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Introduction
The complex number system (C) is the extension of the real number system (R) to include imaginary 
numbers. Complex numbers were initially introduced to solve polynomial equations with no 
solutions in R like x2 + 1 = 0. However, they are now essential in learning post-school mathematics-
dependent topics in engineering physics courses (Smith et al., 2019), mechanical vector analysis 
(Bird, 2017), and electric-circuit theory (Bird, 2017; Norlander & Norlander, 2012). A complex 
number is any number that can be written in rectangular form as z = a + bj where a and b are the real 
and imaginary parts, and = −1j   (i.e. j2 = −1). While many mathematicians, GeoGebra, and 
researchers use i, this article opted for j instead as it is referred to by engineering students where i is 
reserved for electrical currents. One can plot a complex number on the ordinary Cartesian plane and 
obtain a useful geometrical representation z = rcosθ + rjsinθ = r (cosθ + jsinθ) = (r; θ), called the polar 
form (see Figure 1). r and θ (measured in degrees or radians) are the modulus and the argument. 

A complex number can also be expressed in exponential form z = re jθ (θ measured in radians only). 
Therefore, a complex number has three forms: rectangular (Cartesian), polar (trigonometric), and 
exponential. θ and r are the same for both polar and exponential forms (Bird, 2017), and for this article, 
the polar and exponential forms have the same geometric but different algebraic representations. 

Complex numbers’ multiple forms and representations are equally essential and intertwine 
algebraic, trigonometric, and exponential functions. Therefore, students must understand how to 

This study explored the utilisation of GeoGebra as a modelling tool to develop undergraduate 
engineering mathematics students’ conceptual and procedural knowledge of complex 
numbers. This mission was accomplished by implementing GeoGebra-enriched activities, 
which provided carefully designed representational support to mediate between students’ 
initially developed conceptual and procedural knowledge gains. The rectangular and polar 
forms of the complex number were connected and merged using GeoGebra’s computer 
algebra systems and dynamic geometric systems platforms. Despite the centrality of complex 
numbers to the undergraduate mathematics curriculum, students tend to experience 
conceptual and procedural obstacles in mathematics-dependent physics engineering topics 
such as mechanical vector analysis and electric-circuit theory. The study adopted an 
exploratory sequential mixed methods design and involved purposively selected first-year 
engineering mathematics students at a South African university. The constructivist approach 
and Realistic Mathematical Education underpinned the empirical investigation. Data were 
collected from students’ scripts. Implementing GeoGebra-enriched activities and providing 
carefully designed representational support sought to enhance students’ conceptual and 
procedural knowledge of complex numbers and problem representational competence. The 
intervention additionally helped students to conceptualise and visualise a complex rectangular 
number. Implications for technology-enhanced pedagogy are discussed.

Contribution: The article provides exploratory insights into the development of undergraduate 
engineering mathematics students’ conceptual and procedural knowledge of complex numbers 
using GeoGebra as a dynamic digital tool. Key findings from the study demonstrated that 
GeoGebra appears to be an effective modelling tool that can be harnessed to demystify the 
complexity of mathematics students’ conceptual and procedural knowledge of complex numbers.
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navigate within and among the three forms. Lesh et al. (1987) 
argue that besides recognising and reconstructing the same 
mathematical concept using multiple representations, one 
should be able to manipulate each representation or form 
and transition flexibly between them. For Even (1998), 
conceptual and procedural understanding of a concept can 
be enhanced by identifying, representing, connecting, and 
intertwining its multiple representations. Furthermore, 
Haapasalo (2003) argues that using dynamic mathematical 
tools to link and connect multiple concept representations 
can significantly enhance conceptual understanding. In view 
of these practical considerations, this article harnessed a 
dynamic mathematical tool to represent, link, and connect 
the multiple representations of complex numbers to enhance 
students’ conceptual and procedural understanding of the 
complex number construct. However, for students to be 
competent to relate, connect, link, and move seamlessly 
within and between complex number forms, they must be 
proficient in their arithmetic skills and possess deep 
knowledge of algebraic, trigonometric, and exponential 
functions. Many undergraduate engineering students’ 
mathematical content knowledge and arithmetic skills of 
complex number-related topics often fall short. However, 
these contributory topics are covered in Grades 10–12 in 
South Africa as required by the Curriculum and Assessment 
Policy Statement (CAPS) for Mathematics in the Further 
Education and Training (FET) Phase (Department of Basic 
Education [DBE], 2011). Ahmad and Shahrill (2012) also 
highlight students’ deficient algebraic skills in complex 
number-related topics.

Furthermore, many studies at various educational levels 
reveal that students need help with conceptual and 
procedural knowledge of complex numbers (Ahmad & 
Shahrill, 2012; Conner et al., 2007; Smith et al., 2015). A study 
by Hui and Lam (2013) revealed that many students need 
clarification on geometrical and algebraic representations of 
complex numbers. In a similar vein, Panaoura et al. (2006) 
observed that most students approach algebraic and 
geometric representations of complex numbers from 
fundamentally different perspectives and consider the two 
representations as separate and autonomous. Similarly, 
Haapasalo (2003) postulates that conceptual and procedural 
understanding of a concept, which many students continue 
to display in complex numbers (Ahmad & Shahrill, 2012; 

Conner et al., 2007; Smith et al., 2015), can be enhanced by 
connecting and intertwining its multiple representations 
using a dynamic mathematics tool. It is against this 
background that the study harnessed the visualisation 
affordances of GeoGebra to facilitate multiple representations 
(Karakok et al., 2014; Kin, 2018) to meaningfully link, connect 
or merge the rectangular and polar forms of complex 
numbers. GeoGebra is an open-source software that combines 
computer algebra system (CAS) and dynamic geometry 
system (DGS) affordances, making it a multi-platform and 
dynamic mathematics software (Hohenwarter & Fuchs, 
2004). GeoGebra’s unique combination of CAS and DGS into 
a single mathematical software package makes it an excellent 
tool to teach a multi-representational topic like complex 
numbers1. One can type the complex number’s rectangular 
form in the CAS platform and view its equivalent polar 
representation in the DGS platform, resembling the Argand 
diagram or vice versa. This affordance of GeoGebra enables 
viewing, linking, connecting, merging, and concurrent 
teaching of complex numbers’ rectangular and polar forms. 
The International Society for Technology in Education (ISTE) 
(2020) also recommends using digital and technological 
mathematical tools to improve the teaching and learning 
of mathematics in various educational settings. The 
intertwinement, level, and guided reinvention principles of 
Realistic Mathematical Education (RME), the Theory of 
Instrumental Orchestration (TIO), and the Theory of 
Instrumental Genesis (TIG) guided this study. 

Research problem
Despite the centrality of complex numbers to post-school 
mathematics-dependent topics in engineering physics 
courses (Smith et al., 2019), mechanical vector analysis (Bird, 
2017) and electric-circuit theory (Bird, 2017; Norlander & 
Norlander, 2012), students at these educational levels 
continue to display conceptual and procedural difficulties 
associated with complex numbers (Ahmad & Shahrill, 2012; 
Conner et al., 2007; Norlander & Norlander, 2012; Panaoura 
et al., 2006; Ramaila & Seloane, 2018; Smith et al., 2015, 2019). 
Ahmad and Shahrill (2012) observed, for example, that most 
students have difficulty comprehending −a  as − ×1 a , 
that is, − =a j a , with = −1j . Conner et al. (2007) also 
found that teachers’ conceptual understanding of complex 
numbers does not go beyond the symbol j. Some students 
even doubt the legitimacy of complex numbers. 

Many students need clarification on different forms and 
representations of complex numbers (Hui & Lam, 2013). Some 
students consider forms and representations of complex 
numbers as separate and autonomous (Panaoura et al., 2006). 
To address the highlighted knowledge gaps, this study 
exploited and harnessed GeoGebra’s visual and multi-
representational affordances (Karakok et al., 2014; Kin, 2018). 
More specifically, DGS and CAS properties of GeoGebra were 
used to link, connect, and merge the two forms of the complex 
number to enhance students’ conceptual knowledge. One 
should be able to transition from one form of representation to 

1.GeoGebra has statistical capabilities as well.
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FIGURE 1: The link between a complex number representation’s rectangular and 
polar forms.
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the other when necessary, as the two forms are equivalent. The 
study anticipates that participation in GeoGebra-facilitated 
activities can enable students to (1) easily navigate within and 
between the various forms and representations of complex 
numbers, (2) convert comfortably and flexibly between 
different forms of representation, and (3) effectively use the 
most appropriate form of representation for a given task. 

Given the articulated research problem, the study is 
accordingly premised on the following research questions: 
(1) How can GeoGebra be harnessed as a modelling tool to develop 
undergraduate engineering mathematics students’ conceptual and 
procedural knowledge of complex numbers? (2) How effective is 
GeoGebra in improving undergraduate engineering mathematics 
students’ overall academic achievements in problem-solving tasks 
involving complex numbers?

Purpose of the study
The study explored the affordances of GeoGebra as a 
modelling tool to develop undergraduate engineering 
mathematics students’ conceptual and procedural knowledge 
of complex numbers. The following objectives underpinned 
the empirical investigation:

• To develop undergraduate engineering mathematics 
students’ conceptual and procedural knowledge of 
complex numbers. 

• To develop undergraduate engineering mathematics 
students’ problem representational competence in 
complex numbers.

• To explore the effectiveness of GeoGebra-enriched 
activities on undergraduate engineering mathematics 
students’ academic achievement in complex numbers 
tasks.

Literature review
Research on the teaching of complex numbers
There is a paucity of studies on the teaching and learning of 
complex numbers; therefore, there is a need for more studies 
on them. Norlander and Norlander (2012) classified students’ 
responses on complex numbers into four categories: (1) 
mathematical artifice, (2) a two-dimensional view, (3) a 
symbolic view, and (4) the mystery view or an ungraspable 
mystery. Responses in the mathematical artifice category 
showed that students view complex numbers as 
manufactured artifices. Responses in the two-dimensional 
view category showed that students conceived a complex 
number as two separate entities instead of one unified entity. 
Responses in the symbolic view category showed that 
students associated a complex number with the symbol j. 
Responses in the mystery view or an ungraspable mystery 
category showed that students attached their attitudes or 
emotions and (mis)conceived a complex number as difficult, 
tricky, complicated, abstract, and obstructing meaningful 
learning. In view of these findings, Norlander and Norlander 
(2012) recommended an innovative visual approach to 
teaching complex numbers. 

Ramaila and Seloane (2018) showed that only 33% (23 out of 
70) of undergraduate engineering mathematics students at a 
South African university could correctly identify, convert, 
and simplify an expression containing multiple forms of 

representations, like 
− −

+ −2
1 4

3 1j e j, and leave their answers 

in rectangular form. Furthermore, Ramaila and Seloane 
found that students needed help to navigate between 
different forms of complex number representation. In 
response to this predicament, the authors recommended the 
implementation of innovative remedial interventions to 
enhance students’ understanding of complex numbers. 
Panaoura et al. (2006) showed that students struggle with 
conceptual and procedural knowledge of complex numbers. 
In particular, the study showed that students have difficulty 
visualising connections and identifying, converting, and 
using the most appropriate forms of complex number 
representation. The students’ connected conception of a 
complex number’s algebraic and geometric forms of 
representation enables them to identify and consistently use 
or switch to the most appropriate form of representation 
(Smith et al., 2019). 

The assertion by Veith and Bitzenbauer (2021) that the 

equation )(= = − = − ⋅ − = ⋅ = −1 1 1 1 1 1
2

i i  is contradictory 
is true. The equation needs to be corrected. The authors used 
the property = ⋅ab a b  of non-negative real numbers on 

negative real numbers to argue that )(− = − ⋅ −1 1 1
2

, and 

hence there is no contradiction, as postulated by them as . 

)(= = − ≠ − ⋅ − = ⋅ = −1 1 1 1 1 1
2

i i . Kin Eng and Fui Fong 
(2020) maintain that these properties are valid in the subset 
(i.e. real numbers) but are not valid in the corresponding 
superset (i.e. complex numbers). Misconceptions arising 
from real numbers contexts can hinder meaningful and 
coherent learning of complex numbers. To address these 
misconceptions, Kin Eng and Fui Fong recommend the 
design and implementation of effective instructional 
interventions.

This empirical study focuses on the efficacy of GeoGebra as a 
mathematical teaching tool, focusing on: (1) the enhancement 
of students’ conceptual knowledge by connecting, linking, 
reifying, and merging the different forms of complex 
numbers and (2) the improvement of students’ overall 
achievements on complex numbers tasks. It is for this reason 
that this study lessened the abstraction of complex numbers 
by exploring the visualisation and multi-representational 
affordances of GeoGebra as a modelling tool. 

Conceptual and procedural knowledge 
Hiebert and Lefevre (1986) define conceptual knowledge as a 
network of knowledge-rich relationships that cannot exist as 
an isolated piece of information. They view conceptual 
knowledge as an integrated and functional grasp of 
mathematical ideas. Conceptual knowledge also refers 
to knowledge of the underlying relationships and 
interconnections of ideas that explain and give meaning to 
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mathematical concepts attained through self-discovery 
(Baroody et al., 2007; Eisenhart et al., 1993; Star, 2005). Rittle-
Johnson et al. (2001) define conceptual knowledge, similarly, 
as an implicit or explicit understanding of a domain’s 
principles and the interrelations between them. Conceptual 
knowledge can be enhanced by using dynamic mathematical 
tools to connect and link a concept’s multiple forms of 
representation (Haapasalo, 2003). On the other hand, 
procedural knowledge refers to the knowledge of the format, 
syntax, rules, and algorithms used to complete mathematical 
tasks (Baroody et al., 2007; Eisenhart et al., 1993; Star, 2005). 
In a sense, procedural knowledge is the competence to carry 
out a mathematical task, the know-how of mathematics but 
not necessarily the know-why (Baroody et al., 2007; Eisenhart 
et al., 1993; Star, 2005). Hiebert and Lefevre (1986) argue that 
procedural knowledge is usually taught through drill and 
practice and can be automated to rapidly, flexibly, accurately, 
and efficiently carry out specific mathematical tasks.

In this study, students shall be deemed to have attained 
conceptual and procedural understanding of a complex 
number if they: (1) implicitly show an understanding that a 
complex number is one coherent mathematical entity 
expressible in three different representations, (2) know how 
the forms and representations are interconnected and can 
further reconstruct each, and (3) can convert or move 
seamlessly within and between the forms of representation 
where appropriate. There are many and sometimes polarised 
theoretical viewpoints on the existence or non-existence of 
the relationship between conceptual and procedural 
knowledge which one must be taught first. Gelman and 
Williams (1998) posit that children first learn concepts 
through intuitive explanation and build procedural skills 
later. In contrast, Siegler and Stern (1998) assert that children 
first learn procedures through explorative behaviour and 
abstract later. Haapasalo and Kadjievich (2000) posit that the 
two pieces of knowledge are related only on a terminological 
level, whereas other researchers assert that conceptual and 
procedural knowledge relate and interact symmetrically or 
asymmetrically with each other and complement each other. 
They should therefore be taught together in a balanced 
manner for meaningful learning of any mathematics topic 
(Hurrell, 2021; Luneta & Makonye, 2010; Rittle-Johnson et al., 
2001; Star, 2005). The schematic representation further 
informs this study of the iterative model proposed by Rittle-
Johnson et al. (2001), depicted in Figure 2.

Rittle-Johnson et al. (2001) postulate that appropriate problem 
representations mediate students’ initial conceptual knowledge 
and procedural knowledge gains. The two pieces of knowledge 
develop iteratively and bi-directionally in any order, 
strengthening each other, and are all essential for competency 
in the domain. A good problem representation is a mediating 
factor between conceptual and procedural knowledge. 

Hallet et al. (2010) identified five clusters of students: those 
with: (1) lower procedural knowledge and conceptual 
knowledge close to the mean, (2) lower conceptual knowledge 

and slightly above mean procedural knowledge, (3) higher 
procedural knowledge and lower conceptual knowledge, (4) 
higher conceptual and lower procedural knowledge, and (5) 
higher conceptual and higher procedural knowledge. 
Students with higher conceptual and higher procedural 
knowledge academically outperformed the other four clusters 
(by leveraging on both forms), followed by those with higher 
conceptual and lower procedural knowledge. Third were 
those with higher procedural but lower conceptual, fourth 
were those with lower conceptual and slightly above mean 
procedural and last were those with insufficient procedural 
and conceptual knowledge close to the mean. 

On the basis of these findings, Hallet et al. (2010) suggested 
that students’ conceptual and procedural knowledge 
development varies depending on various factors, including 
individual differences, and students use this knowledge 
differently. The authors further suggested that contrary to 
earlier findings – concepts first (Gelman & Williams, 1998), 
procedures first (Siegler & Stern, 1998), and conceptual and 
procedural learning in tandem (Rittle-Johnson et al., 2001) – 
conceptual and procedural are unrelated (Haapasalo & 
Kadjievich, 2000) and are well accommodated in the clusters 
depending on participants that dominate the cluster. 

The role of GeoGebra as a modelling tool
This study focused on the effect of GeoGebra-enriched 
activities on undergraduate engineering mathematics 
students’ conceptual and procedural knowledge of complex 
numbers. Research at various educational levels found 
GeoGebra to be effective in the development of students’ 
conceptual and procedural knowledge of many mathematics 
topics such as calculus (Oscal, 2017), functions (Zulnaidi & 
Zamri, 2016), fractions (Bulut et al., 2016; Poon, 2018; Supriadi 
et al., 2014; Thambi & Eu, 2013), circle theorems (Tay & 
Mensah-Wonkyi, 2018), and statistics (Phan-Yamada & Man, 
2018). Karakok et al. (2014) exploited GeoGebra’s multi-
representational and visual affordances to develop teachers’ 
conceptual understanding of complex numbers in a 
professional development programme (PDP). The results 
showed a varying conceptual knowledge of complex 
numbers’ different forms (rectangular, polar, and exponential 
forms) depending on the teacher’s teaching experience and 
not a conceptual understanding of complex numbers. In 
addition, it was further found that GeoGebra allowed 
teachers to intentionally manipulate one independent 

Source: Rittle-Johnson, B., Siegler, R.S., & Alibali, M.W. (2001). Developing conceptual 
understanding and procedural skills in mathematics: An iterative process. Journal of 
Educational Psychology, 93(2), 346–362. https://doi.org/10.1037/0022-0663.93.2.346

FIGURE 2: Iterative model for the development of conceptual and procedural 
knowledge. 
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representation while observing and engaging simultaneously 
with the resulting dynamic changes in the dependent 
representation. In support of these findings, Shadaan and Eu 
(2013) concluded that GeoGebra allows students to self-
discover, inquire, engage physically, interact, and collaborate. 
Furthermore, Dikovic (2009) found that GeoGebra helped 
students to gain positive knowledge and investigation and 
exploration skills through self-discovery while encouraging 
interaction, cooperation, and collaboration. A study 
conducted by Tay and Mensah-Wonkyi (2018) revealed that 
students believed that GeoGebra makes lessons more 
engaging, practical, and easy to understand, thereby 
improving their academic achievements in circle theorems.

Research methodology
Research design
The study adopted a concurrent mixed methods design 
(Creswell, 2018) located within pragmatism. Kaushick and 
Walsh (2019) argue that pragmatism is an appropriate 
research paradigm for gathering evidence to determine the 
effectiveness of interventions. The quantitative and 
qualitative aspects of the design involved scoring of students’ 
pre-test and post-test scripts and qualitative description of 
their conceptual and procedural knowledge in complex 
numbers problem-solving tasks. 

Participants 
The study involved 48 volunteering first-year mechanical 
and industrial, and electrical engineering mathematics 
students at a South African university. Twenty-four 
students from the Mechanical and Industrial Engineering 
groups constituted the control group (CG), while the other 
24 were from the electrical group and formed the 
experimental group (EG). The Mechanical and Industrial, 
and electrical groups didn’t attend modules together and 
hence were purposively selected, minimising potential 
contamination. The test was administered to the two groups 
as a pre-test and post-test. 

Implementation of the GeoGebra-facilitated 
instructional intervention
The lecturer-researcher taught both groups complex numbers 
simultaneously for two weeks. The CG intervention was 
conducted using the conventional marker-and-whiteboard, 
pen-and-paper traditional approach. As for the EG, the 
lecturer was the only one using GeoGebra in class. However, 
he assisted students in downloading the software and 
encouraged them to take activities beyond the mathematics 
classroom. Hence, some activities were given to students as 
‘homework’, and feedback was provided in the next session.

The lecturer-researcher used interactive teaching and learning 
facilitated by implementing the GeoGebra-enabled 
instructional intervention and traditional approach. GeoGebra 
was used to prepare the teaching instructions (which interacted 
with a whiteboard and pen-and-paper) for demonstration, 
explanation, and visualisation during the intervention. 

Hohenwarter and Fuchs (2004) mention it as one of the 
applications of GeoGebra. GeoGebra The lecturer’s TIO and 
students’ TIG were guided by Simon’s (1995)’s Hypothetical 
Learning Trajectory (HLT) driven by the student-centred 
approach of RME and constructivism and presented as a 
mathematical path within six phases (see Table 1). The 
GeoGebra-facilitated instructional activities were designed 
and guided by constructivism and the activity, level, guided 
reinvention, and intertwinement principles of RME.

Phase 1, a precursor for introducing a complex number in 
phase 2, was conventionally underpinned by constructivism 
and the reality and activity approaches of RME. The 
introduction of complex numbers in phase 2 was further 
driven by Driver and Tarran’s (1989) expediency approach 
(using a number system and the need to solve polynomial 
equations). The reality principle of RME includes personally 
meaningful activities (Drijvers, 2012), and therefore 
expediency approach supports it because students are 
familiar with solutions to quadratic equations (DBE, 2011). 
Furthermore, Ndlovu (2013) stresses that mathematics 
learning must include personally meaningful mathematics 
contexts to enhance conceptual knowledge. GeoGebra-
facilitated activities were exploited to lessen complex 
numbers’ abstraction and allow students to see, explore, and 
engage. GeoGebra helps students to see abstract concepts 
(Antohe, 2009).

Two complex numbers, z1 = 2 – j and z2 = 1 + 2j, were created 
on GeoGebra’s graphic/geometrical window. Their sum 
z3 = z1 + z2 = 3 + j was created on GeoGebra’s algebraic 
window. Through Patsiomitou’s (2012) theoretical dragging 
(purposeful transforming to acquire additional knowledge), 
the lecturer-researcher used the mouse to slowly drag z1

 

vertically in the graphic/geometrical window. Through the 

TABLE 1: Summary of Hypothetical Learning Trajectory for the teaching of 
complex numbers.
Phase Designed activities Theories addressed

1 Solutions of linear, quadratic (real 
and non-real roots) equations

• Constructivism
• RME: reality, activity

2 Introduction of a complex number in 
rectangular form; modelling the sum 
and difference of two complex 
numbers in rectangular form

• Constructivism
• RME: activity, level
• Guided reinvention
• Instrumentation: explain-the-

screen, discuss-the-screen
3 Simplifying expressions involving 

sums/differences/products/quotients 
of complex numbers in rectangular 
form

• Constructivism
• RME: activity, level
• Guided reinvention
• Instrumentation: discuss-the-screen, 

work-and-walk
4 Introduction of polar and exponential 

forms of complex numbers. Linking 
polar and rectangular forms. 
Modelling the product/quotient of 
complex polar numbers. The 
conversions between the different 
forms of complex numbers

• Constructivism
• RME: activity, level
• Guided reinvention, intertwinement
• Instrumentation: explain-the-

screen, discuss-the-screen, work-
and-walk

5 Complex expressions involving 
powers and quotients of complex 
numbers

• Constructivism
• RME: activity,
• Guided reinvention, intertwinement
• Instrumentation: discuss-the-

screen, work-and-walk
6 Roots of complex numbers • Constructivism

• RME: activity,
• Guided reinvention, intertwinement
• Instrumentation: discuss-the-screen, 

work-and-walk

RME, Realistic Mathematical Education.
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interactions, guided reinvention, and level principles of 
RME, the lecturer-researcher guided students in linking the 
visible geometrical and algebraic changes of the real parts of 
z1

 to the changes in the dependent z3. The most prominent 
lecturer-researcher orchestrations were explain-the-screen 
and discuss-the-screen. Students engaged, self-discovered, 
and correctly linked the material numerical changes of the 
imaginary parts of z3

 in the algebraic and graphic windows 
when z1

 was dragged slowly horizontally in the geometrical 
window. These processes and procedures are impossible in 
the traditional pen-and-paper approaches. The GeoGebra-
facilitated activities provided students with ample 
opportunities for meaningful explorations, engagements, 
physical interactions, self-discovery, and visualisations of the 
sum modelling of the rectangular form of the complex 
numbers, thereby enhancing the attainment of conceptual 
knowledge (Baroody et al., 2007; Eisenhart et al., 1993; 
Haapasalo, 2003; Star, 2005). Students could understand the 
algebraic and geometric representations of the sum of two 
complex rectangular numbers more than a mere sum of two 
binomials. Ndlovu (2013) pointed out that in constructivism, 
students should be given opportunities to construct 
meanings. This process was abstracted to any number 
of complex rectangular numbers to enhance students’ 
conceptual knowledge that given any two complex numbers, 

z1 = a1 + jb1
 and z2 = a2 + jb2, the algebraic sum formula is z3 = 

(a1 + a2) + j(b1 + b2). This is like Sfard (1991)’s model, and 
vertical mathematisation (Freudenthal, 1973; Van den 
Heuvel-Panhuizen & Drijvers, 2020). Figure 3 (a–f) shows 
how the enablement and visualisation of GeoGebra were 
explored in deriving the sum formula z3 = (a1 + a2) + j(b1 + b2).

Phase 4 was driven through constructivism and the activity, 
interaction, level, guided reinvention, and intertwinement 
principles of RME to represent, connect, link, and merge 
complex numbers’ different representations (rectangular 
and polar) to enhance conceptual understanding of complex 
numbers further (Haapasalo, 2003). The complex number 
z = 2 + 2j was created on GeoGebra’s geometrical window. 
GeoGebra was additionally used to measure the argument 
(45°), and the modulus (2.83) of z = 2 + 2j. The lecturer-
researcher intentionally manipulated and dragged z = 2 + 2j  
to create another complex number, z = 4 + 4j, while students 
were engaging via the activity and interaction principles of 
RME, its modulus changing from 2.83 to 5.66, while the 
argument remained constant, creating z = 4 + 4j = (5.66;45°). 
The complex number z = 2 + 2j was further purposefully 
dragged into giving equations that equate the rectangular 
and polar representations, like z = 3 + 3j = (4.24;45°), z = 5 + 
5j = (7.07;45°), etc., with students conceptualising through 
the guided reinvention and intertwinement principles of 
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FIGURE 3: Exploration of GeoGebra’s enablement and visualisation modelling of the sum of two rectangular complex numbers: (a) z3  =  (2 − i) + (1 + 2i)  =  3 + i, 
(b) z3  =  (2 + i) + (1 + 2i)  =  3 + 3i, (c) z3  =  (2 − 2i) + (1 + 2i)  =  3, (d) z3  =  (1 − i) + (1 + 2i)  =  2 + i, (e) z3  =  (3 − i) + (1 + 2i)  =  4 + i, (f) z3  =  (1 + 2i) + (4 − i)  =  5 + i.

http://www.pythagoras.org.za


Page 7 of 14 Original Research

http://www.pythagoras.org.za Open Access

RME the connection and linkage between these two 
representations (rectangular and polar). Moreover, z = 2 + 2j 

was dragged anticlockwise, giving equations like z = 2j = (2;90°), 
z = – 2 – 2j = –2 = (2;180°), z = – 4j = (4;270°), and so on. Students 
through the level principle of RME self-discovered through 
meaningful processes and procedures the linkage and 
connections between the rectangular and polar forms of a 
complex number (like vertical mathematisation; Freudenthal, 
1973; Van den Heuvel-Panhuizen & Drijvers, (2020), while 
understanding it not as two but one merged coherent 
mathematics concept expressible in different forms and 
representations. Explain-the-screen, discuss-the-screen, and 
work-and-walk were the lecturer-researcher’s most frequent 
orchestrations. Figure 4 (a–f) shows how GeoGebra’s 
visualisation affordances and enablement were explored to 
lessen the abstraction of a complex number representing, 
linking, and connecting complex number’s polar and 
rectangular forms, thereby enabling students to see complex 
numbers (Antohe, 2009), and enhance students’ conceptual 
knowledge of complex numbers (Haapasalo, 2003).

Data collection
Quantitative and qualitative data were collected through a 
complex analysis test (CAT), administered as a pre-test and 

post-test to both EG and CG. Students’ scripts (pre-test and 
post-test) were analysed qualitatively for conceptual and 
procedural knowledge and quantitatively to determine 
general academic achievements and improvements in tasks 
involving complex numbers. To ensure the validity and 
reliability of the CAT, students’ scripts were reviewed and 
moderated by two lecturers (who were mathematics experts 
and lecturing the other first-year engineering mathematics 
groups).

Data analysis 
Students’ scripts were analysed qualitatively to determine 
the effectiveness of GeoGebra in developing undergraduate 
engineering mathematics students’ conceptual and procedural 
knowledge of complex numbers.

Students’ scripts were also analysed quantitatively using 
both descriptive and inferential statistics guided by the 
following four null hypotheses to gauge the effectiveness of 
GeoGebra-enriched activities on undergraduate engineering 
mathematics students’ overall academic achievement in 
tasks involving complex numbers:

• H01: There is no statistically significant difference between 
the pre-test mean scores of EG and CG.
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• H02: There is no statistically significant difference between 
the pre-test and the post-test mean scores of EG.

• H03: There is no statistically significant difference between 
the pre-test and the post-test mean scores of CG.

• H04: There is no statistically significant difference between 
the post-test mean scores of EG and CG.

Appropriately paired (dependent) and independent t-tests 
were conducted using Statistical Package for Social Sciences 
(SPSS) version 25 to test the hypotheses. This indicated 
whether there was any statistically significant difference 
between or within the means of the two groups. Cohen’s d was 
further calculated using the correlation between the means to 
determine the effect size or practical significance between and 
within the means of the two groups (EG and CG). 

Results
Although the enablement and visual affordances of 
GeoGebra-facilitated intervention underpinned by the six 
principles of RME and carefully designed problem 
representation support improve students’ problem 
representation and enhanced conceptual and procedural 
knowledge of some students, the CG students also benefitted 
from the conventional approach.

Below are EG and CG vignette samples tracing conceptual 
and procedural understanding progress (or lack thereof) of 
two students’ pre-test and post-test. Figure 5 and Figure 6 are 
an EG student’s pre-test and post-test. Figure 7 and Figure 8 
are a CG student’s pre-test and post-test. 

Students from both groups benefitted from their respective 
interventions for the problem representational support. 
Although both sampled students improved their marks for 
these two problem representations support test items, there 
are some conceptual and procedural concerns. The most 
appropriate approach for test item one is as follows:

(2 < 30°)3 = 23 < 3·30° = 8 < 90°. [Eqn 1]

However, the EG student converted the argument, 30°, from 
degrees into radians first before the calculations, which is a long 
and unnecessary approach. Maybe the student confused the 

polar form (expressible in degrees or radians) with an 
exponential form, where the argument must be in radians only.

The most appropriate approach for test item two is as 
follows:

2 2 2
3

3 3 3

e
e ej
j j

�
�
�
�

�
�
� � � � �  [Eqn 2]

Although the CG student got the correct answer in both tests, 
the concern is the change in the student’s correct procedural 
approach used during the pre-test. 

FIGURE 5: Vignette of EG student showing initial knowledge during the pre-test.

FIGURE 6: Vignette of EG student showing post-intervention knowledge during 
post-test.

FIGURE 7: Vignette of CG student’s pre-test showing initial knowledge.

FIGURE 8: Vignette of CG student’s post-test script showing post-intervention 
knowledge.

http://www.pythagoras.org.za


Page 9 of 14 Original Research

http://www.pythagoras.org.za Open Access

The student’s mark improved from 50% (2 out of 4: see Figure 
7) to 100% (4 out of 4; see Figure 8). The EG student’s mark 
improved from 0% (0 out of 4; see Figure 5) to 100% (4 out of 
4; see Figure 6). However, their procedural knowledge is 
unconvincing.

Table 2 shows the total marks for these two conceptual and 
procedural understanding problem representations support 
test items.

Furthermore, the vignettes shown in Figure 9 and Figure 10  
are EG and CG students’ sample scripts comparing 
their pre-test and post-test conceptual and procedural 
understanding progress (or lack thereof) to represent the sum 
on the Argand diagram. They all obtained zero in the pre-test 
because they misunderstood the question and used the 
algebraic approach. However, they corrected it after their 
respective interventions in the post-test. As a result, both 
their marks improved from 0% (0 out of 3; see Figure 8 and 
Figure 10) to 100% (3 out of 3; see Figure 11 and Figure 12).

The lecturer-researcher guided the EG and CG students in 
the geometric interpretation meaning of the sum of 
rectangular complex numbers. Subsequently, the two sample 
students used different approaches. However, what is worth 
mentioning is the students’ preferences in the post-test, the 
noticeable power and influence of GeoGebra’s visualisation, 
and enablement affordance in EG students. The EG student’s 
approach (see Figure 11) mimics GeoGebra’s modelling 
approach (see Figure 3).

Table 3 shows students’ total marks for the test item on the 
sum of complex numbers on the Argand diagram.

Although a few CG students showed conceptual and 
procedural improvements (see Figure 13), many continued 
to need help with difficulties that prevailed post interventions 

(see Figure 14). It seems the student knew that both 
e j
1
2

 and 

(1.3 < –60°) must be converted to rectangular form. The 
student’s mark improved from 0% (0 out of 4) to 50% (2 out 
of 4), hindered by inappropriate problem representations 
and conversions hinting at conceptual and procedural 
deficiencies. In contrast, some EG students (see Figure 15 and 
Figure 16) showed what Smith et al. (2019) call ‘expert-like 
behaviours’. The visual and enablement of GeoGebra helped 
the students connect the rectangular and polar forms of 
complex numbers (see Figure 4). Students could conceptualise 

FIGURE 9: EG student’s initial geometrical interpretation of the sum of 
rectangular complex numbers.

FIGURE 10: CG student’s initial geometrical interpretation of the sum of 
rectangular complex numbers.

FIGURE 11: EG student’s post-intervention geometrical interpretation of the 
sum of rectangular complex numbers.

TABLE 2: Students’ total test item marks after problem representation support 
(n = 24).
Group Pre-test Post-test

Experimental group 31/(24×4) = 31/96 = 32.29% 86/(24×4) = 86/96 = 89.58%
Control group 43/(24×4) = 43/96 = 44.79% 66/(24×4) = 66/96 = 68.75%

TABLE 3: Students’ total marks for the sum of complex numbers on the Argand 
diagram (n = 24).
Group Pre-test Post-test

Experimental 13/(24×3) = 13/72 = 18.06% 62/(24×3) = 62/72 = 86.11%
Control 11/(24×3) = 11/72 = 15.28% 46/(24×3) = 46/72 = 63.89%

FIGURE 12: CG student’s post-intervention geometrical interpretation of the 
sum of rectangular complex numbers.

FIGURE 13: CG student’s post-intervention De Moivre’s theorem.
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the two forms of complex numbers as just two ways of 
expressing the same complex number, no longer seeing the 
two representations as two autonomous and separate entities 
as observed in Panaoura et al. (2006)’s study, enhancing 
conceptual and procedural knowledge as postulated by 
Haapasalo (2003), freeing the student to manipulate within 
and move between the different forms, identifying the most 
appropriate form (see Figure 15 and Figure 16). The student 
correctly represented the problem, navigated the rectangular, 
exponential, and polar forms, and converted these different 
representations into the rectangular form. This shows that 
the GeoGebra-enriched intervention enhanced students’ 
conceptual and procedural knowledge by merging the three 
other forms and representations, thus demonstrating an 
understanding that a complex number is one coherent 
mathematical entity. The student switched from the 

exponential, algebraic, and polar forms, 
e j
1
2 , −9  and 

(1.3 < – 60°), into the appropriate rectangular form as reflected 
in Figure 15 and Figure 16. The student’s marks for this 
conceptual and procedural knowledge test item improved 
from 0% (0 out of 4) in the pre-test (see Figure 17), to 100% 
(4 out of 4) in the post-test (see Figure 16). The student in 
Figure 15 accurately converted the polar representations 

(1 < 1.2)3, (3 < –25.78°)3 and 
2 12.06
27 1.35
<
< −

, and appropriately 

converted the measuring units of the arguments from 

degrees to radians. This improved student marks for this test 
item to 80% (4 out of 5).

Table 4 shows students’ total marks for the three ‘expert-like 
behaviours’ test items. The marks reflect a significant 
improvement for both EG and CG.

Although GeoGebra-enriched intervention helped students 
to conceptualise and visualise a complex rectangular number, 
including the role and meaning of the symbol j, there were 
still conspicuous difficulties post intervention observed from 
both groups. Ahmad and Shahrill (2012) observed similar 
challenges. Some noticeable deficiencies are reflected in 
Figure 18.

Some students, in both the EG and the CG, displayed 
fragmented basic algebraic and exponential knowledge 
and misconceptions before and after the intervention (see 
Figure 19 and Figure 20). In addition, one of the students 
correctly represented j4 + 3 as (j2)2 + 3 and correctly 
substituted j into (j2)2 + 3 to get (–1)2 + 3 in the pre-test 
(see Figure 19). However, weak exponential knowledge 

FIGURE 17: EG student’s pre-test conceptual and procedural knowledge.

FIGURE 16: EG student’s post-intervention conceptual and procedural 
knowledge.

FIGURE 14: CG student’s post-intervention conceptual and procedural 
knowledge.

FIGURE 18: Basic algebraic and exponential misconceptions, errors, and role of j 

continued post intervention.

FIGURE 15: EG student’s post-intervention De Moivre’s theorem.

TABLE 4: Students’ total marks for the three ‘expert-like behaviours’ test items 
(n = 24).
Group Pre-test Post-test 

Experimental 27/(24×9) = 27/216 = 12.5% 184/(24×9) = 184/216 = 85.19%
Control 36/(24×9) = 36/216 = 16.7% 121/(24×9) = 121/216 = 56.02%
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made the student believe that (–1)2 = –1, resulting in a drop 
of 33.33% marks for this test item. The same student wrote 
j7 – 4 = (j2)5 – 4 = (–1)5 – 4 = –5 in the pre-test (see Figure 19). 
Although the student corrected j4 + 3 and improved the 
marks for this test item from 66.67% (2 out of 3) to 100% (3 
out of 3), the marks dropped by 33.33% in the other test 
item in the post-test (see Figure 20). In particular, the 
student wrote j7 –4 = –1 – 4 = –3. The student’s marks for 
these two items remained at 50% (3 out of 6) in the tests, and 

it could have been better in both tests had it not been for 
prevailing misconceptions and weak algebraic knowledge, 
as highlighted above.

As indicated earlier, both groups benefitted from their 
respective interventions, and their overall academic 
achievements on complex numbers tasks improved and are 
reflected in Table 5 and Table 6.

Table 5 results show that:

• The CG pre-test mean score (M = 13.58 and standard 
deviation [SD] = 4.52), EG pre-test mean score (M = 
13.75 and SD = 3.11), t = –0.149, and with p = 0.882 
(greater than 0.05) meant that the prior knowledge 
difference of the two groups in the pre-test was 
insignificant. Therefore, the first hypothesis is rejected; 
the two groups had similar conceptual and procedural 
knowledge of tasks involving complex numbers before 
their respective interventions.

• The CG post-test mean score (M = 19.5 and SD = 4.66), EG 
post-test mean score (M = 24.21 and SD = 3.69), t = –3.88 

and with p = 0.0003 (less than 0.05) meant that the post 
knowledge difference of the two groups in the post-test 
was significant, and the fourth hypothesis is therefore 
rejected. The EG’s mean score was higher than the CG’s, 
and Cohen’s d (d = 1.12) was larger than 0.8, which 
indicates a large significant improvement (Cohen, 1988) 
in the conceptual and procedural knowledge of the EG. 
Therefore, the GeoGebra instructional activities enhanced 
EG students’ conceptual and procedural understanding 
and solved tasks involving complex numbers better than 
CG students. The EG’s knowledge gains were far superior 
to the CG’s.

The Table 6 results show that:

• The CG mean score difference between the pre-test and 
the post-test (M = 5.92 and SD = 3.73), t = 7.773 and with 
p < 0.00001 < 0.05, meant that the CG knowledge improved 
significantly from the pre-test to the post-test. Therefore, 
the third hypothesis is rejected. Cohen’s d (d = 1.59; greater 
than 0.08) indicates a large significant improvement 
(Cohen, 1988) in the conceptual and procedural 

FIGURE 19: Weak algebraic and exponential displayed pre intervention.

FIGURE 20: Weak algebraic and exponential knowledge that persisted post 
intervention.

TABLE 5: Independent t-test of the pre-test and post-test for both groups (n = 24) at level 5%. 
Test Group Mean Standard deviation t-value p-value Cohen’s d Conclusion (p)

Pre-test Control 13.58 4.52 -0.149 0.8820 - < 0.05*
Experimental 13.75 3.11 - - - -

Post-test Control 19.50 4.66 -3.880 0.0003 1.12 < 0.05**
Experimental 24.21 3.69 - - - -

*, Not significant; **, significant.

TABLE 6: Dependent samples t-test results for the pre-test and post-test for both groups (n = 24) at level 5%.
Group Test Mean Standard deviation t-value p-value Cohen’s d Conclusion (p)

Control Pre-test 5.92 3.73 7.773 < 0.00001 1.59 < 0.05*
Post-test - - - - - -

Experimental Pre-test 10.46 3.60 14.235 < 0.00001 2.91 < 0.05*
Post-test - - - - - -

*, Significant.
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knowledge of the CG, and the group, therefore, benefitted 
from the conventional teaching approach.

• The EG mean difference score between the pre-test and 
the post-test (M = 10.46 and SD = 3.6), t = 14.235 and with 
p < 0.00001 < 0.05, meant that the EG knowledge improved 
significantly from the pre-test to the post-test, and 
therefore the second hypothesis is rejected. Thus, the EG 
benefitted from the GeoGebra instructional activities. 
Cohen’s d (d = 1.59; greater than 0.8) indicates a large 
significant improvement (Cohen, 1988) in the conceptual 
and procedural knowledge of the EG.

Discussion 
After providing problem representation support, EG 
students’ total marks for the two problem representational 
support test items improved by 177.42% to an average of 3,58 

compared to 53.49% recorded by the CG to 2.75. The EG 
showed significant improvement, which can be attributed to 
the effectiveness of GeoGebra-enriched activities: (1) 
modelling the sum and difference of rectangular complex 
numbers to give it a geometrical meaning, and (2) linking the 
rectangular and polar forms of complex numbers. The 
activities, according to Haapasalo (2003), enhance conceptual 
and procedural knowledge and help students who, according 
to Panaoura et al. (2006), view the two complex number 
forms as separate and autonomous, hindering students’ 
conceptual and procedural understanding and (3) modelling 
the product and quotient of the polar form of complex 
numbers. Significance testing for the total marks for these 
two correct problem representation test items yielded a chi-
square statistic of 4.2997 and a p-value of 0.038118 which was 
significant at p < 0.05. Therefore, GeoGebra-facilitated 
intervention aided EG to improve their problem 
representations. Consequently, their marks are considerably 
higher than CG’s traditional pen-and-paper teaching and 
learning. This finding is consistent with other studies that 
attained similar results (e.g. Bulut et al., 2016; Supriadi et al., 
2014; Thambi & Eu, 2013).

The EG’s total marks for representing the sum of complex 
numbers on the Argand diagram improved by 376.92% 

compared to 318.18% recorded by the CG. The average mark 
of the EG was 86.11% (62 out of 72) compared to the CG’s 
62.89% (46 out of 72) on the post-test. The significance testing 
for the total marks for this test item yielded a chi-square 
statistic of 0.0841 and a p-value of 0.771876 which was not 
significant at p < 0.05.

Students’ total marks for the three ‘expert-like behaviours’ 
test items showed that the EG’s total marks for the pre-test 
conceptual and procedural test items were 33.33% less than 
the CG’s. However, this changed in the post-test as the EG 
total marks were 52.07% more than the CG. It is worth 
mentioning that the EG’s average mark for the two items in 
the post-test was a remarkable 85.19% (184 out of 216) 
compared to the CG’s 56.02% (121 out of 216). The 
significance testing for the total marks for these two 

conceptual and procedural test items yielded a chi-square 
statistic of 6.5152 and a p-value of 0.10696 which was 
significant at p < 0.05. These findings strongly suggest that 
GeoGebra-enriched activities enabled students in the EG to 
attain a connected conception of the algebraic and geometric 
forms and representations of a complex number. The 
findings are consistent with other studies that achieved 
similar results (e.g. Oscal, 2017; Poon, 2018; Supriadi et al., 
2014). Karakok et al. (2014) exploited GeoGebra’s multi-
representational and visual affordances to develop teachers’ 
conceptual understanding of complex numbers.

As indicated earlier, both groups benefitted from their 
respective interventions. At the post-test, (1) the CG’s 
pre-post-test mean score (M = 5.92 and SD = 3.73) was a 
statistically significant difference (t(23) = 7.773 at p < 0.05). 
Cohen’s d is calculated as d = 1.59, indicating a considerable 
effect size (Lakens, 2013). Therefore, the null hypothesis is 
rejected in favour of the alternative hypothesis. (2) The 
EG’s pre-post-test mean score (M = 10.46 and SD = 3.6) was 
also a statistically significant difference (t(23) = 14.235 at 
p < 0.05). Cohen’s d is calculated as d = 2.91, indicating a 
considerable effect size (Lakens, 2013). Therefore, the null 
hypothesis is rejected in favour of the alternative hypothesis.

However, what is noticeable is the independent t-test of the 
EG post-test (M = 24.21 and SD = 3.69) compared to the CG 
(M = 19.5 and SD = 4.66), which was a statistically significant 
difference (t(23) = –3,88, p < 0.05). Cohen’s d is calculated as 
d = 1.12, indicating a large effect size (Lakens, 2013). 
Therefore, the null hypothesis is rejected in favour of the 
alternative hypothesis. The EG students were far better 
solvers of complex numbers; that is, GeoGebra enhanced EG 
students’ conceptual and procedural knowledge. GeoGebra-
facilitated interventions helped EG students improve their 
overall academic achievements in tasks involving complex 
numbers considerably more than CG students from the 
conventional approach. The students could identify and 
consistently use or switch to the most appropriate form, 
representation, or unit. This achievement reflected their 
understanding that a complex number is one coherent 
mathematical entity and should convert or move within and 
between the forms, representations, and units where 
appropriate. This inference is consistent with several studies 
that demonstrated how GeoGebra-enriched intervention 
positively impacts the development of students’ conceptual 
and procedural knowledge of many mathematics topics (e.g. 
Oscal, 2017; Poon, 2018; Shadaan & Eu, 2013 Supriadi et al., 
2014; Zulnaidi & Zamri, 2016). Tay and Mensah-Wonkyi’s 
(2018) study revealed that students believed GeoGebra 
makes lessons more engaging, practical, and easy to 
understand, leading to improved academic achievements in 
circle theorems.

Although most students displayed what Smith et al. (2019) 
call ‘expert-like behaviours’, contradicting other research 
studies, which attained different findings due to 
implementing traditional instruction (e.g. Hui & Lam, 2013; 
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Panaoura et al., 2006; Ramaila and Seloane, 2018), students’ 
conceptual and procedural knowledge misconceptions from 
both groups continued to be prevalent post interventions.

Conclusion and recommendations
The study’s key findings strongly suggest that implementing 
GeoGebra-enriched activities is promising for developing 
students’ conceptual and procedural knowledge of complex 
numbers. The provision of carefully designed representation 
enhanced students’ problem representational competence 
linking their initial conceptual and procedural knowledge 
gains. These gains translated into improved achievement in 
tasks involving complex numbers. The prevalence of 
misconceptions hurt students’ learning of complex numbers. 
There is a crucial need to examine the pedagogical affordances 
of modelling tools such as GeoGebra to enhance students’ 
conceptual and procedural knowledge of mathematics 
topics. Similarly, more complex numbers topics and subtopics 
could be included in the study, and GeoGebra’s effect could 
further be investigated over a more extended period. 
According to Chan and Leung (2014) and Juandi et al. (2021), 
short-duration treatments tend to have more effect than 
longer treatments. Juandi et al. added that students can be 
encouraged to put in more effort simply because of the new 
treatment. Progressive realisation of this key strategic 
imperative would immensely contribute to the meaningful 
enhancement of human capital development in its broadest 
sense through skills development.

Acknowledgements
Competing interests
The authors declare that they have no financial or personal 
relationships that may have inappropriately influenced them 
in writing this article.

Authors’ contributions
S.M.P. conceptualised the study and was involved in 
methodology, formal analysis, investigation, resources and 
writing, reviewing and editing the article. S.R. and M.N. 
assisted with validation, formal analysis, investigation, and 
writing, reviewing and editing the final article.

Ethical considerations
The Research Ethics Committee of the Faculty of Education 
at the University of Johannesburg granted permission to 
conduct research (ethical clearance number Sem. 1-2022-026).

Funding information
This research received no specific grant from any funding 
agency in the public, commercial or not-for-profit sectors.

Data availability
The authors confirm that the data supporting the findings of 
this study are available within the article.

Disclaimer
The views and opinions expressed in this article are those 
of the author and do not reflect the official policy or 
position of the World Health Organization.

References
Ahmad, A.W., & Shahrill, M. (2012). Improving post-secondary students’ algebraic 

skills in the learning of complex numbers. International Journal of Science and 
Research (IJSR), 3(8), 273–279.

Antohe, V. (2009). Limits of educational soft “GeoGebra” in a critical constructive 
review. Anale. Seria Informatică, VII, 47–54.

Baroody, A.J., Feil, Y., & Johnson, A.R. (2007). An alternative reconceptualization of 
procedural and conceptual knowledge. Journal for Research in Mathematics 
Education, 38(2), 115–131.

Bird, J. (2017). Higher engineering mathematics (8th ed.). Taylor & Francis Group.

Bulut, M., Akcakin, H.U., Kaya, G., & Akcakin, V. (2016). The effects of GeoGebra on 
third grade primary students’ academic achievement in fractions. International 
Electronic Journal of Mathematics Education, 11(2), 347–355. https://doi.
org/10.29333/iejme/338

Chan K.K., & Leung, S.W. (2014). Dynamic geometry software improves mathematical 
achievement: Systematic review and meta-analysis. Journal of Educational 
Computing Research, 51(3), 311–325, 2014. https://doi.org/10.2190/EC.51.3.c

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge 
Academic.

Conner, E., Rasmussen, C., Zandieh, M., & Smith, M. (2007). Student understanding of 
complex numbers. In Electronic Proceedings for the 10th Special Interest Group of 
the Mathematical Association of America on Research in Undergraduate 
Mathematics Education, 2007. Retrieved from http://sigmaa.maa.org/rume/
crume2007/papers/conner-rasmussen-zandieh-smith.pdf

Creswell, J.W. (2018). Research design: Qualitative, quantitative, and mixed methods 
approach (5th ed.). Sage.

Department of Basic Education (DBE). (2011). National curriculum statement: (Further 
Education and Training Phase Grades 10–12). Department of Education.

Dikovic, L. (2009). Applications GeoGebra into teaching some topics of mathematics at 
the college level. Computer Science and Information Systems, 6(2), 191–203. 
https://doi.org/10.2298/CSIS0902191D

Drijvers, P. (2012, July 8–July 15). Digital technology in mathematics education: Why it 
works (or doesn’t). In Selected Regular Lectures from the 12th International 
Congress on Mathematical Education (pp. 135–151). Springer International 
Publishing.

Driver, A.D., & Tarran, D.S.G. (1989). Five approaches to the teaching of complex 
numbers. Teaching Mathematics and Its Applications, 8(3), 122–127. https://doi.
org/10.1093/teamat/8.3.122

Eisenhart, M., Borko, H., Underhill, R., Brown, C., Jones, D., & Argard, P. (1993). 
Conceptual knowledge falls through the cracks: Complexities of learning to teach 
mathematics for understanding. Journal for Research in Mathematics, 24(1), 
8–40. https://doi.org/10.5951/jresematheduc.24.1.0008

Even, R. (1998). Factors involved in linking representations of functions. Journal of 
Mathematical Behavior, 17(1), 105–121. https://doi.org/10.1016/S0732-
3123(99)80063-7

Freudenthal, H. (1973). Mathematics as an educational task. Reidel.

Gelman, R., & Williams, E.M. (1998). Enabling constraints for cognitive development 
and learning: Domain specificity and epigenesis. In D. Kuhn & R.S. Siegler (Eds.), 
Handbook of child psychology: Cognition, perception, and language (5th ed., vol. 2, 
pp. 575–630). Wiley.

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: 
An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: 
The case of mathematics (pp. 1–27). Lawrence Erlbaum.

Haapasalo, L. (2003). The conflict between conceptual and procedural knowledge: 
Should we need to understand in order to be able to do, or vice versa? In 
L. Haapasalo & K. Sormunen (Eds.), Towards meaningful mathematics and science 
education. Proceedings of the 19th FAMSER Symposium. University of Joensuu. 
Bulletins of the Faculty of Education, 86, 1–20.

Haapasalo, E., & Kadijievich, D. (2000). Two types of mathematical knowledge and 
their relation. Journal für Mathematik-Didaktik, 21, 139–157. https://doi.
org/10.1007/BF03338914

Hallet, D., Nunes, T., & Bryant, P. (2010). Individual differences in conceptual and 
procedural knowledge when learning fractions. Journal of Educational Psychology, 
102(2), 395–406. https://doi.org/10.1037/a0017486

Hohenwarter, M., & Fuchs, K. (2004). Combination of dynamic geometry, algebra and 
calculus in the software system GeoGebra. Zdm, 128–133. Retrieved from https://
api.semanticscholar.org/CorpusID:15254420

Hui, T.S., & Lam, T.T. (2013). On the teaching of the representation of complex numbers 
in the Argand diagram. Learning Science and Mathematics, 8, 75–86.

Hurrell, D.P. (2021). Conceptual knowledge or procedural knowledge or conceptual 
knowledge and procedural knowledge: Why the conjunction is important for 
teachers. Australian Journal of Teacher Education, 46(2), 4. https://doi.
org/10.14221/ajte.2021v46n2.4

http://www.pythagoras.org.za
https://doi.org/10.29333/iejme/338
https://doi.org/10.29333/iejme/338
https://doi.org/10.2190/EC.51.3.c
http://sigmaa.maa.org/rume/crume2007/papers/conner-rasmussen-zandieh-smith.pdf
http://sigmaa.maa.org/rume/crume2007/papers/conner-rasmussen-zandieh-smith.pdf
https://doi.org/10.2298/CSIS0902191D
https://doi.org/10.1093/teamat/8.3.122
https://doi.org/10.1093/teamat/8.3.122
https://doi.org/10.5951/jresematheduc.24.1.0008
https://doi.org/10.1016/S0732-3123(99)80063-7
https://doi.org/10.1016/S0732-3123(99)80063-7
https://doi.org/10.1007/BF03338914
https://doi.org/10.1007/BF03338914
https://doi.org/10.1037/a0017486
https://api.semanticscholar.org/CorpusID:15254420
https://api.semanticscholar.org/CorpusID:15254420
https://doi.org/10.14221/ajte.2021v46n2.4
https://doi.org/10.14221/ajte.2021v46n2.4


Page 14 of 14 Original Research

http://www.pythagoras.org.za Open Access

Fuller, M.T. (2020). ISTE Standards for students, digital learners, and online learning. In 
M. Montebello (Ed.), Handbook of Research on Digital Learning (pp. 284-290). IGI 
Global. https://dx.doi.org/10.4018/978-1-5225-9304-1.ch017

Juandi, D., Kusumah, Y.S., Tamur, M., Krisna, S., Perbowo, M. & Wijaya, T.T. (2021). A 
meta-analysis of GeoGebra software decade of assisted mathematics learning: 
What to learn and where to go? Heliyon, 7(5), e06953. https://doi.org/10.1016/ 
j.heliyon.2021.e06953

Karakok, G., Soto-Johnson, H., & Dyben, S.A. (2014). Secondary teachers’ conception 
of various forms of complex numbers. Journal of Mathematics Teacher Education, 
18, 327–351. https://doi.org/10.1007/s10857-014-9288-1

Kaushick, V., & Walsh, C.A. (2019). Pragmatism as a research paradigm and its 
implications for social work research. Faculty of Social Work, University of Calgary.

Kin Eng, C., & Fui Fong, J. (2020). Knowing and grasping of two university students: 
The case of complex numbers. The Mathematics Enthusiast, 17(1), Article 11.

Kin, K.P. (2018). Learning fraction comparison by using a dynamic mathematics 
software GeoGebra. International Journal of Mathematical Education in Science 
and Technology, 59(3), 469–479. https://doi.org/10.1080/0020739X.2017.1404649

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative 
science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. 
https://doi.org/10.3389/fpsyg.2013.00863

Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among 
representations in mathematics learning and problem solving. In C. Janvier (Ed.), 
Problems of representation in mathematics teaching and learning (pp. 33–40). 
Lawrence Erlbaum Associates.

Luneta, K., & Makonye, P.J., (2010). Learners’ errors and misconceptions in elementary 
analysis: A case study of a Grade 12 class in South Africa. Acta Didactica 
Napocensia, 3(3). 

Ndlovu, M. (2013). Revisiting the efficacy of constructivism in mathematics education. 
Philosophy of Mathematics Education Journal, 27. Retrieved from http://people.
exeter.ac.uk/PErnest/pome27/index.html

Norlander, M., & Norlander, E. (2012). On the concept image of complex number. 
International Journal of Mathematics Education in Science and Technology, 43(5), 
627–641. https://doi.org/10.1080/0020739X.2011.633629

Oscal, M.F. (2017). The effect of GeoGebra on students’ conceptual and procedural 
knowledge: The case of applications of derivative. Canadian Center of Science and 
Education. Higher Education Studies, 7(2), 67–78. https://doi.org/10.5539/hes.
v7n2p67

Panaoura, A., Elia, I., Gagatsis, A., & Giatilis, G.P. (2006). Geometric and algebraic 
approaches in the concept of complex numbers. International Journal of 
Mathematical Education in Science and Technology, 37(6), 681–706. https://doi.
org/10.1080/00207390600712281

Patsiomitou, S. (2011) Theoretical dragging: A non-linguistic warrant leading to dynamic 
propositions. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International 
Gro. Retrieved from https://www.researchgate.net/publication/230648462

Phan-Yamada, T., & Man, S.W. (2018). Teaching statistics with GeoGebra. North 
American GeoGebra Journal, 7(1), 14–24.

Poon, K.K. (2018). Learning fraction comparison by using a dynamic mathematics 
software - GeoGebra. International Journal of Mathematics Education in Science and 
Technology, 49(3), 469–479. https://doi.org/10.1080/0020739X.2017.1404649

Ramaila, S., & Seloane, P. (2018). South African undergraduate engineering students’ 
understanding of complex numbers. Proceedings of the 11th Annual International 
Conference of Education, Research and Innovation, Seville, 12–14 November.

Rittle-Johnson, B., Siegler, R.S., & Alibali, M.W. (2001). Developing conceptual 
understanding and procedural skills in mathematics: An iterative process. Journal 
of Educational Psychology, 93(2), 346–362. https://doi.org/10.1037/0022-
0663.93.2.346

Siegler, R.S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A 
microgenetic analysis. Journal of Experimental Psychology: General, 127(4), 
377–397. https://doi.org/10.1037/0096-3445.127.4.377

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on 
processes and objects as different sides of the same coin. Educational Studies in 
Mathematics, 22(1), 1–36. https://doi.org/10.1007/BF00302715

Shadaan, P., & Eu, L.K. (2013). Effectiveness of using GeoGebra on students’ 
understanding in learning circles. The Malaysian Online Journal of Educational 
Technology, 1(4), 1–11.

Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist 
perspective. Journal for Research in Mathematics Education, 26(2), 114–145. 
https://doi.org/10.2307/749205

Smith, E.M., Zwolak, J.P., & Manogue, C.A. (2015, July 29–30). Student difficulties with 
complex numbers. Physics Education Research Conference 2015 (pp. 311–314). 
College Park, MD. https://doi.org/10.1119/perc.2015.pr.073

Smith, E.M., Zwolak, J.P., & Manogue, C.A. (2019). Isolating approaches: How middle-
division physics students coordinate forms and representations in complex 
algebra. Physical Review Physics Education Research, 15, 010138. https://doi.
org/10.1103/PhysRevPhysEducRes.15.010138

Star, J.R. (2005). Reconceptualizing procedural knowledge. Journal for Research in 
Mathematics Education, 36(5), 404–411.

Supriadi, N., Kusumah, Y.S., Sabandar, J., & Afgani, J.D. (2014). Developing high-order 
mathematical thinking competency on high school students’ through GeoGebra-
assisted blended learning. Mathematical theory and Modeling, 4(6), 57–65.

Tay, M.K., & Mensah-Wonkyi, T. (2018). Effect of using GeoGebra on senior high school 
students’ performance in circle theorems. African Journal of Educational Studies 
in Mathematics and Sciences, 14, 1–17.

Thambi, N., & Eu, L.K. (2013). Effect of students’ achievement in fractions using 
GeoGebra. SAINSAR, 16, 97–106.

Van den Heuvel-Panhuizen, M., & Drijvers, P. (2020). Realistic mathematics education. 
In: S. Lerman (Eds.), Encyclopedia of Mathematics Education. Springer, Cham. 
https://doi.org/10.1007/978-3-030-15789-0_170

Veith, J.M., & Bitzenbauer, P. (2021). Two challenging concepts in mathematics 
education: Subject-specific thoughts on the complex unit and angles. European 
Journal of Science and Mathematics Education, 9(4), 244–251. https://doi.
org/10.30935/scimath/11251

Zulnaidi, H., & Zamri, S.N.A.S. (2016). The effectiveness of the GeoGebra software: 
The intermediary role of procedural knowledge on students’ conceptual 
knowledge and their achievement in mathematics. EURASIA Journal of 
Mathematics Science and Technology Education, 13(6), 2155-2180. https://doi.
org/10.12973/eurasia.2017.01219a

http://www.pythagoras.org.za
https://dx.doi.org/10.4018/978-1-5225-9304-1.ch017
https://doi.org/10.1016/j.heliyon.2021.e06953
https://doi.org/10.1016/j.heliyon.2021.e06953
https://doi.org/10.1007/s10857-014-9288-1
https://doi.org/10.1080/0020739X.2017.1404649
https://doi.org/10.3389/fpsyg.2013.00863
http://people.exeter.ac.uk/PErnest/pome27/index.html
http://people.exeter.ac.uk/PErnest/pome27/index.html
https://doi.org/10.1080/0020739X.2011.633629
https://doi.org/10.5539/hes.v7n2p67
https://doi.org/10.5539/hes.v7n2p67
https://doi.org/10.1080/00207390600712281
https://doi.org/10.1080/00207390600712281
https://www.researchgate.net/publication/230648462
https://doi.org/10.1080/0020739X.2017.1404649
https://doi.org/10.1037/0022-0663.93.2.346
https://doi.org/10.1037/0022-0663.93.2.346
https://doi.org/10.1037/0096-3445.127.4.377
https://doi.org/10.1007/BF00302715
https://doi.org/10.2307/749205
https://doi.org/10.1119/perc.2015.pr.073
https://doi.org/10.1103/PhysRevPhysEducRes.15.010138
https://doi.org/10.1103/PhysRevPhysEducRes.15.010138
https://doi.org/10.1007/978-3-030-15789-0_170
https://doi.org/10.30935/scimath/11251
https://doi.org/10.30935/scimath/11251
https://doi.org/10.12973/eurasia.2017.01219a
https://doi.org/10.12973/eurasia.2017.01219a

	Developing undergraduate engineering mathematics students’ conceptual and procedural knowledge of complex numbers using GeoGebra 
	Introduction
	Research problem
	Purpose of the study
	Literature review
	Research on the teaching of complex numbers
	Conceptual and procedural knowledge 
	The role of GeoGebra as a modelling tool


	Research methodology
	Research design
	Participants 
	Implementation of the GeoGebra-facilitated instructional intervention
	Data collection
	Data analysis 

	Results
	Discussion
	Conclusion and recommendations

	Acknowledgements
	Competing interests
	Authors’ contributions
	Ethical considerations
	Funding information
	Data availability
	Disclaimer

	References
	Figures
	FIGURE 1: The link between a complex number representation’s rectangular and polar forms.
	FIGURE 2: Iterative model for the development of conceptual and procedural knowledge. 
	FIGURE 3: Exploration of GeoGebra’s enablement and visualisation modelling of the sum of two rectangular complex numbers: (a) z3 = (2 − i) + (1 + 2i) = 3 + i, (b) z3 = (2 + i) + (1 + 2i) = 3 + 3i, (c) z3 = (2 − 2i) + (1 + 2i) = 3, (d) z3 = (1 − i) + (1 + 2i) = 2 + i, (e) z3 = (3 − i) + (1 + 2i) = 4 + i, (f) z3 = (1 + 2i) + (4 − i) = 5 + i. 
	FIGURE 4: How GeoGebra’s visual affordance is explored to show the link between the rectangular and polar forms of complex numbers: (a) z1 = 2 + 2i = (2.83;45°), (b) z1 = 3 + 3i = (4.24;45°), (c) z1 = 4 + 4i = (5.66;45°), (d) z1 = 2i = (2;90°), (e) z1 = −2 + 2i = (2.83;135°), (f) z1 = 5 + 0i = (−5;180°). 
	FIGURE 5: Vignette of EG student showing initial knowledge during the pre-test.
	FIGURE 6: Vignette of EG student showing post-intervention knowledge during post-test.
	FIGURE 7: Vignette of CG student’s pre-test showing initial knowledge.
	FIGURE 9: EG student’s initial geometrical interpretation of the sum of rectangular complex numbers. 
	FIGURE 9: Vignette of CG student’s post-test script showing post-intervention knowledge.
	FIGURE 10: CG student’s initial geometrical interpretation of the sum of rectangular complex numbers. 
	FIGURE 11: EG student’s post-intervention geometrical interpretation of the sum of rectangular complex numbers. 
	FIGURE 12: CG student’s post-intervention geometrical interpretation of the sum of rectangular complex numbers. 
	FIGURE 13: EG student’s post-intervention De Moivre’s theorem.
	FIGURE 14: CG student’s post-intervention De Moivre’s theorem.
	FIGURE 15: EG student’s pre-test conceptual and procedural knowledge.
	FIGURE 16: EG student’s post-intervention conceptual and procedural knowledge.
	FIGURE 17: CG student’s post-intervention conceptual and procedural knowledge.
	FIGURE 18: Basic algebraic and exponential misconceptions, errors, and role of j continued post intervention. 
	FIGURE 19: Weak algebraic and exponential displayed pre-intervention.
	FIGURE 20: Weak algebraic and exponential knowledge that persisted post-intervention.

	Tables
	TABLE 1: Summary of Hypothetical Learning Trajectory for the teaching of complex numbers.
	TABLE 2: Students’ total test item marks after problem representation support (n = 24).
	TABLE 3: Students’ total marks for the sum of complex numbers on the Argand diagram (n = 24).
	TABLE 4: Students’ total marks for the three ‘expert-like behaviours’ test items (n = 24).
	TABLE 5: Independent t-test of the pre-test and post-test for both groups (n = 24) at level 5%. 
	TABLE 6: Dependent samples t-test results for the pre-test and post-test for both groups (n = 24) at level 5%. 



