, students
explained that a video or more visuals should reinforce textu-
al explanations of theoretical concepts, specifically abstract
concepts (such as algorithmic thinking). The medium- and
high-skilled students (which started in Minecraft) indicated
explanation and repetition of concepts could be better

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 87

and more frequent (e.g., proper explanation of ‘textual and
visual programming’, ‘syntax’). In Dodona, the high-skilled
students sometimes struggled with learning new functions.
Particularly in the last exercise, which required students to
apply a variety of previously learned functions. We saw in
log data that the students submitted 20 coded programs
in total, 9 of which were syntactically correct, but failed
to use all learned functions at the same time. With simple
reminders of functions, such as the str() function, and group
collaboration, each student eventually succeeded in the
exercise. As such, the extra focus should go to introducing
-and especially repeating- new functions (e.g., ‘Len’, ‘input’)
and function combinations since some explanations were
sometimes too abstract.

Tasks

Task-related feedback was positive. Low-skilled students
perceived FTRPRF as a supportive learning tool that they
enjoyed practicing. All students were positive about the
textual programming challenges in Minecraft (switching
between block to text-based programming) as they ac-
knowledged writing textual code on their own would be too
difficult. Concerning Dodona, high-skilled students found
the tasks very challenging. Sometimes even too hard. During
those tasks, we observed the occurrence of spontaneous
group work, especially for debugging: students helped each
other to solve bugs and read code. This is positive since it
is reminiscent of real-world programming projects (e.g.,
software engineering, scientific code analysis, etc.).

Clarity of Learning Goals

When discussing clarity of learning goals, students were
often unaware of what they were learning and why the tools
were selected for the acquisition of programming. We had to
elaborate on this topic and challenge them to reflect on it.
Once we clarified the learning goals, students could identify
why we selected the tools. As one student clarified during
the discussion: “I like the fact that we go from a 2D world in
FTRPRF to a 3D world in Minecraft, it is harder to code but as
you grow, this challenge is very welcome.” Another student
positively elaborated on the gap between visual and textual
programming: “I cannot write textual code on my own. I
become easily frustrated. So, it is really nice that we don’t
have to do that, and we can always rely on the blocks to
learn more about Python.”

Instructions and Support

Students indicated instruction/support should be increased.
For technical support, they would like more introductory
videos on how to engage with i-Learn and the learning
environments (e.g., setting up a Minecraft world). Students
found the combination of instructional pictures and videos,
as applied in the Dodona track, most useful. For instructional

support, students liked videos about how to build code,
how to debug, and how to solve tasks. However, students
indicated that programming jargon, such as bytes and
syntax, lacked proper explanation. For instructional support,
it was noticed that students’ freedom of choice’ was not
always encouraged enough. For example, one student asked
if he could already use loops in FTRPRF. Another student
asked if he could pick another color to build a compass in
the Minecraft world. Nonetheless, we also observed students
taking advantage of the ‘freedom of choice’ as they were, for
example, wandering off or using their functions to alter the
environment which made it hard to continue with the other
tasks. Next to general instructional support, we also reflected
on task solutions provided throughout the DPL-track. Most
students used the solutions responsibly. In Dodona, students
liked the automatic feedback feature (which visualizes
correct/incorrect and error types). Students repeatedly used
this feature, with multiple submissions on every exercise to
test newly written code. However, concrete solutions were
missing. Students suggest this could be included as a last
slide at the end of every mini-lesson.

Evaluation

For evaluation, all students completed key moment A. Log
data from the low- and medium groups (n=13) showed that
seven started in the first phase and six in the beginning of
phase 2. For the high-skilled group, who were supposed to
have prior knowledge about Python, two were categorized
as high-skilled and two were not. Yet, together with the
observations, we concluded the test made a good predic-
tion, as they were less skilled programmers and often had to
rely on the two stronger students to debug code and answer
programming questions. During the discussion, the students
told us they really liked the robots that were assigned to
them after the quiz (not knowing which scores they resem-
bled). They also liked the other key moments but did not pay
much attention to them as they thought the key moments
were just regular quiz questions. Log data indicated students
engaged positively with the self-evaluating questions: we
had no cases of students who overestimated themselves
in ‘key moments B or C’ and ended up in improper tracks.
Evaluation by teachers

Teachers had two weeks to go through the complete
DPL-track via a dummy i-Learn student account. During the
test weeks, we remained available for support. All difficulties,
questions, and suggestions as communicated by the teach-
ers were registered. Finally, the teachers were invited for an
individual interview (approximately 45 minutes). The same
topics used for student evaluations were targeted, including
the additional topic of adaptivity. In doing so, we wanted
to increase understanding of how teachers perceived the
DPL-track, both motivational and functional.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 88

General Evaluation

Teachers were enthusiastic about the DPL-track and con-
sidered it useful. The the built-in adaptivity was especially
positively valued.

Theory

Teachers (often medium-skilled) appraised the selection of
theory. They applauded the sequence, flow, and generally
growing difficulty of concepts. Apart from small content
remarks -such as the replacement of difficult programming
verbiage or simplification of definitions- most teachers
found the theory clearly explained. However, not all teachers
agreed on the theory selection: the two low-skilled teachers
found some content too challenging (e.g., text-based
programming concepts were found to be too difficult), while
the high-skilled teacher was convinced that the difficulty
level could be even extended. All teachers expressed the
need for more visuals (e.g., pictures and videos) and repeti-
tion of new concepts.

Tasks

Teachers praised the alternation and variation from visual
to textual programming. Some were already familiar with
visual learning environments, such as Scratch (FTRPRF), but
could not connect to more abstract text-based (or hybrid)
program environments. They were happy to get to know
new tools via the DPL-track. Many teachers provided us with
some helpful refinement suggestions to optimize tasks:
One teacher shared a self-made Minecraft task concerning
‘variables’ which was a better fit than the original task in the
DPL-track. Another teacher suggested the addition of text-
based Minecraft challenges at the very end of the DPL-track
for students who finish early. One teacher also suggested
adding more context/story to the Dodona track and helped
with the development of an engaging story, which also fit
the abstract characteristics of the tool. Most teachers found
the tasks to be just the right amount, nicely developed, and
complementary to learning subjects from other courses
(e.g., coordinates within mathematics courses). However,
not all teachers liked the distribution of block-based and
text-based programming tasks. Again, two sets of opinions
could be noticed: The high-skilled teacher would reduce the
visual programming part, while the low-skilled and some
medium-skilled teachers would expand it and reduce textual
programming tasks.

Clarity of Learning Goals

Teachers considered the learning objectives to be transpar-
ent enough. As one teacher said: students will be aware of
the main objective, i.e., learning to program, without having
to focus on all the sub-learning objectives (such as learning
about new theoretical concepts). Some teachers suggested
adding a comprehensive summary (with sufficient visualiza-
tions) about the main learning objectives at the beginning

and the end of the DPL-track, as they noticed from their
practice that this helps to make the learning objectives extra
clear.

Instructions and Support

Regarding instructions and support comments frequently
mentioned: (a) Students should be provided with more
technical support about how to open and use tools. (b) The
presumption that all categorized low-skilled students know
nothing about programming can demotivate the ones who
know some basics. For example, if students know something
about loops, they are not encouraged enough to use loops
in the first tasks of Phase 1. (c) Teachers liked the instruction
videos, as they were found to be clear and on a student
level. They would like to see more of them throughout the
DPL-track. Next to these three suggestions, teachers were
also asked to give feedback on the amount of provided task
solutions. Opinions were two-fold: some teachers found
them to be useful and applauded the gradual decrease
towards the end of the DPL-track. They value task solutions
as students learn a lot from them, especially when building
codes. Some teachers, however, were concerned students
would take advantage of the provided solutions, i.e., co-
py-paste to solve tasks. For them, the solutions/examples are
too easily within reach. This raised concerns about ‘gaming
the system’ (cheating). One even suggested a point system
to ‘punish’ students when they consult solutions.

Evaluation

Concerning evaluation, teachers shared similar thoughts: (a)
key moment A is well constructed. They said the questions
are relevant and nicely sequenced. Teachers liked the first
question where students estimated their level, but also liked
that this did not influence the score to avoid mismatch. One
teacher referred to the risk of the Dunning-Kruger effect,
which comprises an overestimation of skills due to a lack of
knowledge. During the questions, low-skilled students are
not discouraged as the difficulty gets acknowledged (i.e.,
“Do not worry if you cannot solve this puzzle. This is normal if
you have no/little programming experience!”). Not showing
the scores was also found to be positive. Instead, the robots
were acknowledged as a fun way to reward and engage the
students. (b) Teachers explained they missed the opportu-
nity to learn from key moment A. They recommend going
back to specific questions when the corresponding topic
is covered, as an opportunity to learn and acknowledge
progress. In addition, most also expressed the need for a final
key moment as an end evaluation.

Adaptivity

Finally, adaptivity was considered valuable in the DPL-track
as all participants reported on the same challenge: finding
learning material fitting for heterogeneous student groups
with different programming knowledge, competencies,

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 89

and motivations. They like that the DPL-track encourages
and engages students as it not only helps the low-skilled
students or challenges high-skilled students, but also that it
provides some extra time for the teacher to further manage
and guide the class. Teachers liked the student-controlled
adaptivity (self-evaluation key moments B and C). However,
most stated that system-controlled key moments (more
specific questions to evaluate knowledge) should follow up
the self-evaluation to correct for self-overestimation of stu-
dents. Although the DPL-track only holds three key moments
leading to adaptivity, many teachers explained this already
exceeds expectations. They state that more moments would
maybe become a burden (instead of supportive), as they
would lose an overview of all tracks.

Reflection on Evaluation

To optimize the DPL-track, we compared the student
discussions, observations, and log data to the teacher
interviews, noting similarities for improvement. In doing so,
six concrete plans for refinement were decided on and three
design dilemmas were unraveled. These refinements do not
contradict the major design principles (ease the transition
from visual to textual programming, personalize learning
experiences, and support the teachers’ role), but concern the
operationalization of these design principles. An overview
of the plans of refinement related to teachers’ and students’
comments can be found in Appendix B.

Plans for refinements

The plans for refinement comprise five smaller functional
design changes and one more fundamental change in struc-
ture. Starting with the smaller changes, the first improve-
ment goal is to provide more balance between textual and

visual support/instruction for practice and instruction. We
will reinforce several parts of the DPL-track by adding supple-
mentary videos and images. The second improvement goal
includes more repetition and clarification of theoretical
concepts, especially in Phase 2 and 3. In addition, program-
ming-specific vocabulary without proper explanations will
also be removed or adjusted. The third improvement goal
relates to the clarification of learning goals. A brief overview
of (a) explicit learning goals, (b) upcoming software tools and
(c) their added value will be added at the beginning and end
of the DPL-track. The fourth improvement goal will address
the challenge of combining several tools (BookWidgets,
FTRPRF, Minecraft, Dodona) in one track (in i-Learn). Students
are expected to alternate between different screens/tabs.
This can be a problem for students with, for example, low ICT
skills. More technical support will be provided during transi-
tions. The fifth improvement goal relates to key moment A:
Currently, there is a missed learning opportunity, as students
are not provided with answers or feedback when answering
quiz questions. This was a deliberate design choice, as
feedback (alongside corresponding scores) could hamper
the unobtrusive guidance to a personalized DPL-track and
therefore also demotivate beginning students with no
programming knowledge. An effort will be made to insert
some ‘recall’ learning moments (that also act as feedback)
throughout the DPL-track.

The last improvement goal comprises a more fundamental
change in the structure of the DPL-track, more specifically
regarding key moments B and C. The teachers appreciated
these students’ self-evaluation moments (student-controlled
adaptivity) but missed quiz questions for verification (sys-
tem-controlled adaptivity). This verification should correct
for students’ self-overestimation (see also Dunning-Kruger

FIGURE 23. Adjustment for next iteration—addition of an extra key moment after key moment B.

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 90

effect) and assess whether students’ programming skills are
sufficient to proceed. We will add two additional key mo-
ments (one after key moment B and one after key moment
C; see Figure 23) to check whether students who do not
wish to receive extra information or tasks, really understand
the learning content. If not, they will also go through extra
instruction and tasks. Thus, these additional key moments
will contain system-controlled adaptivity based on cog-
nitive learner parameters. In doing so, we will create two
shared-controlled adaptivity sets.

Three design dilemmas

In addition to the refinement plans, some design dilemmas
are acknowledged. The first dilemma relates to differences
between teachers’ programming knowledge and their
expectations: higher-skilled teachers can support students
during more challenging tasks, while lower-skilled teachers
cannot and therefore expect easier tasks. Thus, their pro-
gramming knowledge influences the difficulty of students’
tasks and instructions. Since most participating teachers
were medium-skilled, we kept the level of difficulty for
further iterations. However, we acknowledge that even when
using DPL-tools -where the level of tasks is already adapted
to students’ knowledge-, there can be a dilemma of selecting
tasks and instructions as different expectations can still
occur.

The second dilemma concerns the provision of solutions at
the end of every task. Some teachers valued it, while others
did not (e.g., difficult to prevent students from gaming the
system). This dilemma relates to instructional disobedience,
described by Elen (2020) as a phenomenon that “occurs
when learners do not act as expected from them in a
learning environment.” As reducing student control may not
fully counter instructional disobedience (Elen, 2020) and
the emphasis for this design was on learning through the
act of programming, we decided to keep the solutions in
the DPL-track as a learning tool instead of reducing/limiting
them. We will, however, foresee more instructions related to
the goal of the solutions, to optimize understanding (and
acceptance) of their instructional expectations. Nevertheless,
we understand that it is unrealistic to assume only instruc-
tions elicit exclusively compliant students, and therefore
acknowledge providing solutions implies an extra responsi-
bility for students (to not misuse them) and teachers (check
for students’ misuse).

The third dilemma - also related to instructional disobedi-
ence - pertains to the freedom of choice within program-
ming tasks (e.g., coding with different blocks and colors)
and learning environments, especially within Minecraft:
education edition (e.g., wandering around in the never-end-
ing world. On multiple occasions, students are encouraged
to try things out. However, instructionally encouraging
students’ freedom of choice can invoke a risk of instructional

disobedience. Again, this causes extra management chal-
lenges for teachers. We value freedom of choice during
programming as it can boost students’ motivation (Autio et
al., 2011). To avoid unmotivated starters, more differentiation
regarding instructions will be added (e.g., “If you know how
to use loops, feel free to use them!” or “You can also choose
a block and color of your own choice”). However, students
will also be encouraged to focus and follow instructions by,
for example, changing the mode of Minecraft from ‘creative’
to ‘flat’ to avoid distraction. In this ‘flat’ mode, students’-built
objects do not interfere with NPC’s or other pre-built objects.

CONCLUSION

General

Programming proliferates in education. However, it is not
the easiest subject to teach and learn. Students often
struggle to move from visual programming to textual
programming and there are great differences between their
programming knowledge and competencies. Likewise,
teachers find it difficult to teach this relatively new subject
to heterogeneous classes. As these challenges mirror the
trends in the greater educational landscape, this design case
focused on the design and development of a DPL-track with
a twofold basis: programming and DPL. Overall, the three
major design principles (ease the transition from visual to
textual programming, personalize learning experiences,
and support teachers’ roles) were well received: Results
indicate a variety of students experienced the DPL-track as
engaging, supportive, and challenging. They acknowledged
the value of hybrid programming and understood the
benefits of using it to bridge the gap between programming
languages. Teachers were also generally enthusiastic about
the DPL-track. Of note, the built-in adaptivity received many
positive comments, as it is found to be generally difficult to
match different programming tasks to different students
within a diverse class group. Further, we present findings and
reflections for practical and theoretical stakeholders.

SIGNIFICANCE

The DPL-tool

The development of the DPL-track was centered around
the use of existing tools and balanced theoretical choices
with practical considerations from teachers and students.
Using existing tools was a conscious decision. Software
developers’ perspectives and experience helped inform the
design, which likely improved ease of use and usefulness
for teachers and students. Nevertheless, these perspectives
were also grounded in theory: while we used materials and
tools offered by the software developers to teach program-
ming, we also substantially changed the structure/organi-
zation to adhere to the ‘use-modify-create’ strategy and the
PRADA-framework (Lee et al., 2011; Dong et al., 2019). These

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 91

adjustments were supplemented with DPL-adaptations from
the framework of Vandewaetere and Clarebout (2014). We
considered these theoretical perspectives as complemen-
tary, as CT perspectives provided the thought processes
needed in using programming in new challenges, program-
ming education perspectives provided structures with which
to learn programming, and DPL-perspectives provided the
ability to proactively support students at every level. This
combination resulted in a holistic, personalized design for
teachers and students to test. Often, teachers receive few
opportunities to be co-designers of educational technology.
They use existing, pre-developed tools to teach, and adapt
their pedagogy and the way the technology is used to suit
their ends (Bunting et al., 2021). However, teacher-developer
collaborations could benefit the development of innovations
and encourage teachers to implement the innovation in
their classrooms (Groff, 2017). In light of these considerations,
we -as educational designers- will focus even more on
collaboration with teachers in our future design efforts.

Insights as developers of educational technology

Based on the development process, we espouse the utility
of evaluations with teachers and students. In this design
case, it was very valuable to see the track in action during
observation moments. The evaluative observations and
discussions became valuable ‘co-learning’ moments. The
discussion and interviews revealed differing expectations
and needs, a common consequence of human-centered
design approaches (Dimitriadis et al., 2021). Calls to include
teachers and students through co-development in educa-
tional technology are ever present (Dimitriadis et al., 2021). In
addition, we found the use of observations very interesting,
as they are very valuable but often overlooked in the cre-
ation of educational technology. In this design case, formal
and informal observations gave insights into the needs of
users to optimize the user experience, providing evidence
for assessments and challenges that might be missed by a
teacher. When involving teachers into the DPL-track develop-
ment, it showed that they applauded the adaptivity as it was
supportive for them, especially to manage differences within
student groups.

Insights from educators of programming

Textual programming skills are often difficult to acquire (and
teach). In this respect, we gained insights from the partic-
ipating programming teachers: (a) Using hybrid program-
ming environments can benefit students when learning
textual programming. In our case, the hybrid programming
tool demonstrated its utility. Students reported they enjoyed
the support of the visual blocks to get to know textual
programming. (b) DPL-tools can support teachers who must
teach heterogeneous student groups. However, based on
discussions with teachers and software developers, it was
found that there are only a few DPL-tools available in the

context of programming. In anticipation of these tools, we
will continue to provide adaptivity using learning manage-
ment systems, as we did with the i-Learn platform. As the
DPL-track demonstrated, the diversity of tools and DPL can
work in combination to ensure engagement and appropriate
challenges for students with different levels of knowledge.

Next Steps

Looking forward to the next iteration, we have set up
an additional follow-up study comprising a pedagogical
intervention regarding the implementation of the DPL
track in different classroom settings (Van Schoors et al.,
2023b). In doing so, we wanted to explore and reflect upon
teachers’ behaviour and actions while using the DPL track.
The findings of interviews and observations will act as a new
iteration to further evaluate and optimise the DPL track.

ACKNOWLEDGEMENTS
This study was made possible by the i-Learn project (Grant/Award
number: AH.2019.051) which aims to make an open portal that
supports DPL-tools for Flemish primary and secondary schools. We
thank FTRPRF, Minecraft Education Edition, and Dodona for the
support during this study. We also thank the participants who took
part in this study. All figures from i-Learn, FTRPRF, Minecraft and
Dodona were used with permission.

REFERENCES
Autio, O., Hietanoro, J., & Ruismäki, H. (2011). Taking part in
technology education: Elements in students’ motivation.
International Journal of Technology and Design Education, 21(3),
349–361. https://doi.org/10.1007/s10798-010-9124-6

Bennedsen, J., & Caspersen, M. E. (2019). Failure rates in introductory
programming: 12 years later. ACM Inroads, 10(2), 30-36. https://doi.
org/10.1145/3324888

Bernacki, M.L., Greene, M.J. & Lobczowski, N.G. (2021). A systematic
review of research on personalized learning: Personalized by
whom, to what, how, and for what purpose(s)?. Educational
Psychology Review, 33(4), 1675–1715. https://doi.org/10.1007/
s10648-021-09615-8

BookWidgets. (n.d.). The perfect content creation tool for teachers in
the classroom. https://www.bookwidgets.com/

Brown, N. C. C., Sentance, S., Crick, T., & Humphreys, S. (2014).
Restart: The resurgence of computer science in UK schools. ACM
Transactions on Computing Education, 14(2), 9:1–9:22. https://doi.
org/10.1145/2602484

Bruce, K. B. (2018). Five big open questions in computing education.
ACM Inroads, 9(4), 77–80. https://doi.org/10.1145/3230697

Bunting, L., af Segerstad, Y. H., & Barendregt, W. (2021). Swedish
teachers’ views on the use of personalised learning technologies
for teaching children reading in the English classroom. International
Journal of Child-Computer Interaction, 27, 100236. https://doi.
org/10.1016/j.ijcci.2020.100236

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 92

Capovilla, D., Berges, M., Mühling, A., & Hubwieser, P. (2015).
Handling heterogeneity in programming courses for freshmen.
2015 International Conference on Learning and Teaching in Computing
and Engineering, 197-203. https://doi.org/10.1109/LaTiCE.2015.18

Chen, C., Haduong, P., Brennan, K., Sonnert, G., & Sadler, P. (2019).
The effects of first programming language on college students’
computing attitude and achievement: A comparison of graphical
and textual languages. Computer Science Education, 29(1), 23–48.
https://doi.org/10.1080/08993408.2018.1547564

Dimitriadis, Y., Martínez-Maldonado, R., & Wiley, K. (2021).
Human-centered design principles for actionable learning
analytics. In T. Tsiatsos, S. Demetriadis, A. Mikropoulos, & V.
Dagdilelis (Eds.), Research on E-Learning and ICT in Education:
Technological, Pedagogical and Instructional Perspectives (pp.
277–296). Springer International Publishing. https://doi.
org/10.1007/978-3-030-64363-8_15

Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., Joshi, D.,
Robinson, R., & Andrews, A. (2019). PRADA: A practical model for
integrating computational thinking in K-12 education. Proceedings
of the 50th ACM Technical Symposium on Computer Science Education,
906–912. https://doi.org/10.1145/3287324.3287431

Elen, J. (2020). “Instructional disobedience”: A largely neglected
phenomenon deserving more systematic research attention.
Educational Technology Research and Development, 68(5), 2021-2032.
https://doi.org/10.1007/s11423-020-09776-3

Falkner, K., Vivian, R., & Falkner, N. (2015, January). Teaching
computational thinking in k-6: The cser digital technologies mooc.
Proceedings of the 17th Australasian computing education conference.
160, 63-72. https://www.researchgate.net/publication/277022717_
Teaching_Computational_Thinking_in_K-6_The_CSER_Digital_
Technologies_MOOC

FitzGerald, E., Kucirkova, N., Jones, A., Cross, S., Ferguson, R.,
Herodotou, C., Hillaire, G., & Scanlon, E. (2018). Dimensions of
personalisation in technology-enhanced learning: A framework
and implications for design: Dimensions of personalisation in TEL.
British Journal of Educational Technology, 49(1), 165–181. https://doi.
org/10.1111/bjet.12534

Flemish Government. (2019). Educational goals: Secondary
education - 1st grade - after modernization. Educational
Goals - Outcomes. https://onderwijsdoelen.be/
modernisatie?onderwijsstructuur=SO_1STE_GRAAD

Flemish Parliament. (2018). Draft decree: on educational objectives for
the first grade of secondary education. http://docs.vlaamsparlement.
be/pfile?id=1430279

Gomes, A. J., Santos, A. N., & Mendes, A. J. (2012). A study on
students’ behaviours and attitudes towards learning to program.
Proceedings of the 17th ACM annual conference on Innovation and
technology in computer science education, 132-137. https://doi.
org/10.1145/2325296.2325331

Govender, I. (2006). Learning to program, learning to teach
programming: Pre- and in-service teachers’ experiences of an object-
oriented language [Unpublished doctoral dissertation]. University of
South Africa. http://hdl.handle.net/10500/1495

Groff, J. (2017). Personalized learning: The state of the
field & future directions. Center for Curriculum Redesign.
https://curriculumredesign.org/wp-content/uploads/
PersonalizedLearning_CCR_April2017.pdf

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review
of the state of the field. Educational Researcher,42(1), 38–43. https://
doi.org/10.3102/0013189X12463051

Holmes, W., Anastopoulou, S., Schaumburg, H., & Mavrikis, M. (2018).
Technology-enhanced personalised learning: Untangling the evidence.
Robert Bosch Stiftung GmbH, Stuttgart. http://www.studie-
personalisiertes-lernen.de/en/

Homer, M., & Noble, J. (2017). Lessons in combining block-based
and textual programming. Journal of Visual Languages and Sentient
Systems, 3(1), 22–39. https://doi.org/10.18293/VLSS2017-007

Kuhn, J. (2018). Minecraft: Education Edition. CALICO Journal, 35(2),
214–223. https://doi.org/10.1558/cj.34600

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J.,
Malyn-Smith, J., & Werner, L. (2011). Computational thinking
for youth in practice. ACM Inroads, 2(1), 32–37. https://doi.
org/10.1145/1929887.1929902

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning
of computational thinking through programming: What is next
for K-12? Computers in Human Behavior, 41, 51–61. https://doi.
org/10.1016/j.chb.2014.09.012

Major, L., & Francis, G. A. (2020). Technology-Supported Personalised
Learning: A Rapid Evidence Review. Zenodo. https://doi.org/10.5281/
ZENODO.4556925

McKenney, S. E., & Reeves, T. C. (2012). Conducting educational design
research. Routledge.

McKenney, S., & Reeves, T. C. (2014). Educational design research. In
J. Spector, M. Merril, J. Elen, & M. Bishop (Eds.), Handbook of research
on educational communications and technology (pp. 131-140).
Springer.

Myers, B. A. (1990). Taxonomies of visual programming and program
visualization. Journal of Visual Languages & Computing, 1(1), 97–123.
https://doi.org/10.1016/S1045-926X(05)80036-9

Noone, M., & Mooney, A. (2018). Visual and textual programming
languages: A systematic review of the literature. Journal of
Computers in Education, 5(2), 149–174. https://doi.org/10.1007/
s40692-018-0101-5

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas.
Basic Books.

Robinson, W. (2016). From Scratch to Patch: Easing the blocks-
text transition. Proceedings of the 11th Workshop in Primary
and Secondary Computing Education, 96–99. https://doi.
org/10.1145/2978249.2978265

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2011).
Teaching programming in secondary school: A pedagogical
content knowledge perspective. Informatics in Education, 10(1),
73-88. https://www.ceeol.com/search/article-detail?id=69618

https://doi.org/10.5281/ZENODO.4556925
https://doi.org/10.5281/ZENODO.4556925

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 93

Salac, J., Thomas, C., Butler, C., & Franklin, D. (2021, March).
Supporting diverse learners in K-8 computational thinking
with TIPP&SEE. Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, 246-252. https://doi.
org/10.1145/3408877.3432366

Sands, P., Yadav, A., & Good, J. (2018) Computational thinking in
K-12: In-service teacher perceptions of computational thinking. In
M.S. Knine (Ed.), Computational thinking in the STEM disciplines (pp.
151-164). Springer.

Tabak, I. (2004). Synergy: A complement to emerging patterns
of distributed scaffolding. Journal of the Learning Sciences, 13(3),
305–335. https://doi.org/10.1207/s15327809jls1303_3

Tedre, M., & Denning, P. J. (2021). Computational Thinking: A
Professional and Historical Perspective. In Computational Thinking in
Education (pp. 1-17). Routledge.

Tóth, T., & Lovászová, G. (2018). On Difficulties with Knowledge
Transfer from Visual to Textual Programming. DIVAI 2018, 379-386.
https://conferences.ukf.sk/index.php/divai/divai2018/paper/
view/2465

Tsai, C. Y. (2019). Improving students’ understanding of basic
programming concepts through visual programming language:
The role of self-efficacy. Computers in Human Behavior, 95, 224-232.
https://doi.org/ 10.1016/j.chb.2018.11.038

Van den Akker, J. (1999). Principles and methods of development
research. In J. van den Akker, R. M. Branch, K. Gustafson, N.
Nieveen, & T. Plomp (Red.), Design Approaches and Tools
in Education and Training (pp. 1–14). Springer. https://doi.
org/10.1007/978-94-011-4255-7_1

Van Petegem, C., Deconinck, L., Mourisse, D., Maertens, R., Strijbol,
N., Dhoedt, B., De Wever, B., Dawyndt, P., & Mesuere, B. (2022). Pass/
fail prediction in programming courses. Journal of Educational
Computing Research. https://doi.org/10.1177/07356331221085595

Van Schoors, R., Elen, J., Raes, A., & Depaepe, F. (2021). An overview
of 25 years of research on digital personalised learning in primary
and secondary education: A systematic review of conceptual
and methodological trends. British Journal of Educational
Technology, 52(5), 1798-1822. https://doi.org/10.1111/bjet.13148

Van Schoors, R., Elen, J., Raes, A., Vanbecelaere, S., & Depaepe,
F. (2023a). The Charm or Chasm of Digital Personalized
Learning in Education: Teachers’ Reported Use, Perceptions and
Expectations. TechTrends, 67(2), 315-330. https://doi.org/10.1007/
s11528-022-00802-0

Van Schoors, R., Elen, J., Raes, A., & Depaepe, F. (2023b). Tinkering the
Teacher–Technology Nexus: The Case of Teacher-and Technology-
Driven Personalisation. Education Sciences, 13(4), 349. https://doi.
org/10.3390/educsci13040349

Vandewaetere, M., & Clarebout, G. (2014). Advanced technologies
for personalized learning, instruction, and performance. In J. M.
Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Red.), Handbook of
Research on Educational Communications and Technology (pp.
425–437). Springer. https://doi.org/10.1007/978-1-4614-3185-5_34

Wing, J. M. (2006). Computational thinking. Communications
of the ACM, 49(3), 33-35. https://dl.acm.org/doi/
fullHtml/10.1145/1118178.1118215?casa_token=f6WtosMl8VoAAA
AA:ZMhHdUvKpjLF-1oFDwMSOD-Xz89DPQiZGo4yXZfYc4Ri2FIqcpq
UYZatexfpGZuGvPE5KhWokd8twb0

Xie, H., Chu, H. C., Hwang, G. J., & Wang, C. C. (2019). Trends and
development in technology-enhanced adaptive/personalized
learning: A systematic review of journal publications from 2007 to
2017. Computers & Education, 140, 103599. https://doi.org/10.1016/j.
compedu.2019.103599

https://doi.org/10.1007/978-94-011-4255-7_1
https://doi.org/10.1007/978-94-011-4255-7_1
https://doi.org/10.1177/07356331221085595
https://doi.org/10.1111/bjet.13148
https://doi.org/10.1007/s11528-022-00802-0
https://doi.org/10.1007/s11528-022-00802-0
https://doi.org/10.3390/educsci13040349
https://doi.org/10.3390/educsci13040349

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 94

APPENDIX A

Overview of discussion topics for students

Topic Exemplary questions

(1) General How did you like the learning trajectory? Are some things left unclear? Did
you notice mistakes? Would you do things differently?

(2) Learning content What did you think of the explanations of concepts such as decomposition,
algorithmic thinking

(3) Tasks What did you think about the tasks? Were they too easy/hard? Did you enjoy
solving them? Did you expect other tasks?

(4) Clarity of learning goals What could be the main purpose of this learning trajectory? In what way do
these tools contribute to your learning?

(5) Support/instructions What did you think about the supporting videos/tips/solutions during the
learning trajectory? How did you use them?

(6) Evaluation What is your opinion about the beginning test? What did you think about
keymoments A/B/C?

Overview of discussion topics for teachers

Topic Exemplary questions

(1) General How did you like the learning trajectory? What do you think about the length?
Did you notice mistakes? Would you do things differently? How do you think
students will like it?

(2) Theory What did you think of the theory we provide to the students? Is it broad
enough? Would you add/remove certain concepts? Is there a good sequence of
theory?

(3) Tasks What did you think about the tasks in general? Were they too easy/hard? Did
you expect other tasks? Would you use a different didactical approach to teach
programming?

(4) Clarity of learning goals Do you think the main purpose of this learning trajectory is clear for the
students? Would you change anything with this respect?

(5) Support/instructions What did you think about the supporting videos/tips/solutions during the
learning trajectory?

(6) Evaluation What is your opinion about the beginning test? What did you think about
keymoments A/B/C? Would you add another evaluation moment on any given
moment in the learning track?

(7) Adaptivity How do you like the built-in-adaptivity? Is it sufficient? Would you change
anything about the keymoments to influence the adaptivity? Would you
increase adaptivity?

IJDL | 2024 | Volume 15, Issue 1 | Pages 74-95	 95

APPENDIX B

Overview plans for refinement based on teachers’ and students’ feedback.

Topic Teacher Insights Plans for refinements and design dilemmas

Theory and learning
content

Selection of theory was positively regarded,
but perceptions of low- and high-skilled
teachers differed. Students reported the
need for more visuals reinforcing abstract
concepts. At the blended and textual
programming levels, more explanation and
repetition are needed.

- More balance between textual and
visual support/instruction for practice
and instruction.

- More repetition and clarification of
theoretical concepts, especially in
Phase 2 and 3.

Tasks Teachers generally thought tasks were
sufficient, however, some teachers differed
in their suggestions depending on their skill
level. Students found textual programming
tasks challenging.

- More balance between textual and
visual support/instruction for practice
and instruction.

Clarity of learning
goals

Teachers thought that learning objectives
were clear but would like repetitional
summaries of goals during the track for
further clarity. The learning goals had to be
clarified for the students as they were
rather unaware.

- clarification of learning goals. A brief
overview of (1) explicit learning goals,
(2) upcoming software tools and (3)
their added value will be added at the
beginning and ending of the DPL-track.

Support/instructions Teachers were unsure about solutions
throughout the learning track. They also
expected a lot of technical issues due to
the use of different tools. Additionally, they
were worried about ‘gaming the system’.
Students discussed ‘freedom of choice’.

- Students are expected to alternate
between different screens/tabs. This
can be a problem for students with, for
example, low ICT-skills. More technical
support will be provided during
transitions.

 Evaluation Teachers would like a call-back moment
with regard to quiz questions of key
moment A, as well as a final evaluative
moment as an end evaluation. Evaluation
accurately sorted students into skill groups.
Students also felt positively about the
evaluations.

- Currently, there is a missed learning
opportunity, as students are not
provided with answers or feedback
when answering quiz questions. This
was a deliberate design choice, as
feedback (alongside corresponding
scores) could hamper the unobtrusive
guidance to a personalised DPL-track
and therefore also demotivate
beginning students with no
programming knowledge. An effort will
be made to insert some ‘recall’
learning moments (that also act as
feedback) throughout the DPL-track.

Adaptivity Adaptivity was lauded by all teachers,
however, teachers also asked for system-
controlled adaptive moments after learner-
controlled moments.

- two additional key moments (one after
key moment B and one after key
moment C; see figures 21 and 22)
were added to check whether students
who do not wish to receive extra
information or tasks, really understand
the learning content. If not, they will
also go through extra instruction and
tasks. Thus, these additional key
moments will contain system-
controlled adaptivity based on
cognitive learner parameters. In doing
so, we will create two shared-
controlled adaptivity sets.

