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Due to swift technological changes in society, programming 
tasks are proliferating in formal and informal education 
around the globe. However, challenges arise regarding 
the acquisition of programming skills. Many students are 
unequipped to develop programming skills due to limited 
instruction or background and therefore feel insecure when 
encountering programming in higher education. Some 
after-school initiatives focus on teaching younger students 
programming skills, however, not all students have the 
opportunity to attend. It can also be very challenging for 
teachers to teach programming—even more so due to 
significant differences in students’ knowledge and interests. 
To alleviate these challenges, we designed and developed a 
digital personalized learning (DPL) track for programming in 
the first grade of secondary education (12–14 year-old stu-
dents) with a threefold purpose: (a) to encourage students 
bridging the gap between visual and more general-purpose 
textual programming languages (b) to meet differences in 
students’ programming knowledge by challenging them, 
albeit on their own pace, and subsequently (c) to support 
teachers in the delivery of programming education with 
relevant supportive learning materials. The design was tested 
by students and teachers, both of varying technical abilities. 
Assessments of the DPL-track were positive, with students 
identifying the tasks as challenging and the tools as moti-
vating. Teachers praised the adaptivity, as well as the gradual 
transition from visual to textual programming. We present 
several suggestions for design improvement and dilemmas 
while reflecting on our design case. 
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INTRODUCTION
The context of this design case is situated in the field of 
computational thinking and programming in education. We 
understand from the literature that, while the concept of 
computational thinking (CT) was first mentioned by Papert 
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(1980), it was Wing (2006) who (re)popularised it in educa-
tion by describing CT most eloquently as a new basic skill 
alongside reading, writing, and arithmetic. She summarises 
CT as a process of thought involved in formulating problems 
and subsequent solutions to be effectively carried out by 
information-processing technology (Wing, 2006). Similarly, 
we noticed that programming—often regarded as the 
central practice of CT—also gained popularity in literature 
(Tedre & Denning, 2021). As Grover and Pea (2013, p. 40) 
state: “Programming is not only a fundamental skill of com-
puter science and a key tool for supporting the cognitive 
tasks involved in CT but a demonstration of computational 
competencies as well.” Programming gained currency in 
standards for primary and secondary education as well 
as a primary focus of EdTech companies and after-school 
learning initiatives (Falkner et al., 2015). Despite the ubiquity, 
various sources inform us that students’ programming 
acquisition is hampered by three distinct difficulties that we 
aim to account for during the development and design of 
our case: (a) difficulty of content, (b) variation in student prior 
knowledge and (c) difficulty in teaching programming.

Driven by sources such as Govender (2006) and Jenkins 
(2004), we could distinguish a first difficulty that is endemic 
to computer science: learning how to program is difficult 
due to the multitude of skills and involved thought process-
es. Specifically textual programming is difficult to acquire as 
it requires syntax and logic to build programs. Kelleher and 
Pausch (2005) indicate that this increases students’ cognitive 
demands. Despite the growth of programming courses 
for younger students, pass rates of introductory courses 
in higher education are still low (Bennedsen & Caspersen, 
2019). Drawing upon our theoretical understanding, we 
believe that one plausible explanation is that students 
struggle to apply previously learned logic and simplified 
syntax (generally limited to visual programming via graphical 
elements) in other (textual) abstract syntax contexts (Saeli et 
al., 2011). Therefore, when building tools for programming, 
a design challenge emerges to include more adequate 
teaching approaches regarding introductory programming 
instruction, more specifically with special attention to ease 
the transition (less abrupt, more seamlessly) from visual to 
textual programming (Bennedsen & Caspersen, 2019; Bruce, 
2018; Noone & Mooney, 2018). 

The second difficulty that we distinguish is a substantial 
divide in students’ programming knowledge and interests. 
Informal learning initiatives arise which aim to engage 
younger programming novices. Such endeavors enable 
interested students to get acquainted with programming 
outside of the classroom. However, as not all learners are 
able (or eager) to attend informal programming activities, 
a divide can be noticed in programming knowledge and 
interests between students (Salac et al., 2021). Therefore, 
when building tools for heterogeneous student groups, a 
design challenge emerges to facilitate the personalization 

of the learning experience according to students’ needs. The 
field of digital personalized learning (DPL) proliferates and 
subsequently, many personalization types arise (Bernacki et 
al., 2021; FitzGerald et al., 2018). Based on this evidence in 
the literature, we pose an additional challenge: recognizing 
different personalization types and selecting the most fitting 
one for the target audience. 

Finally, the preceding two difficulties coalesce into a third 
issue, which pertains to the difficulty of teaching program-
ming. Teachers often feel distressed and unprepared because 
programming is an unfamiliar subject in their training (Brown 
et al., 2014). In recognizing this, we focus on an additional 
design challenge: when building tools for programming, 
it is important to create materials that support teachers 
to adequately teach programming. Also, as explained, it is 
important to consider that class contexts usually comprise 
students with different knowledge levels and interests, 
which challenges the teachers’ role even more.

THE DESIGN OF THE DPL-TRACK AS AN ELEMENT OF A 
DBR-INITIATIVE 

To alleviate the difficulties and accompanying design 
challenges, we pursued the design and development of a 
DPL-track (a personalized sequence of activities adapted to 
students’ knowledge) for programming in the first grade of 
secondary education (12–14-year-old students). The context 
giving rise to this design endeavor is the research project 
(i-Learn) in which the design team explored the needs of 
teachers regarding digital personalized learning. As the 
previously mentioned difficulties (introduction) matched the 
teachers’ needs, the design and development of the track 
-which is the foreground element of this article- unfolded. 
To do so, we took into principles of design-based research 
(DBR). McKenney and Reeves (2014) describe DBR as: “a 
genre of research in which the iterative development of 
solutions to practical and complex educational problems 
provides the setting for scientific inquiry” (p. 3). The develop-
ment of DBR-solutions involves the aims of improving prac-
tice and contributing to theoretical understanding in close 
collaboration with corresponding stakeholders (McKenney & 
Reeves, 2012; Van den Akker, 1999). For this track, the design 
team consists of two researchers who worked together 
with software developers, teachers, and students. After 
developing the first prototype, a two-fold testing and evalua-
tion cycle was set up. First, the DPL-track was first tested 
by seventeen students (12–14-year-old, 2 females and 15 
males) and later evaluated through focus group discussions. 
Next, nine ICT/STEM teachers (four female and five male) 
evaluated the DPL-track and were likewise interviewed, 
albeit one-on-one. In terms of programming competencies, 
one teacher estimated himself as highly skilled, while four 
teachers rated themselves as moderately skilled, and four 
other teachers considered themselves to have low skills 
in programming. All evaluation moments served as solid 
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‘co-learning’ moments, as observations and dialogue gave 
insights into the needs and perceptions regarding the user 
experience and the design of the DPL-track.

Noteworthy, the expertise of the two main researchers is 
complementary: One researcher has a background in statisti-
cal modeling and is experienced in programming. The other 
has a background in educational technology and focuses 
on DPL. As programming and DPL are the twofold basis 
of the DPL-track, we will first elaborate on accompanying 
programming and DPL-theory which guided design choices 
concerning the prototype. Subsequently, we will elaborate 
on the design of the prototype and further elaborate on 
the development and refinement based on teachers’ and 
students’ comments.

PROGRAMMING AND DPL IN EDUCATION

Programming 

Myers (1990) describes the act of programming as “submit-
ting a set of statements as a unit to a computer system to 
direct the behaviour of that system” (p. 98). How program-
ming is introduced in the classroom is often through visual 
programming to obtain an understanding of the basic 
principles before learning textual programming. However, 
the transfer between textual and visual programming is a 
common struggle for students because of great discrepan-
cies in syntax and semantics (Homer & Noble, 2017; Noone 
& Mooney, 2018; Tóth & Lovászová, 2018). To ease students 
in this transfer, hybrid programming can provide a middle 
ground. These three types of programming are further 
explained and depicted in more detail as they also appear in 
our DPL-track.

Visual programming

Visual programming operates via graphical elements, mostly 
symbols or icons, which represent codes and can be manip-
ulated to build programs. Visual programming environments 
(e.g. Scratch, see Figure 1) are often used as an introduction 
for novice programmers as it is more inherently engaging 
and easier to understand than textual programming given 
the decreased cognitive demands and easier language 
rules (also known as syntax) dictating the structure of code 
combinations (Grover & Pea, 2013; Lye & Koh, 2014). The 
visuals allow for simpler debugging and testing as students 
can easily simulate the outcome of their code in the pro-
duced animation. Despite the benefits, visual programming 
languages have been relegated to teaching tools and are 
unsuitable for general programming in authentic computer 
systems (Lye & Koh, 2014).

FIGURE 1. A view of Scratch; a visual programming environment in which students can produce small films, games, etc.

FIGURE 2. A view of Python; a textual programming environment.
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Textual programming 

Unlike visual programming languages, textual programming 
languages are used generally and professionally (Chen et al., 
2019). Instead of symbols or icons, written text is being used 
to build programs and applications (see Figure 2). Frequently 
used examples of textual programming languages are C, 
Java, and Python (Chen et al., 2019). Each one has its specific 
syntax which makes it difficult to learn for students. In 
addition, the textual and detailed nature of these programs 
involves more effort to understand and debug code (Lye & 
Koh, 2014).

Hybrid programming

Whereas visual programming can be a gentle introduction to 
programming, transitioning from visual to textual program-
ming languages is a common struggle for students (Homer 
& Noble, 2017; Noone & Mooney, 2018; Tóth & Lovászová, 
2018). To bridge this gap, hybrid programming has recently 
been developed (Noone & Mooney, 2018). These hybrid 
programming environments combine visual and textual 
programming: students can explore and edit visual con-
structs and simultaneously see reciprocal changes in the 
corresponding textual constructs (see Figure 3). In doing so, 
they learn textual languages’ syntax, order of command exe-
cutions, and other textual considerations (Robinson, 2016).

Programming in Flemish Education

In the setting of our design case, the government of 
Flanders (Belgium) announced new educational standards 
concerning CT and programming for the first grade (12-to-
14-year-old students) in September 2019. The standards 
comprise two vague competencies: (a) Students can identify 
the foundations of digital systems and (b) students can 
apply a simple self-designed algorithm to solve a digital or 
non-digital problem. Often, teachers find it challenging to 

implement programming lessons into their curricula: many 
feel unprepared as CT and programming are not always fully 
included in their training (Sands et al., 2018). Nonetheless, 
by providing new educational standards, the government 
aims to integrate programming transversally, across multiple 
courses by teachers with different backgrounds (Flemish 
Government, 2019; Flemish Parliament, 2018). However, only 
a few Flemish schools have adopted programming into their 
curricula, mostly limited to very basic learning content in vi-
sual programming environments and taught by ICT teachers. 
In addition, teaching programming can be complicated by 
large heterogeneous classes, involving students with various 
knowledge levels and interests (Capovilla et al., 2015; Gomes 
et al., 2012). With all of this taken into consideration, a clear 
need arises for new learning tools, which can be tailored 
according to student’s needs and are in line with the gov-
ernment’s standards. To meet this, we integrated adaptivity 
within the DPL-track, based on DPL-characteristics.

DPL

In the last 25 years, much research has been done on 
DPL (Bernacki et al., 2021; FitzGerald et al., 2018; Major & 
Francis, 2020; Xie et al., 2019). We use the definition of DPL 
defined by Van Schoors et al. (2021, p. 14), who reviewed 
53 manuscripts during that period and concluded on the 
following characteristics: “Unlike conventional learning, 
digital personalized learning takes place in a digital learning 
environment that adapts to the individual learner in the 
function of optimizing individual and/or collaborative learn-
ing processes focusing on cognitive, affective, motivational, 
metacognitive and/or efficiency outcomes. This adaptation/
personalization: (a) can take into account cognitive, affective, 
motivational, and metacognitive characteristics of the 
learner; (b) can relate to all aspects of the learning environ-
ment, more specifically the (nature, number, and sequence 
of ) learning tasks, the content as well as the instruction and 
support provided by the learning environment; (c) can be 
the result of information provided by the teacher or the 
learner himself/herself, but also information collected by the 
digital environment; and (d) can be enhanced by the teacher 
through the effective use of data derived from the digital 
personalized tools).”.

Prior research found limited teacher awareness of DPL in 
Flanders, resulting in low use of DPL-tools. However, partici-
pants showed positive perceptions and an active willingness 
to implement DPL-tools in their future lessons. A clear need 
was detected for tools focusing on (relatively new) subjects 
that are technology-related. With this respect, the need for 
adaptive material to teach CT was frequently mentioned by 
participants (Van Schoors et al., 2023a). 

All needs concerning programming and DPL bring us to 
the goal of this design case: the development of a DPL-track 
for CT in the first grade of secondary education. During the 

FIGURE 3. A view of a hybrid programming environment for 
Python.
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development, the design challenges from the introduction 
(transition from visual to textual programming, personaliza-
tion, and support teachers’ role) will be considered. The goal 
of the DPL-track is to allow students to learn programming 
more easily and prepare them for learning real-life program-
ming syntax. It also aims to support teachers in the delivery 
of programming education with adaptive learning materials.

EXPERIENCE OF THE DESIGN

GENERAL STRUCTURE

The DPL-track is a multi-pathway sequence of learning 
activities that consist of programming-related practice and 
instructions (see Figure 4). To offer personalized tracks based 
on student’s individual needs, the DPL-track was built in 
i-Learn. I-Learn is a platform that aims for personalized learn-
ing in primary and secondary education. To realize this aim, 
i-Learn was established with a range of existing and qualified 

= Keymoments

= Increasing difficulty of tasks and instructions

4
2

Start

Finish

FIGURE 4. An overview of the DPL-track structure. 

5

Phase 1: 
Visual programming

Phase 2:
Hybrid programming

Phase 3: 
Textual programming 

Medium level tasks, 
instructions, …

Hard level tasks, 
instructions, …

Low level tasks, 
instructions, …

FIGURE 5. An overview of the learning environments: FTRPRF, Minecraft and Dodona.
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educational tools, activities within these tools, and learning 
tracks holding sequences of such activities. The i-Learn plat-
form functions not only as a tool, activity, and learning track 
library, but teachers can also create or customize learning 
tracks themselves. All learning tracks offer built-in adaptivity 
facilitated through ‘key moments’ which mostly comprise 
quizzes or questions and consider cognitive, metacognitive, 

FIGURE 6. Example of an instruction in FTRPRF, focus on loops.

FIGURE 7. Example of an exercise in Minecraft Education, 
focus on loops.

What code fits best to the following statement: “when you click on the green flag, 
the variable x is assigned the value 7 and this value is displayed”
What code fits best to the following statement: 
“when you click on the green flag, 
the variable x is assigned the value 7 and this value is displayed”?

When Is clicked

Make

Display variable 

Display variable 

Display variable 

I don’t know the answer

Make

Make

When Is clicked

When Is clicked

x 7

x

7

7

x

xy

y

FIGURE 8. Example of an instruction in Dodona, focus on 
debugging.

FIGURE 9. Example of quiz question in key moment A.
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or affective learner characteristics as a source 
to personalize the learning track. 

Figure 4 illustrates a simplified overview of our 
DPL-track. We also use this simplified overview 
to explain design choices later in this paper. 
The Figure contains (a) key moments (red 
dots) facilitating adaptivity and (b) learning 
activities such as introduction videos, theoret-
ical sections, programming tasks, and quizzes. 
The key moments guide students to different 
phases of varying difficulty (see the range of 
blue dots, also corresponding to Figure 5). 
These learning activities are further discussed 
later is this paper.

LEARNING ACTIVITIES 

Learning activities contain either practice 
or instruction. Students practice through 
programming tasks. These programming tasks 
become unobtrusively more difficult, ranging 
from visual, hybrid, and textual programming. 
To create these tasks, different programming 
environments were selected (see Figure 5): (a) 
FTRPRF for visual programming, (b) Minecraft 
Education for hybrid programming, and (c) 
Dodona for textual programming. 

Next to practice, there are instructions 
providing students with introductions, theory, 
tutorials, simulations, etc., through text or 
videos (see examples depicted in Figures 6, 
7, and 8). Instruction does not only include 
information about the three learning environ-
ments, but also covers programming-specific 
knowledge with explanations of (a) basic 
concepts in CT used for programming such 
as decomposition, algorithmic thinking, and 
pattern recognition, (b) basic programming 
functions such as loops and iterations, and 
(c) basic Python syntax such as the functions 
print() and len(). 

KEY MOMENTS

Key moments were integrated both at the 
start and throughout the DPL-track. When 
arriving at a key moment, students encounter 
(quiz) questions examining cognitive aspects 
(such as programming knowledge) or meta-
cognitive aspects (such as self-estimation of 
programming knowledge). Based on their 
answers, students are unobtrusively guided to DPL-tracks 
with personalized instructions and tasks (see example quiz 
question in Figure 9). 

The sequencing of the DPL-track

Figure 10 provides a more detailed overview of the DPL-
track. The different elements including learning activities 
(yellow and dark blue dots) and key moments (red dots in 

FIGURE 10. A more detailed version of the DPL-track.

FIGURE 11. The first slide of the DPL-track.
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Figure 4, here blue) are explained later in this paper. Using 
this figure, the user experience is further described. 

Introduction 

When opening the DPL-track in i-Learn, students arrive at a 
general introduction. The learning material is displayed like a 
slideshow (see Figure 11) and presented via text, images, and 
videos. Students have the option to use a read-aloud func-
tion when encountering text. Other features are navigation 
buttons, by which students can operate through the slides. 
The slides occasionally contain practice buttons that lead 
to the learning environments FTRPRF, Minecraft Education 
Edition, or Dodona.

After a short introduction to CT and programming, students 
encounter ‘key moment A’ in which their prior knowledge 
regarding programming is tested via a short quiz. The quiz 
tests knowledge concerning sequence, conditions, loops, 
and specific Python syntax. For visual programming ques-
tions, a section of the Test of Basic Programming Concepts 
(Tsai, 2019) was modified. For the textual programming 
question, a section of the Prepared for Future Learning 
(PFL) test (Grover & Pea, 2013) was selected and adapted. 
After completion, instead of receiving scores, students are 
matched with a specific robot corresponding to students’ 
cognitive level: Students who answered all questions 
correctly scored four points, were categorized as high-skilled, 
and were matched with robot So12 (see Figure 12 and 14). 
These students were sent to the introduction of phase 2 
but then automatically skipped some low-level beginning 

tasks (see track 2 from Figure 14). Students who scored three 
points were considered medium-skilled. They were matched 
with robot YuZu and were sent to the beginning of phase 2. 
Finally, students with lower scores were matched with robot 
Ra28 and started at the beginning of phase 1 (see track 1 
from Figure 12). Students are not aware of the level to which 
they are attributed.

FIGURE 12. An overview of phase 1 of the DPL-track.

FIGURE 13. Example of an unfinished programming task in 
FTRPRF.

FIGURE 14. An overview of phase 2 of the DPL-track.

FIGURE 15. An example instruction in BookWidgets (visual 
programming).

FIGURE 16. An example solution of a task in Minecraft.
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Phase 1: Visual programming

In phase one, students interact with the learning environ-
ment FTRPRF (see Figure 13). FTRPRF resembles Scratch and 
allows students to manipulate visual elements (blocks repre-
senting codes) when developing animations and games. 

In FTRPRF, students are introduced to a built-in story as they 
learn about a group of avatars who want to go on a space 
mission. Practice and instructions relate to that engaging 
story: For example, when students learn about loops, they 
use loops to help guide an avatar to a spaceship. Phase 1 
holds four lessons (or ‘space missions’) covering concepts 
such as algorithmic thinking, pattern recognition, abstrac-
tion, and includes tasks related to building general code 
structures and easy loops.

Phase 2: Hybrid programming

In the second phase (see Figure 14), students are provided 
with a summary of theory (programming concepts and 
meanings) from Phase 1. In doing so, students who scored 
medium or high on the prior knowledge quiz from key 
moment A do not miss instruction. After that recap, students 
move on to the second programming environment, i.e., 
Minecraft: Education Edition, which is an educational adapta-
tion of the popular game Minecraft (Kuhn, 2018).

In Minecraft: Education Edition, students can explore pro-
cedurally generated lands and build block-based structures 
in a first-person game environment. Students can also press 
a button on the keyboard and switch from visual program-
ming language to textual programming language (Python). 
For example, one task can be to build a compass via visual 
programming and then change the material or coordinates 

Extra Python task: 
Switch the code builder to Python.You will see something like this:

Can you adapt the coordinates of the compass, to make the lines longer (15 unites 
instead of 10 units)? 

FIGURE 17. An example instruction in BookWidgets (textual programming).

FIGURE 18. Question during key moment B.
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of the compass via textual programming (see Figures 15, 16, 
and 17). 

Since Minecraft can only be used as a practice platform and 
does not allow for the presentation of instruction via visuals, 
we used an additional tool to present students with accom-
panying instructions. BookWidgets is a Belgian educational 
content authoring tool that can be used to present text, 
images, and videos (BookWidgets, n.d.). 

During Phase 2 students are presented with key moments B 
and C that contain questions to self-estimate their program-
ming knowledge (key moment B relates to coordinates and 
key moment C to variables, see Figure 18). According to their 

desire, students are presented with easier/harder tasks and 
more/less instruction. 

Phase 2 holds five lessons (or ‘challenges’) covering a 
summary of the learned concepts from phase 1 (algorithmic 
thinking, pattern recognition, and abstraction) and tasks 
related to events, coordinates, variables, iterations, and 
conditionals.

Phase 3: Textual programming

In the third phase (see Figure 19), students are provided with 
learning materials in Dodona.

Dodona is a textual programming learning environment 
(see Figure 20) resembling a more traditional developer 
environment (Van Petegem et al., 2022). It contains DPL-
features such as automatic programming assessment (label 
pass/fail), advanced logging of student program submissions 
and time on task, and the presentation of lesson materials in 
programming with appropriate syntax highlighting (display-
ing components of code in colors according to categories of 
terms).FIGURE 19. An overview of phase 3 of the DPL-track.

errors

This is an example of another error;  can you solve the error? 

Solution pageTask

FIGURE 20. An example task in Dodona.

DIFFICULTY DESIGN CHALLENGE DESIGN CHOICE FRAMEWORK

Challenging learning 
material (Govender, 2006; 
Jenkins, 2004).

Transitioning from visual to 
textual programming

Scaffold students from using 
code to creating code and 
connect previous materials 
in visual programming to 
textual programming

Use-modify-create (Lee et al., 
2011) and PRADA (Dong et 
al., 2019) 

Large variation in previous 
knowledge (Salac et al., 
2021).

Personalise learning mate-
rials according to previous 
knowledge

Add system-controlled 
cognitive adaptivity and 
learner-controlled metacog-
nitive adaptivity

Vandewaetere and 
Clarebout, 2014

Difficulty in teaching (Brown 
et al., 2014)

Create materials to support 
teachers' role

Add system-controlled 
cognitive adaptivity and 
learner-controlled metacog-
nitive adaptivity

Vandewaetere and 
Clarebout, 2014

TABLE 1. Overview design decisions and frameworks used.
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Phase 3 holds four lessons (or ‘challenges’) covering all 
concepts from Phase 1 together with Python concepts such 
as ‘syntax’ and tasks related to basic functions such as print() 
to display text, len() to measure the length of lists as well as 
tasks related to debugging and variables. 

The time to complete all three phases is estimated at four to 
five hours, depending on the student’s prior knowledge and 
interests.

DESIGN PROCESS AND DESIGN CHOICES

The Design Process

Designing learning activities was a collaboration with soft-
ware developers (from FTRPRF, Minecraft Education Edition, 
and Dodona). They provided existing learning materials and 
ideas, which were then substantially modified. For example, 
the selected FTRPRF learning material was intended for 
slightly younger students (around 7-10 years old) as it 
originally held 12 lessons and more low-level programming 
exercises. These lessons were shortened to four lessons while 
learning activities were rewritten to be more suitable for our 
target audience. 

Design choices (see Table 1) are discussed in the following 
section. After developing the prototype, teachers and stu-
dents evaluated it (see further in the failure analysis section). 

Choices Based on Research Literature

Programming

Given the focus on the design challenges regarding the 
difficult shift from visual to textual programming, we based 
our scaffolding on previous efforts to scaffold from simple 
to complex. For example, we used the ‘use-modify-create’ 
framework, which represents a pattern of engagement and 
is often used as a basis for support in multiple programming 
courses (Lee et al., 2011). This three-phased framework com-
prises a beginning phase in which students ‘use’ pre-built 
blocks of code or applications. Over time, students move to 
the second phase to ‘modify’ the visual programming cre-
ations with textual programming, usually by first changing 
simple parameters. In doing so, they gain an understanding 
of programming and develop new programming skills. 
Finally, in the last phase, students ‘create’ new materials, 
functions, or even artifacts. The three phases are based 
on the premise that these aids for sequentially acquiring 
knowledge, termed scaffolding, strengthen the acquisition 
of programming and work to reduce anxiety for novice pro-
grammers (Lee et al., 2011). We applied the ‘use-modify-cre-
ate’ framework in the DPL-track to help students retain and 
apply new knowledge while moving from visual to textual 
programming language. When students enter the second 
phase and open Minecraft Education Edition, they first 
encounter visual programming tasks, in which they can use 

pre-built blocks to construct a program (‘use’). After many 
practice opportunities, students move on and encounter 
hybrid programming tasks. These allow students to practice 
and modify existing visual codes, by altering parameters 
in the textual interface and demonstrating the similarities 
between blocks and textual programming (‘modify’). After 
Minecraft, students navigate to Dodona where they build 
programs (‘create’). Following this structure, the DPL-track 
provides scaffolding as described in the ‘use-modify-create’ 
framework.

Next to the ‘use-modify-create’ framework, we also selected 
the Pattern Recognition, Abstraction, Decomposition, 
Algorithms (PRADA) framework (Dong et al., 2019) which 
aims to describe and clarify specific subskills of CT to 
increase integration in K-12 classes. In the design, the 
PRADA-framework was consulted to connect disparate 
programming concepts and explain their use for students no 
matter the language. The subskills in the PRADA-framework 
are:

•	 Decomposition: Analysing a problem to break it down 
into smaller parts.

•	 Pattern recognition: Recognizing patterns from data.
•	 Abstraction: Identifying the underlying principles that 

generate observed patterns.
•	 Algorithms: Creating clear, step-by-step instructions for 

solving problems. 

These subskills were used to structure lessons in each of the 
three phases by connecting previously understood visual 
programming material (for example the coding of loops or 
repetition of code—related to the subskill pattern recogni-
tion- in FTRPRF) to a new textual programming language 
(loops in Dodona). As such, connections were made to ex-
plain syntax and useful commands in textual programming 
languages with direct comparisons to previously learned 
visual programming languages. 

By consulting both frameworks during the design of tasks 
and structure, the design principle ‘a gentle transition from 
visual to textual programming’ was pursued.

DPL 

Given the focus on the two design challenges regarding 
‘personalization to meet differences in students’ knowledge 
and interests’ and ‘supporting the teacher role’, we again con-
sulted literature to build on. To think about different types of 
adaptivity for the key moments, we used the framework of 
Vandewaetere and Clarebout (2014)—which describes four 
dimensions of adaptivity. As we describe the outcome of the 
design according to the framework, a summary is given: In 
sum, adaptivity can differ according to target, method, time, 
and source (Vandewaetere & Clarebout, 2014). With respect 
to (a) target, the framework identifies targets of adaptivity 
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such as level of tasks, presentation format, or degree of 
instruction. Regarding (b) method, different methods of 
how adaptation is initiated are identified e.g., by the learner 
(learner-controlled) or system (system-controlled), or both. 
For (c) time, the framework refers to when the adaptivity 
takes place, which can be before (static), during (dynamic) 
the learning activity or both (dual pathway). Finally, (d) 
the source relates to different origins of adaptivity such as 
cognitive or metacognitive learning characteristics, but also 
learner-system parameters such as time spent on a task. 

To acknowledge students’ prior knowledge and interests 
(beginners as well as experienced programmers), three key 
moments (A, B, and C) are integrated which guide students 
to personalized tracks. Key moment A (see Figure 21) focuses 
solely on prior knowledge assessment (cognitive learner 
parameter as the source of adaptivity) at the beginning of 
the track (static adaptivity) and leads students to separate 
tracks within the DPL-track in which they are provided with 
different learning environments, support/instruction and 
difficulty of tasks (adaptation of content, presentation and 

4
7

Start

Finish

Static adaptivity: quiz to evaluate 
prior programming knowledge.

Example question:  What description is fitting for this program?  

Description A <…>
Description B <…>
Description C <…>

I don’t know 

What Robot did you get at the end of the quiz? 

FIGURE 21. Key moment A within the DPL-track.

Start

FinishLearner-controlled adaptivity
Example question: Do you want some 
more information about coordinates? 

Additional 
instructions and tasks

FIGURE 22. Key moment B and C within the DPL-track.
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support/instruction). Students cannot change this track 
(program-controlled adaptivity).

As we aimed for a variation of adaptations (not only sys-
tem-controlled and focussed on cognitive learner param-
eters), key moments B and C (see Figure 22) were added 
which hold metacognitive questions (source of adaptivity: 
metacognitive learner parameters). If desired (learner-con-
trolled), students get both additional instructions and tasks 
(adapted content and support/instruction) before moving 
on to harder challenges. Therefore, both key moments 
add to learner control for adaptivity in the DPL-track 
(Vandewaetere & Clarebout, 2014).

By providing key moments both before (A) and during 
the DPL-track (B and C) dual pathways and shared-control 
adaptivity are pursued (see Vandewaetere & Clarebout, 
2014). Besides the key moments, there are other features that 
contribute to adaptivity. For example, the i-learn platform 
contains a button that can be activated by students to 
turn written text into audio (student-controlled adaptivity). 
Another example is a feature within Dodona, which facili-
tates automatic programming assessment (program-con-
trolled). Personalization of tasks or support/instruction does 
not only meet differences between students but can also 
support teachers when teaching heterogeneous classes 
(Holmes et al., 2018; Major & Francis, 2020). Tools can assist 
teachers by immediately tailoring the learning process. 
Furthermore, when collaboration or synergy occurs between 
teachers and tools, students receive multiple forms of scaf-
folds which can enhance the learning process (Tabak, 2004). 

By considering manifold adaptivity during the design of tasks 
and structure, the design principles ‘personalize learning 
experiences for students’ and ‘support teachers in their 
teaching practice’ were pursued.

FAILURE ANALYSIS

Evaluation of the DPL-track

As the development of the DPL-track reflected DBR princi-
ples (in which “development-evaluation-refinement” is the 
key development process), we focused heavily on evalua-
tion. In doing so, the goal was to improve the design both 
motivational and functional by assessing seven aspects: 

•	 General: How did they like the DPL-track?
•	 Learning content: What did they think about the provid-

ed theory?
•	 Tasks: What did they think about the provided tasks?
•	 Clarity of learning goals: Did they think the main purpose 

of the DPL-track is clear enough?
•	 Support/instructions: What did they think of the provided 

support and instruction?

•	 Evaluation: How did they experience the quiz questions 
during the key moments?

•	 Personalization: How did they like the built-in-adaptivity? 

We tested the track in two phases: first with students, and 
then with teachers. We mainly wanted to see if the DPL-track 
matched teacher and student expectations, which was 
a concern given the variation in previous programming 
experience. With 17 students, we observed their use of the 
DPL-track, asked ad-hoc questions during their use, and 
then conducted two focus groups guided by questions on 
the previous seven evaluation aspects (See Appendix A for 
interview protocol). One focus group had four high-skilled 
students, and another had thirteen low to medium-skilled 
students. Students were enrolled in the first grade of 
secondary education and were majority male (only three 
students were female). These students were recruited from 
an after-school coding camp and had diverse levels of 
programming knowledge, skills, and interests. 

In the second cycle, we individually interviewed 9 ICT/STEM 
teachers after they evaluated the DPL-track on their own. 
Interview questions again followed the major themes previ-
ously mentioned. For interview protocol, see Appendix A. All 
teachers received a dummy i-Learn student account to test 
the DPL-track and a digital manual encompassing all practice 
and instructions from the track. The selection of teachers 
was also diverse: One highly experienced teacher frequently 
taught programming and even developed a syllabus himself. 
He was categorized as high-skilled. Six teachers had some 
programming experience and were accordingly categorized 
as medium-skilled. Finally, two teachers with no program-
ming experience were categorized as low-skilled.

Evaluation by students

Hereafter, we describe how students evaluated the design 
along the previous themes. 

General Evaluation

We observed that students experienced the DPL-track as en-
gaging, supportive, and challenging. They confirmed these 
positive perceptions multiple times during the discussions. 

Learning Content

Low-skilled students (who start in FTRPRF) liked the engag-
ing story of the space mission which guided them through 
the learning content. Students applauded FTRPRF for the 
clear explanations and summarizations of basic theoretical 
concepts. However, as a point of improvement, students 
explained that a video or more visuals should reinforce textu-
al explanations of theoretical concepts, specifically abstract 
concepts (such as algorithmic thinking). The medium- and 
high-skilled students (which started in Minecraft) indicated 
explanation and repetition of concepts could be better 
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and more frequent (e.g., proper explanation of ‘textual and 
visual programming’, ‘syntax’). In Dodona, the high-skilled 
students sometimes struggled with learning new functions. 
Particularly in the last exercise, which required students to 
apply a variety of previously learned functions. We saw in 
log data that the students submitted 20 coded programs 
in total, 9 of which were syntactically correct, but failed 
to use all learned functions at the same time. With simple 
reminders of functions, such as the str() function, and group 
collaboration, each student eventually succeeded in the 
exercise. As such, the extra focus should go to introducing 
-and especially repeating- new functions (e.g., ‘Len’, ‘input’) 
and function combinations since some explanations were 
sometimes too abstract.

Tasks

Task-related feedback was positive. Low-skilled students 
perceived FTRPRF as a supportive learning tool that they 
enjoyed practicing. All students were positive about the 
textual programming challenges in Minecraft (switching 
between block to text-based programming) as they ac-
knowledged writing textual code on their own would be too 
difficult. Concerning Dodona, high-skilled students found 
the tasks very challenging. Sometimes even too hard. During 
those tasks, we observed the occurrence of spontaneous 
group work, especially for debugging: students helped each 
other to solve bugs and read code. This is positive since it 
is reminiscent of real-world programming projects (e.g., 
software engineering, scientific code analysis, etc.). 

Clarity of Learning Goals

When discussing clarity of learning goals, students were 
often unaware of what they were learning and why the tools 
were selected for the acquisition of programming. We had to 
elaborate on this topic and challenge them to reflect on it. 
Once we clarified the learning goals, students could identify 
why we selected the tools. As one student clarified during 
the discussion: “I like the fact that we go from a 2D world in 
FTRPRF to a 3D world in Minecraft, it is harder to code but as 
you grow, this challenge is very welcome.” Another student 
positively elaborated on the gap between visual and textual 
programming: “I cannot write textual code on my own. I 
become easily frustrated. So, it is really nice that we don’t 
have to do that, and we can always rely on the blocks to 
learn more about Python.” 

Instructions and Support

Students indicated instruction/support should be increased. 
For technical support, they would like more introductory 
videos on how to engage with i-Learn and the learning 
environments (e.g., setting up a Minecraft world). Students 
found the combination of instructional pictures and videos, 
as applied in the Dodona track, most useful. For instructional 

support, students liked videos about how to build code, 
how to debug, and how to solve tasks. However, students 
indicated that programming jargon, such as bytes and 
syntax, lacked proper explanation. For instructional support, 
it was noticed that students’ freedom of choice’ was not 
always encouraged enough. For example, one student asked 
if he could already use loops in FTRPRF. Another student 
asked if he could pick another color to build a compass in 
the Minecraft world. Nonetheless, we also observed students 
taking advantage of the ‘freedom of choice’ as they were, for 
example, wandering off or using their functions to alter the 
environment which made it hard to continue with the other 
tasks. Next to general instructional support, we also reflected 
on task solutions provided throughout the DPL-track. Most 
students used the solutions responsibly. In Dodona, students 
liked the automatic feedback feature (which visualizes 
correct/incorrect and error types). Students repeatedly used 
this feature, with multiple submissions on every exercise to 
test newly written code. However, concrete solutions were 
missing. Students suggest this could be included as a last 
slide at the end of every mini-lesson.

Evaluation

For evaluation, all students completed key moment A. Log 
data from the low- and medium groups (n=13) showed that 
seven started in the first phase and six in the beginning of 
phase 2. For the high-skilled group, who were supposed to 
have prior knowledge about Python, two were categorized 
as high-skilled and two were not. Yet, together with the 
observations, we concluded the test made a good predic-
tion, as they were less skilled programmers and often had to 
rely on the two stronger students to debug code and answer 
programming questions. During the discussion, the students 
told us they really liked the robots that were assigned to 
them after the quiz (not knowing which scores they resem-
bled). They also liked the other key moments but did not pay 
much attention to them as they thought the key moments 
were just regular quiz questions. Log data indicated students 
engaged positively with the self-evaluating questions: we 
had no cases of students who overestimated themselves 
in ‘key moments B or C’ and ended up in improper tracks. 
Evaluation by teachers

Teachers had two weeks to go through the complete 
DPL-track via a dummy i-Learn student account. During the 
test weeks, we remained available for support. All difficulties, 
questions, and suggestions as communicated by the teach-
ers were registered. Finally, the teachers were invited for an 
individual interview (approximately 45 minutes). The same 
topics used for student evaluations were targeted, including 
the additional topic of adaptivity. In doing so, we wanted 
to increase understanding of how teachers perceived the 
DPL-track, both motivational and functional. 
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General Evaluation

Teachers were enthusiastic about the DPL-track and con-
sidered it useful. The the built-in adaptivity was especially 
positively valued. 

Theory

Teachers (often medium-skilled) appraised the selection of 
theory. They applauded the sequence, flow, and generally 
growing difficulty of concepts. Apart from small content 
remarks -such as the replacement of difficult programming 
verbiage or simplification of definitions- most teachers 
found the theory clearly explained. However, not all teachers 
agreed on the theory selection: the two low-skilled teachers 
found some content too challenging (e.g., text-based 
programming concepts were found to be too difficult), while 
the high-skilled teacher was convinced that the difficulty 
level could be even extended. All teachers expressed the 
need for more visuals (e.g., pictures and videos) and repeti-
tion of new concepts. 

Tasks 

Teachers praised the alternation and variation from visual 
to textual programming. Some were already familiar with 
visual learning environments, such as Scratch (FTRPRF), but 
could not connect to more abstract text-based (or hybrid) 
program environments. They were happy to get to know 
new tools via the DPL-track. Many teachers provided us with 
some helpful refinement suggestions to optimize tasks: 
One teacher shared a self-made Minecraft task concerning 
‘variables’ which was a better fit than the original task in the 
DPL-track. Another teacher suggested the addition of text-
based Minecraft challenges at the very end of the DPL-track 
for students who finish early. One teacher also suggested 
adding more context/story to the Dodona track and helped 
with the development of an engaging story, which also fit 
the abstract characteristics of the tool. Most teachers found 
the tasks to be just the right amount, nicely developed, and 
complementary to learning subjects from other courses 
(e.g., coordinates within mathematics courses). However, 
not all teachers liked the distribution of block-based and 
text-based programming tasks. Again, two sets of opinions 
could be noticed: The high-skilled teacher would reduce the 
visual programming part, while the low-skilled and some 
medium-skilled teachers would expand it and reduce textual 
programming tasks. 

Clarity of Learning Goals

Teachers considered the learning objectives to be transpar-
ent enough. As one teacher said: students will be aware of 
the main objective, i.e., learning to program, without having 
to focus on all the sub-learning objectives (such as learning 
about new theoretical concepts). Some teachers suggested 
adding a comprehensive summary (with sufficient visualiza-
tions) about the main learning objectives at the beginning 

and the end of the DPL-track, as they noticed from their 
practice that this helps to make the learning objectives extra 
clear. 

Instructions and Support

Regarding instructions and support comments frequently 
mentioned: (a) Students should be provided with more 
technical support about how to open and use tools. (b) The 
presumption that all categorized low-skilled students know 
nothing about programming can demotivate the ones who 
know some basics. For example, if students know something 
about loops, they are not encouraged enough to use loops 
in the first tasks of Phase 1. (c) Teachers liked the instruction 
videos, as they were found to be clear and on a student 
level. They would like to see more of them throughout the 
DPL-track. Next to these three suggestions, teachers were 
also asked to give feedback on the amount of provided task 
solutions. Opinions were two-fold: some teachers found 
them to be useful and applauded the gradual decrease 
towards the end of the DPL-track. They value task solutions 
as students learn a lot from them, especially when building 
codes. Some teachers, however, were concerned students 
would take advantage of the provided solutions, i.e., co-
py-paste to solve tasks. For them, the solutions/examples are 
too easily within reach. This raised concerns about ‘gaming 
the system’ (cheating). One even suggested a point system 
to ‘punish’ students when they consult solutions.

Evaluation

Concerning evaluation, teachers shared similar thoughts: (a) 
key moment A is well constructed. They said the questions 
are relevant and nicely sequenced. Teachers liked the first 
question where students estimated their level, but also liked 
that this did not influence the score to avoid mismatch. One 
teacher referred to the risk of the Dunning-Kruger effect, 
which comprises an overestimation of skills due to a lack of 
knowledge. During the questions, low-skilled students are 
not discouraged as the difficulty gets acknowledged (i.e., 
“Do not worry if you cannot solve this puzzle. This is normal if 
you have no/little programming experience!”). Not showing 
the scores was also found to be positive. Instead, the robots 
were acknowledged as a fun way to reward and engage the 
students. (b) Teachers explained they missed the opportu-
nity to learn from key moment A. They recommend going 
back to specific questions when the corresponding topic 
is covered, as an opportunity to learn and acknowledge 
progress. In addition, most also expressed the need for a final 
key moment as an end evaluation.

Adaptivity

Finally, adaptivity was considered valuable in the DPL-track 
as all participants reported on the same challenge: finding 
learning material fitting for heterogeneous student groups 
with different programming knowledge, competencies, 
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and motivations. They like that the DPL-track encourages 
and engages students as it not only helps the low-skilled 
students or challenges high-skilled students, but also that it 
provides some extra time for the teacher to further manage 
and guide the class. Teachers liked the student-controlled 
adaptivity (self-evaluation key moments B and C). However, 
most stated that system-controlled key moments (more 
specific questions to evaluate knowledge) should follow up 
the self-evaluation to correct for self-overestimation of stu-
dents. Although the DPL-track only holds three key moments 
leading to adaptivity, many teachers explained this already 
exceeds expectations. They state that more moments would 
maybe become a burden (instead of supportive), as they 
would lose an overview of all tracks.

Reflection on Evaluation 

To optimize the DPL-track, we compared the student 
discussions, observations, and log data to the teacher 
interviews, noting similarities for improvement. In doing so, 
six concrete plans for refinement were decided on and three 
design dilemmas were unraveled. These refinements do not 
contradict the major design principles (ease the transition 
from visual to textual programming, personalize learning 
experiences, and support the teachers’ role), but concern the 
operationalization of these design principles. An overview 
of the plans of refinement related to teachers’ and students’ 
comments can be found in Appendix B.

Plans for refinements

The plans for refinement comprise five smaller functional 
design changes and one more fundamental change in struc-
ture. Starting with the smaller changes, the first improve-
ment goal is to provide more balance between textual and 

visual support/instruction for practice and instruction. We 
will reinforce several parts of the DPL-track by adding supple-
mentary videos and images. The second improvement goal 
includes more repetition and clarification of theoretical 
concepts, especially in Phase 2 and 3. In addition, program-
ming-specific vocabulary without proper explanations will 
also be removed or adjusted. The third improvement goal 
relates to the clarification of learning goals. A brief overview 
of (a) explicit learning goals, (b) upcoming software tools and 
(c) their added value will be added at the beginning and end 
of the DPL-track. The fourth improvement goal will address 
the challenge of combining several tools (BookWidgets, 
FTRPRF, Minecraft, Dodona) in one track (in i-Learn). Students 
are expected to alternate between different screens/tabs. 
This can be a problem for students with, for example, low ICT 
skills. More technical support will be provided during transi-
tions. The fifth improvement goal relates to key moment A: 
Currently, there is a missed learning opportunity, as students 
are not provided with answers or feedback when answering 
quiz questions. This was a deliberate design choice, as 
feedback (alongside corresponding scores) could hamper 
the unobtrusive guidance to a personalized DPL-track and 
therefore also demotivate beginning students with no 
programming knowledge. An effort will be made to insert 
some ‘recall’ learning moments (that also act as feedback) 
throughout the DPL-track.

The last improvement goal comprises a more fundamental 
change in the structure of the DPL-track, more specifically 
regarding key moments B and C. The teachers appreciated 
these students’ self-evaluation moments (student-controlled 
adaptivity) but missed quiz questions for verification (sys-
tem-controlled adaptivity). This verification should correct 
for students’ self-overestimation (see also Dunning-Kruger 

FIGURE 23. Adjustment for next iteration—addition of an extra key moment after key moment B.
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effect) and assess whether students’ programming skills are 
sufficient to proceed. We will add two additional key mo-
ments (one after key moment B and one after key moment 
C; see Figure 23) to check whether students who do not 
wish to receive extra information or tasks, really understand 
the learning content. If not, they will also go through extra 
instruction and tasks. Thus, these additional key moments 
will contain system-controlled adaptivity based on cog-
nitive learner parameters. In doing so, we will create two 
shared-controlled adaptivity sets.

Three design dilemmas

In addition to the refinement plans, some design dilemmas 
are acknowledged. The first dilemma relates to differences 
between teachers’ programming knowledge and their 
expectations: higher-skilled teachers can support students 
during more challenging tasks, while lower-skilled teachers 
cannot and therefore expect easier tasks. Thus, their pro-
gramming knowledge influences the difficulty of students’ 
tasks and instructions. Since most participating teachers 
were medium-skilled, we kept the level of difficulty for 
further iterations. However, we acknowledge that even when 
using DPL-tools -where the level of tasks is already adapted 
to students’ knowledge-, there can be a dilemma of selecting 
tasks and instructions as different expectations can still 
occur. 

The second dilemma concerns the provision of solutions at 
the end of every task. Some teachers valued it, while others 
did not (e.g., difficult to prevent students from gaming the 
system). This dilemma relates to instructional disobedience, 
described by Elen (2020) as a phenomenon that “occurs 
when learners do not act as expected from them in a 
learning environment.” As reducing student control may not 
fully counter instructional disobedience (Elen, 2020) and 
the emphasis for this design was on learning through the 
act of programming, we decided to keep the solutions in 
the DPL-track as a learning tool instead of reducing/limiting 
them. We will, however, foresee more instructions related to 
the goal of the solutions, to optimize understanding (and 
acceptance) of their instructional expectations. Nevertheless, 
we understand that it is unrealistic to assume only instruc-
tions elicit exclusively compliant students, and therefore 
acknowledge providing solutions implies an extra responsi-
bility for students (to not misuse them) and teachers (check 
for students’ misuse). 

The third dilemma - also related to instructional disobedi-
ence - pertains to the freedom of choice within program-
ming tasks (e.g., coding with different blocks and colors) 
and learning environments, especially within Minecraft: 
education edition (e.g., wandering around in the never-end-
ing world. On multiple occasions, students are encouraged 
to try things out. However, instructionally encouraging 
students’ freedom of choice can invoke a risk of instructional 

disobedience. Again, this causes extra management chal-
lenges for teachers. We value freedom of choice during 
programming as it can boost students’ motivation (Autio et 
al., 2011). To avoid unmotivated starters, more differentiation 
regarding instructions will be added (e.g., “If you know how 
to use loops, feel free to use them!” or “You can also choose 
a block and color of your own choice”). However, students 
will also be encouraged to focus and follow instructions by, 
for example, changing the mode of Minecraft from ‘creative’ 
to ‘flat’ to avoid distraction. In this ‘flat’ mode, students’-built 
objects do not interfere with NPC’s or other pre-built objects.

CONCLUSION

General

Programming proliferates in education. However, it is not 
the easiest subject to teach and learn. Students often 
struggle to move from visual programming to textual 
programming and there are great differences between their 
programming knowledge and competencies. Likewise, 
teachers find it difficult to teach this relatively new subject 
to heterogeneous classes. As these challenges mirror the 
trends in the greater educational landscape, this design case 
focused on the design and development of a DPL-track with 
a twofold basis: programming and DPL. Overall, the three 
major design principles (ease the transition from visual to 
textual programming, personalize learning experiences, 
and support teachers’ roles) were well received: Results 
indicate a variety of students experienced the DPL-track as 
engaging, supportive, and challenging. They acknowledged 
the value of hybrid programming and understood the 
benefits of using it to bridge the gap between programming 
languages. Teachers were also generally enthusiastic about 
the DPL-track. Of note, the built-in adaptivity received many 
positive comments, as it is found to be generally difficult to 
match different programming tasks to different students 
within a diverse class group. Further, we present findings and 
reflections for practical and theoretical stakeholders. 

SIGNIFICANCE

The DPL-tool

The development of the DPL-track was centered around 
the use of existing tools and balanced theoretical choices 
with practical considerations from teachers and students. 
Using existing tools was a conscious decision. Software 
developers’ perspectives and experience helped inform the 
design, which likely improved ease of use and usefulness 
for teachers and students. Nevertheless, these perspectives 
were also grounded in theory: while we used materials and 
tools offered by the software developers to teach program-
ming, we also substantially changed the structure/organi-
zation to adhere to the ‘use-modify-create’ strategy and the 
PRADA-framework (Lee et al., 2011; Dong et al., 2019). These 
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adjustments were supplemented with DPL-adaptations from 
the framework of Vandewaetere and Clarebout (2014). We 
considered these theoretical perspectives as complemen-
tary, as CT perspectives provided the thought processes 
needed in using programming in new challenges, program-
ming education perspectives provided structures with which 
to learn programming, and DPL-perspectives provided the 
ability to proactively support students at every level. This 
combination resulted in a holistic, personalized design for 
teachers and students to test. Often, teachers receive few 
opportunities to be co-designers of educational technology. 
They use existing, pre-developed tools to teach, and adapt 
their pedagogy and the way the technology is used to suit 
their ends (Bunting et al., 2021). However, teacher-developer 
collaborations could benefit the development of innovations 
and encourage teachers to implement the innovation in 
their classrooms (Groff, 2017). In light of these considerations, 
we -as educational designers- will focus even more on 
collaboration with teachers in our future design efforts.

Insights as developers of educational technology

Based on the development process, we espouse the utility 
of evaluations with teachers and students. In this design 
case, it was very valuable to see the track in action during 
observation moments. The evaluative observations and 
discussions became valuable ‘co-learning’ moments. The 
discussion and interviews revealed differing expectations 
and needs, a common consequence of human-centered 
design approaches (Dimitriadis et al., 2021). Calls to include 
teachers and students through co-development in educa-
tional technology are ever present (Dimitriadis et al., 2021). In 
addition, we found the use of observations very interesting, 
as they are very valuable but often overlooked in the cre-
ation of educational technology. In this design case, formal 
and informal observations gave insights into the needs of 
users to optimize the user experience, providing evidence 
for assessments and challenges that might be missed by a 
teacher. When involving teachers into the DPL-track develop-
ment, it showed that they applauded the adaptivity as it was 
supportive for them, especially to manage differences within 
student groups.

Insights from educators of programming

Textual programming skills are often difficult to acquire (and 
teach). In this respect, we gained insights from the partic-
ipating programming teachers: (a) Using hybrid program-
ming environments can benefit students when learning 
textual programming. In our case, the hybrid programming 
tool demonstrated its utility. Students reported they enjoyed 
the support of the visual blocks to get to know textual 
programming. (b) DPL-tools can support teachers who must 
teach heterogeneous student groups. However, based on 
discussions with teachers and software developers, it was 
found that there are only a few DPL-tools available in the 

context of programming. In anticipation of these tools, we 
will continue to provide adaptivity using learning manage-
ment systems, as we did with the i-Learn platform. As the 
DPL-track demonstrated, the diversity of tools and DPL can 
work in combination to ensure engagement and appropriate 
challenges for students with different levels of knowledge.

Next Steps

Looking forward to the next iteration, we have set up 
an additional follow-up study comprising a pedagogical 
intervention regarding the implementation of the DPL 
track in different classroom settings (Van Schoors et al., 
2023b). In doing so, we wanted to explore and reflect upon 
teachers’ behaviour and actions while using the DPL track. 
The findings of interviews and observations will act as a new 
iteration to further evaluate and optimise the DPL track.
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APPENDIX A

Overview of discussion topics for students 

Topic Exemplary questions  

(1) General How did you like the learning trajectory? Are some things left unclear? Did 
you notice mistakes? Would you do things differently?  

(2) Learning content What did you think of the explanations of concepts such as decomposition, 
algorithmic thinking 

(3) Tasks  What did you think about the tasks? Were they too easy/hard? Did you enjoy 
solving them? Did you expect other tasks? 

(4) Clarity of learning goals What could be the main purpose of this learning trajectory? In what way do 
these tools contribute to your learning? 

(5) Support/instructions What did you think about the supporting videos/tips/solutions during the 
learning trajectory? How did you use them? 

(6) Evaluation What is your opinion about the beginning test? What did you think about 
keymoments A/B/C? 

 
Overview of discussion topics for teachers

Topic Exemplary questions  

(1) General How did you like the learning trajectory? What do you think about the length? 
Did you notice mistakes? Would you do things differently? How do you think 
students will like it?  

(2) Theory What did you think of the theory we provide to the students? Is it broad 
enough? Would you add/remove certain concepts? Is there a good sequence of 
theory?  

(3) Tasks  What did you think about the tasks in general? Were they too easy/hard? Did 
you expect other tasks? Would you use a different didactical approach to teach 
programming?  

(4) Clarity of learning goals Do you think the main purpose of this learning trajectory is clear for the 
students? Would you change anything with this respect?  

(5) Support/instructions What did you think about the supporting videos/tips/solutions during the 
learning trajectory?  

(6) Evaluation What is your opinion about the beginning test? What did you think about 
keymoments A/B/C? Would you add another evaluation moment on any given 
moment in the learning track?  

(7) Adaptivity How do you like the built-in-adaptivity? Is it sufficient? Would you change 
anything about the keymoments to influence the adaptivity? Would you 
increase adaptivity? 
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APPENDIX B

Overview plans for refinement based on teachers’ and students’ feedback.

Topic Teacher Insights  Plans for refinements and design dilemmas  

Theory and learning 
content  

Selection of theory was positively regarded, 
but perceptions of low- and high-skilled 
teachers differed. Students reported the 
need for more visuals reinforcing abstract 
concepts. At the blended and textual 
programming levels, more explanation and 
repetition are needed.  

- More balance between textual and 
visual support/instruction for practice 
and instruction. 

- More repetition and clarification of 
theoretical concepts, especially in 
Phase 2 and 3. 

Tasks  Teachers generally thought tasks were 
sufficient, however, some teachers differed 
in their suggestions depending on their skill 
level. Students found textual programming 
tasks challenging. 

- More balance between textual and 
visual support/instruction for practice 
and instruction. 

Clarity of learning 
goals 

Teachers thought that learning objectives 
were clear but would like repetitional 
summaries of goals during the track for 
further clarity. The learning goals had to be 
clarified for the students as they were 
rather unaware.  

- clarification of learning goals. A brief 
overview of (1) explicit learning goals, 
(2) upcoming software tools and (3) 
their added value will be added at the 
beginning and ending of the DPL-track. 

Support/instructions Teachers were unsure about solutions 
throughout the learning track. They also 
expected a lot of technical issues due to 
the use of different tools. Additionally, they 
were worried about ‘gaming the system’. 
Students discussed ‘freedom of choice’.   

- Students are expected to alternate 
between different screens/tabs. This 
can be a problem for students with, for 
example, low ICT-skills. More technical 
support will be provided during 
transitions. 

 Evaluation Teachers would like a call-back moment 
with regard to quiz questions of key 
moment A, as well as a final evaluative 
moment as an end evaluation. Evaluation 
accurately sorted students into skill groups. 
Students also felt positively about the 
evaluations. 

- Currently, there is a missed learning 
opportunity, as students are not 
provided with answers or feedback 
when answering quiz questions. This 
was a deliberate design choice, as 
feedback (alongside corresponding 
scores) could hamper the unobtrusive 
guidance to a personalised DPL-track 
and therefore also demotivate 
beginning students with no 
programming knowledge. An effort will 
be made to insert some ‘recall’ 
learning moments (that also act as 
feedback) throughout the DPL-track. 

Adaptivity Adaptivity was lauded by all teachers, 
however, teachers also asked for system-
controlled adaptive moments after learner-
controlled moments. 

- two additional key moments (one after 
key moment B and one after key 
moment C; see figures 21 and 22) 
were added to check whether students 
who do not wish to receive extra 
information or tasks, really understand 
the learning content. If not, they will 
also go through extra instruction and 
tasks. Thus, these additional key 
moments will contain system-
controlled adaptivity based on 
cognitive learner parameters. In doing 
so, we will create two shared-
controlled adaptivity sets. 

 


