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Abstract
We present an innovative modelling technique that simultaneously constrains student performance, course difficulty,
and the sensitivity with which a course can differentiate between students by means of grades. Grade lists are the
only necessary ingredient. Networks of courses will be constructed where the edges are populations of students
that took both connected course nodes. Using idealized experiments and two real-world data sets, we show that the
model, even though simple in its set-up, can constrain the properties of courses very well, as long as some basic
requirements in the data set are met: (1) significant overlap in student populations, and thus information exchange
through the network; (2) non-zero variance in the grades for a given course; and (3) some correlation between
grades for different courses. The model can then be used to evaluate a curriculum, a course, or even subsets of
students for a very wide variety of applications, ranging from program accreditation to exam fraud detection. We
publicly release the code with examples that fully recreate the results presented here.

Notes for Practice

• When modelling student results, the approach presented here can be used as a fully Bayesian statistical
framework that is easy to adapt and extend.

• Strongly simplified models for learning outcomes constrain the difficulty of courses better than the perfor-
mance of students and can therefore be effective and efficient tools for curriculum evaluation.
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1. Introduction
The field of learning analytics (LA) is broad and often captures detailed cognitive processes by measuring engagement and the
results of small incremental steps in the learning process. This can happen in online learning environments, where detailed
behaviour can easily be followed at high temporal resolution. To evaluate the learning progress and drivers thereof within one
“course” (i.e., a limited set of learning goals), this works well, but at the scale of entire university curricula this becomes very
cumbersome and computationally difficult to assess.

Predictive analytics, where a particular target variable is predicted based on predictor variables (or features), is often used
on an individual student basis (Strecht et al., 2015; Jeffreys, 2015; Asif et al., 2017; Daud et al., 2017; Cui et al., 2019). With
predictors coming from both the previous study results and engagement, as well as demographic data, the results of a particular
student for a particular course or exam can be modelled as a fairly straightforward supervised machine learning (ML) problem.
Such forecasts can be used for intervention during a course (Rienties et al., 2017), for offering additional educational help in
the near future (F. Chen & Cui, 2020), or for predicting dropout (Archambault et al., 2009; Lacave et al., 2018); many more
applications can probably be thought of.
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Even though interesting in itself, individual results are short-term one-off predictions, but when combined they offer the
possibility to zoom out from the individual learner to a class of students (Schmitz et al., 2022), an educational program, or even
an entire educational institution. LA, even when the model is student based, can readily be used at the course or curriculum
level. In fact, due to the scale-up, uncertainties are likely to decrease. Indeed, there have been many efforts to model learning
progression, including knowledge retention and forgetting (Sense et al., 2021), as well as to model the flow of students through
a curriculum, e.g., using agent-based modelling (McEneaney & Morsink, 2022) or by modelling the cohort as the sum of its
parts (Shah & Burke, 1999; Nicholls, 2007; Raji et al., 2021; Munguia & Brennan, 2020). Other efforts take a helicopter view
of the curriculum and propose to model it as a whole (Ochoa, 2016). Modelling alone is not usually enough to in fact improve
the educational program (Macfadyen & Dawson, 2012), but it leaves room for evidence-based LA (Ferguson & Clow, 2017)
and effective stakeholder management (Dawson et al., 2018).

The statistics of much of the existing body of quantitative modelling work has been frequentist in nature. Like many
quantitative fields, LA has moved from dashboarding with descriptive statistics to often ML-based predictive modelling (a.k.a.
PLA) at a high pace in recent years (Cui et al., 2019). Uptake of more modern methods in LA has previously been slow, likely
in part due to lack of understanding of the methodology and its use cases (Dawson et al., 2018), but also because of the varied
ways in which course and curriculum design are implemented at various institutions; the different involvement of the various
stakeholders (Ferguson & Clow, 2017; Rienties et al., 2017); and the lack of a common evaluation of LA methods, as outlined
by Herodotou and colleagues (2019).

Sitting between descriptive statistics and black box–like modelling like many ML applications, there is the realm of latent
variable modelling, in which knowledge of the real world can easily be incorporated, and after which the model parameters in
fact mean something about the phenomenon modelled. Especially for LA, where the hidden or latent variables often describe
properties of the educational material or the students, discovering latent parameters that connect straightforwardly to the domain
of application is very powerful. As Gardner and Brooks (2018) noted, model methodology and evaluation are better done in the
Bayesian realm than with frequentist statistics, and using a model that is Bayesian in nature is thus a straightforward choice.
Not many LA studies have used Bayesian methods so far. Notably, Lacave and colleagues (2018) use a Bayesian network
to predict student dropout using many academic as well as demographic features, partly based on the work of Di Pietro and
colleagues (2015), who use a Bayesian network of ordinal and nominal variables to monitor a master’s program and point out
critical issues. The former unfortunately remark that detailed statistical knowledge is not necessary when software packages
are used for the modelling, bringing the application into the same black box–like domain as the ML-based models alluded to
before.

In this paper, we propose a new LA framework that models learning progression holistically (i.e., from the scale of single
student grades per course up to program curricula or entire universities). As its input, it requires a data set with a grade list
per course. For each course, the framework uses Bayesian generative modelling to simultaneously estimate a difficulty, based
on the grade distribution and the performance of the student population, and a sensitivity, based on the capacity of a course
to distinguish between low and high performance. We model and parameterize the full data-generating process and estimate
the parameters of the model by sampling their posterior probability density functions (PDFs) using standard methods from
Bayesian statistics. As such, this is a first and very simple fully Bayesian generative LA model that can contribute to meeting
the existing challenges described above, from predictive modelling of student progress to the evaluation of curricula and the
educational offerings of an institution. The generative nature implies that latent variables have a clear meaning, aiding adoption
by stakeholders and enabling actionable insights for teachers, educational researchers, and policy-makers. It is a fully open
model, and therefore its inner workings and parameters are clear to any user, which aids future extension of the model. Despite
its simplicity, the model is used in practical applications as well, and the results prove to be useful and promising.

In Section 2.1 we will outline how student performance, course difficulty, and grades depend on each other in our model.
Section 2.2 outlines the build-up of networks and Section 2.3 describes the modelling technique used to constrain latent
parameters based on observed grades. The ethical component and potential misuse of our approach are discussed in Section
2.4. We will also show how this all works in practice, using some idealized experiments based on simulated data, in Section
2.5. In Section 3 we show the resulting models and statistics about courses and students for a real and open data set from the
Open University, illustrating some of the requirements that must be met by the data set in order to model these successfully. In
Section 4 we will model a data set from the University of Amsterdam College of Law to show that under realistic conditions,
these techniques give actionable results. A discussion of the practical use of these models follows in Section 5, after which we
conclude in Section 6. With this paper we release a public code repository1 with example data. In there, all figures from this
paper are reproduced and it is illustrated how the code can easily be used on one’s own data and how the model can be extended
for more sophisticated and realistic use cases.

1https://github.com/harcel/BGM CourseNetworks.

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

136

https://github.com/harcel/BGM_CourseNetworks
https://github.com/harcel/BGM_CourseNetworks


2. Methods
In this section, we describe our modelling approach, which consists of three main ingredients. First of all, we employ a very
simple relation between properties of students, of courses, and of the grades obtained. We can only consistently model these
if the courses form a network through overlapping student populations attending the courses, which is the second ingredient.
Finally, if they do, we can construct a Bayesian generative model in which we constrain course difficulty, course sensitivity, and
student performance simultaneously from the list of grades.

2.1 A Simple Model for Grades
We build on a model for study results of students that starts from a very simple assumption that we borrow from Item Response
Theory (IRT, e.g., Embretson & Reise, 2000). In IRT, which is commonly applied to right/wrong or Likert-scale questions
within one test, the probability of correctly answering a question on a test depends on the student’s ability (α) and the question’s
difficulty (δ ). In fact, the log-odds of answering correctly is commonly assumed to depend linearly on the difference between
the two (α −δ ). The probability is, then, given by the logistic function, i.e., P(correct) = 1/(1+ exp(−(α −δ ))). A term for
the sensitivity (s, also called discrimination) of a question to distinguish between correct and incorrect responses (the sharpness
of the transition of P(correct) = 0 → 1) can be added in the exponent.

We adopt and modify this strategy here and model grades for courses as a function of student performance, course difficulty,
and course sensitivity. We use the terms performance (analogous to ability in IRT) and difficulty very loosely here. The difficulty
of a course reflects the probability of getting a high grade. Sometimes, very difficult courses may end in a relatively easy exam,
pushing what we call difficulty strongly down. Conversely, a very easy course may be assessed by a strictly corrected essay,
which could make the course seem more difficult in the results. Also, performance of students is not a simple one-dimensional
concept, of course. Here, though, we use the term broadly to describe the probability for a student to score a high mark for the
given testing method for the courses attempted.

We adapt the IRT approach to be able to capture continuous grades for tests or courses that depend similarly on student
performance, course difficulty, and perhaps a course sensitivity. Not all grading systems are on the same scale. Here we will
assume that the scale is numeric and runs from a minimum grade G = gmin to a maximum grade G = gmax, following the
relation

g =
gmax −gmin

1+ exp(s · (δ −α))
+gmin, (1)

in which the numerator and the extra term set the scale of the grades. We denote this by a lowercase g to separate it from the
actual grade obtained, G, i.e., the above “ideal” grade g with some scatter, since students may have a good or a bad day, get
lucky or unlucky, etc.: G = g+ ε , in which ε is scatter that can have any functional form, as long as G ∈ [gmin,gmax].

The grades here should be as close to “raw grades” as possible: sometimes grades are adapted either to not be close to
pass/fail boundaries or to increase a class average or passing percentage to an acceptable level. As discussed below, some such
policies for handling grades can be easily incorporated in the modelling process, while others can’t.

Note that performance and difficulty are on an arbitrary scale in the same arbitrary units. It is only the difference that
matters: α −δ = 0 corresponds to a grade halfway along the scale. For a graphical representation of dependence of grades on
the constituent variables, see Figure 1, where we use a grade scale that runs from 0 (worst) to 100 (best), in which a grade
of G > 40 is typically considered a pass, like in the data set presented in Section 3. Grades can be continuous or discrete but
typically have integer resolution.

2.2 Networks of Courses
Networks have recently become more popular in LA (B. Chen & Poquet, 2022). Networks come in many varieties, such as
social, communicative, or collaborative, with strong potential influence on the learning process. Network analysis provides LA
practitioners with descriptive, analytic, and evaluative tools, through quantitative measures of network properties, as well as the
visual aids that networks provide.

The validity of network analysis results in LA critically depends on network definition choices (e.g., Wise et al., 2017).
Here, we keep our network definition very simple; it only serves as a tool to see whether the data set at hand has an adequate
structure for further modelling, and when necessary as a tool to select the largest subset of data that we can use. We construct
the network as follows.

We build a network of courses in which the nodes are courses and the edges are overlapping student groups: two nodes
are connected by an edge if at least a minimum number of students (a free parameter, in our experiments set to 5) finished
both courses2. When a student finishes a course, there will be a grade for that course, and, as such, it is trivial to construct this

2Technically, we construct the network as follows. We build a network by first connecting every student with every course that the student took. As such,
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Figure 1. The dependency of grades, on a scale from 0 to 100 on difficulty and performance. In the left panel, student
performance is fixed at 0 (average) and 3 (very high), so the grade is a declining function of difficulty, with steepness increasing
with sensitivity. In the right panel, difficulty is fixed, so the grade is an increasing function of student performance, with
steepness increasing with sensitivity. The scattered points in the right panel are randomly sampled grades with considerable
scatter (a standard deviation of 12.5 on this scale), as used in the experiment described in Section 2.5. The clipping of grades to
the range [0,100] is clearly visible by the piling up of grades at the upper limit.

network of courses based on grade lists alone. These networks serve as an auxiliary tool, from which it is easy to select the
largest subset of courses for which we can analyze the results.

Students take courses. Their performance is reflected in their grades, but only once the difficulties and sensitivity of these
courses are known. The reverse is also true: courses are taken by students, and the difficulty of a course is reflected in the grades
of the students. We can only constrain the difficulty of courses and the performance of students in a fully connected network. If
there is no link between two courses or two populations of students, their combinations of difficulty and performance cannot be
linked. There needs to be an exchange of information between all elements in the network. We will from now on focus on
only one interconnected network of courses. As an illustration, the left network in Figure 2 cannot be analyzed as a whole but
only for the upper and lower sub-networks, respectively. The right panel in that figure shows how one extra course taken by (a
subset of) the students from the upper and lower networks results in one connected network that can be modelled as a whole. If
that “Course X” were not present, the two groups could be modelled separately, but one group could consist of students with a
higher (or lower) performance, following more (or less) difficult courses, respectively, than the other group and it would not be
possible to distinguish between them.

Note that this approach neglects any time dependence of the curriculum progress. Time dependence in the models we will
describe below can be incorporated but is outside the scope of the current work. For data with many data points close together
in time, such as following along with MOOC education or the logs of a digital learning environment, this aspect is crucial
(F. Chen & Cui, 2020). Here we need only assume that students have mastered the prerequisites, which should be handled by
the registration process. We will come back to incorporating time dependence in Section 5.

2.3 Bayesian Generative Modelling
2.3.1 A Model for Student Results
A generative model is a model in which we describe the data-generating process in a probabilistic programming language
(McElreath, 2020). The data-generating process here is as simple as described above: students have a performance, courses
have a difficulty and a sensitivity, and we assume that the dependence of the observed data (a list of all grades obtained by all

the preliminary network consists of nodes that are students and courses, an edge between which indicates that the student at one end took the course at the other
end of the edge. All neighbours of all student nodes are courses (the set of courses the student took), and all neighbours of all course nodes are students (the
students who took the course). Therefore, all second-degree neighbours of a course are courses that were taken by students that took both. This allows us to
finally construct a course network by connecting all course nodes to their second-degree neighbours to end up with a network in which all nodes are courses
and the edges between them denote the overlapping student population (the number of length-2 paths from course A to course B is the size of the population of
students that took both courses).
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Figure 2. An example of small networks of courses. Left: A network that consists of two separated networks (denoted by the
two colours), in which it is impossible to simultaneously constrain performances and difficulties, as explained in the main text.
Right: The same networks, but now connected through a course (orange) that links the two. The thin lines need not all be there,
as long as there is at least one connecting to the lower network and one to the upper network.

students for the courses they followed) is described by Equation 1.
Conditioning the model on the observed data constrains our knowledge about the model and its constituents. The method is

Bayesian and hence results in a posterior PDF, or posterior. This is a PDF for all model constituents under the assumption that
the model itself is valid, having observed the data. It is denoted by P(parameters |data), which can be read as “the probability
of the model parameters, given the observed data.” This posterior depends on a likelihood (which is a measure of the probability
of observing the data for a given model parameter choice) as well as previous knowledge about the model parameters (which
can be constrained by theory or by previous work, or can be very unconstrained) by Bayes’ equation:

P(parameters |data) ∝ P(data |parameters) ·P(parameters), (2)

where the constant of proportionality (1/P(data)) is called the marginal likelihood and is fixed for a given data set and likelihood
function. The likelihood function we choose here is

G ∼ [N(data |µ = g(α,δ ,s),σ = ε)|gmax
gmin

, (3)

which reads like “the observed grade is a normally distributed stochastic variable with a mean (µ) given by g(α,δ ,s) (i.e.,
Equation 1) and a unknown standard deviation (σ ) of ε , truncated to range between minimum and maximum grades.” When
grades close to pass/fail boundaries are rounded more coarsely than on other parts of the grade continuum, this can be
incorporated here as well, making the functional form for G somewhat more complicated, but the modelling described below is
still identical. Also, it is not necessary to opt for the normal distribution; in fact any distribution can be used instead with only
very minor modifications to the code.

2.3.2 Choice of Priors
In any Bayesian analysis, the choice of prior distribution functions for model parameters is crucial. They reflect prior knowledge
of the model parameters that subsequently gets updated with the observed data to form the posterior knowledge of the model
parameters. Priors can come from previous work, theory, or intuition and can be very well constrained in some cases (very
narrow PDFs) or very uninformative, meaning that a large range of values for the model parameters are about equally likely.

The right-most term of Equation 2 is the collection of prior PDFs, which in the language of probabilistic programming can
be written as

α ∼ N(0,3),
δ ∼ N(0,3),
s ∼ LogN(0,0.25),
ε ∼ N+(0,1),

which, together with Equation 3, defines the model. All the right-hand sides are known PDFs: N(µ , σ ) is the normal distribution
with mean µ and stand deviation σ , LogN is the log-normal, and N+ is the positive half-normal (in this case, only the positive
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half of N(0,1)). The priors in this work are all chosen to be uninformative (i.e., a wide range of values is allowed), but we did
constrain the standard deviation of the likelihood to be positive and the sensitivity to be positive and centred around one. A
graphical representation of the computational graph, including the dimensionality of the experiments described below, is given
in Figure 3.

Figure 3. The computational graph for modelling the observed grades is non-hierarchical. The numbers indicate the number of
computational elements: there are seven courses, 1000 students, and 4000 grades in the main example discussed in Section 2.5.

2.3.3 Monte Carlo Markov Chain
The posterior in general is hard to compute and will therefore be sampled with a Monte Carlo Markov Chain (MCMC), which
results in a number density of sampled points on the chain that is directly proportional to the local probability density (e.g.
Diaconis, 2009). We employ the No U-Turn Sampler (NUTS, Hoffman & Gelman, 2014), which is a Hamiltonian sampling
algorithm (Neal, 1994). The result is a so-called trace with all samples (one sample on the trace has a value for each of the
parameters in the model), of which summary statistics can be used to summarize the model results. In the idealized experiments
described in the next section, we will plot the marginal distribution functions of parameters of interest for every separate
Markov Chain, as well as a representation of the trace itself, for diagnostic purposes. In the remainder of the paper we will
combine the posterior samples of separate Markov Chains into one posterior PDF and we will omit the visualization of the
trace. The online code repository does reproduce them for the interested reader.

2.4 Ethics and Potential Misuse
We fully realize that our one-dimensional representation of student performance doesn’t do justice to the complex phenomenon
of cognitive ability or aptitude to particular skills. At the scale of an entire university or curriculum, grade fluctuations
are potentially a consequence not only of student-specific characteristics like intelligence, domain-specific knowledge, and
motivation, but also of other factors, like the quality of the provided education and the type of assessment. While extending the
methodology from IRT, we deliberately changed the wording from ability to performance to indicate that what we attempt to
constrain here is a narrow view of what one would call ability. We strongly discourage the use of the performances derived with
the models below as a measure of student intelligence, a predictor of student success (either within the program modelled or
outside their academic studies), or a property of people that can be independently measured. It merely serves here as a necessary
latent variable that allows us to say something about courses in a curriculum (or a collection of interconnected curricula), and
that the model is likely to measure something useful about the courses, given the grades and latent variables when performances
are well constrained (i.e., on a per person basis, they are well determined with an uncertainty per student much smaller than the
scatter between students). We will not report or draw conclusions on student performance for these reasons.

In the triangle of assessment, epistemology, and pedagogy (Knight et al., 2013), models like these tend to draw the user
too much to the corner of assessment, away from epistemology and pedagogy, even though the latter two are arguably the
phenomena that are to be measured (Lang et al., 2017). Therefore, it is important to keep in mind that even though these
are quantitative and flexible models, they only capture a fraction of the cognitive process students are going through in an
educational program.

2.5 Idealized Experiments
In order to test our model, we set up experiments using simulated data. We create the network that is shown in the right-hand
panel of Figure 2. Five hundred students, with a variety of “performances,” attend courses A, B, and C. Another 500 attend D,
E, and F, who also have a variety of performances but significantly shifted from those of the former group. The courses are
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graded between gmin = 6 and gmax = 10. The courses are also different in difficulty so that the distributions of grades for the
two groups of students are the same, with average grades for the three courses being 7.4/7.5, 7.7, and 8 for both groups of
students. All attend Course X, the linking course between the two networks. Because that course has a fixed difficulty, the
grades from the students of the two groups for Course X differ substantially: averages of 7.0 and 8.6, respectively, resulting in
an average grade for Course X of 7.8. The standard deviations of grades of all courses, including Course X, are in the range
1.19–1.38.

Looking at the average grades for all courses as well as their standard deviations would not at all suggest that there is a
difference in the two sub-groups of students, and without noticing the bimodal distribution of grades in Course X (which in a
curriculum review is easily overlooked), it would be hard to identify.

The grades are calculated with a sensitivity parameter equal to 1. The scatter around the expected grade g (ε) is drawn
from a normal distribution with 0 average and a standard deviation of 0.5, which is large compared to the range of grades
(6–10) obtainable. Note that when grades go below 6 or above 10, they are clipped at 6 and 10, in both data generation and the
generative model. An analogue of this amount of scatter around the expected grades was shown in the right panel of Figure 1,
where the scatter is also 12.5% of the total range of grades.

When these grades are modelled with the models described above, the posterior traces and resulting posterior distribution
functions for the quantities related to the courses are shown in Figure 4. There are too many posterior distribution functions for
the students to show, so we will omit those. Their performances are well recovered with very small uncertainty. The trace
plots (right-hand panels) look somewhat like caterpillars, which is what we want. The bands are horizontal, so the region of
parameter space walked by the chains is not moving, which indicates that the model has converged (the converse behaviour
indicates non-convergence). The trace mostly explores high posterior density regions and sometimes moves a bit further out,
toward the outskirts of the high probability density regions. The PDFs in the left-hand plot are all shown by four different line
styles in the same colour. These are four independent chains, which should largely agree on the posterior PDF.
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Figure 4. Posterior PDFs (left) and traces (right) of model results on simulated data.

In these models, the average performance of students is forced to be 0. The average difficulty is then set by the scale of the
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grades, because an average grade halfway along the scale (in this case, 8) would correspond to an average difficulty of 0.
The recovered sensitivity is very close to the input value of 1. Here, the necessity of using the truncated normal distribution

in the generative mode shows: when modelling the likelihood with an untruncated normal distribution, the recovered sensitivity
would be close to 0.7. This is a result of the clipping of the grades. When a grade goes below 6 or above 10, it is limited to
that range. Therefore, at the low end of the grade range, grades will only bias upward, and the reverse is true at the high end
of grades. This pushes the average grades toward a shallower function of increasing performance (or decreasing difficulty);
c.f. Figure 1. It is confirmed that, indeed, when repeating the experiment with much less scatter around the expected grade,
the sensitivity moves upward toward the input value of 1, even when modelled with an untruncated normal. Because we take
the truncation into account while conditioning on observed data, we do not have to worry about artificial flattening of the
dependence of grades on performance and difficulty.

We have repeated the experiment with different settings and conclude that, as long as the grades are indeed described by the
relation with which we model them, we have the following results:

• Course difficulties are very well recovered, even if the variety in performance becomes very large.
• The number of students following Course X does not need to be big; even with just 50 students (10%) in that course,

the recovery of difficulties and performance is still very good, with only slightly larger uncertainties. For even lower
fractions of students in that course, uncertainties on all recovered performances and difficulties go up. This shows that
only small information exchange between well-connected sub-networks is enough for inference.

• The scatter on the grades can be made larger, resulting in only marginally higher uncertainties on recovered model
parameters.

2.6 Computational Demand
Bayesian analysis with MCMC is known to be computationally intensive. Networks of courses can get big for large data
sets, and using uninformative priors can lead to long sampling times of the Markov Chains. The models we present here are
still relatively cheap and are all fully sampled on a moderate laptop with a 12-core i7 processor. The idealized experiments
described above sample in just a few minutes, while the more realistic data set described below in Section 4 takes up to a few
hours on that same hardware. Sampling time scales with the number of parameters that need to be estimated, so with a large
number of courses or students (the numbers used are quoted here), this can grow. In general, it would be wise to include only
the model parameters that are needed to constrain the problem of interest, and with the model set-up used in this paper, personal
hardware should be enough even for large institutions, modelling up to a few years’ worth of data.

3. Modelling the Open University Public Data Set
Data that are not generated under the assumptions of the model, but rather in the real world, are crucial to illustrate the
applicability of this modelling scheme. The Open University in the United Kingdom released a data set for LA (Kuzilek
et al., 2017). In this data set, a large number of anonymous student results are recorded for both assignments and exams. The
assignments come with weights that add up to 100, but it is not clear how the total result of a course depends on the assignments
and the exam. Also, many students have in fact only done some assignments and certainly not always the exam.

3.1 A Loosely Connected Network
Because we would end up with a very small network of interconnected courses otherwise, we decided to split every course into
two parts, each with its own difficulty and its own population of students: the exam is one, and the collection of assignments
is the other. These two parts are considered separate courses in the rest of this section. Indeed, these forms of assessment
typically have quite different outcome characteristics (Richardson, 2015). For the assignments, we take the weighted average
of the grades, whereas an exam has just one result: the grade. Note that for the assignments, we do not set the grade for an
assignment to 0 if there is no recorded grade for a given student for a given assignment, but rather we take only the actual
recorded results into account. Therefore, the sum of weights is not always 100, but it is the sum of the weights of recorded
results for that student. Courses in the data set are called AAA, BBB, etc., and we use the same designation here for the
exam results (for course BBB there are no exam results in the data set), while the course name is appended with “ a” for the
assignments. We do not take into account any other piece of information from the data about students, courses, or assignments.

The course network is shown in Figure 5 and consists of seven “courses.” The number of students ranges from 1915 to 6033
and averages at 3863 per course, while the total number of students is 20,424. The grades run from 0 to 100, so when modelling
we relax the prior on ε to an uninformative N+(0, 10). The distributions of grades, as shown on the diagonal of Figure 6 below,
are nowhere near similar in shape: some are strongly peaked at different peak values, while others show very flat distributions,
indicating perhaps a large spread in sensitivity, or very different population distributions of student performance. We relax the
prior on the sensitivity parameter to s ∼ LogN(0,0.5).
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Figure 5. The course network of the Open University data set. Exams are denoted by just three letters; the assignment sets are
appended with “ a”. For course BBB there are no exam results in the data set. The thickness of the edges in the network (only
shown if at least five students have a result in both nodes) indicates the overlap: strong between the assignments and the exam
of the same course, but much weaker between courses (typically a few percent of students overlap between courses). The sizes
of the nodes in the network denote the numbers of students, which range from 1915 to 6033, while the colour indicates the
average grade.

3.2 Signs of Unsatisfactory Data Properties
Comparing the numbers of students per course and the total number of students in the data set already indicates that there
is in fact very little overlap in student populations of courses in this data set. Indeed, the number of students that appear in
more than one course is large for those courses for which both assignments and an exam are in the data (3037 and 1915 for
courses DDD and CCC, respectively); for the other courses the overlapping population ranges from six (the imposed minimum
was five) to 722, with an average of 240 (1.2% of the population). Note also that the course with only one connection to the
rest of the network (BBB a) is connected with 10 students out of the 5769 that took the course. This is expected to result in
large uncertainty in the recovered parameters for this course. The posterior of networks like this takes too long to converge
and sample. With the limited information exchange between BBB a and the other, more strongly interconnected, nodes of the
network, we decided to disregard BBB a for further analysis.

In Figure 6 we show a detailed exploration of the distributions of grades and the correlations between grades in different
courses for the overlapping student populations. When modelling with the techniques described in this paper, there should be
considerable correlations between grades (but see Section 5 for directions for future work in which this no longer needs to be
the case). Various correlations in this data set are weak or absent. Also, some courses have very small overlapping student
populations, which limits information exchange between the nodes in the network and thus inhibits precise determinations of
course difficulties and hence student performance.

Indeed, when modelling this data set with the same set-up as in Section 2.5, the model has difficulty converging (i.e., it does
not easily find a stable posterior PDF). It is possible to tune the sampler and find a solution that according to all numerical
criteria would converge, but that this is necessary is usually a sign of inferior model specification. Especially in the case of this
data set, the model might not be fully appropriate. Besides the very limited information exchange due to the thin connections in
the data set (which might call for a hierarchical model structure that ensures pooling over the courses, so they do not diverge
too much), we also see a hint of a challenge in the grade distributions as depicted along the diagonal of Figure 6. If courses are
assigned one given difficulty and students have a fixed distribution of performances, then the grade distributions are expected
to be shifted and skewed/compressed versions of one another. In this case, we see strongly peaked as well as very broad
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Figure 6. An exploration of the distributions and correlations of grades for the different courses in the data set of the Open
University. Along the diagonal, we show a histogram per course, with bins of width five. Under the diagonal we show a
two-dimensional histogram, with the number of students that have a grade for both “courses” indicated and, if that number is
higher than 30, the correlation coefficient between the grades.

distributions. This hints at potentially very different sensitivities, but if this is combined with a very small overlapping student
population, the posteriors become very hard to constrain: is the student population in one course very different from that in
the other, is the sensitivity of one course very different from that of another, or both? With a very low sensitivity (which
translates loosely into the same grade for everybody, regardless of student performance), the difficulty can be very far from
other difficulties. Depending on the average grade (α −δ ), this results in everybody getting a score of 50, and in order to get to
a typical score of 80 with very low sensitivity, the difficulty of the course needs to be very low, since the slope between grade
and (α −δ ) is shallow. Besides, course CCC has a large group of students piling up at the very maximum obtainable grade,
which will make it difficult to use those grades to determine difficulty or performance.
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Table 1. The numbers of students of the four best connected courses in the network and their overlap. All of the students who
did the CCC exam also have a grade for the corresponding assignment set; for course DDD, seven students have an exam result
but no assignments. Overlap is at least 322 students, or at least 7%.

Course 1 Number of Course 2 Number of Number and percentages
students students of overlapping students

CCC 1915 CCC a 3318 1915 (100, 58)
CCC 1915 DDD 3044 322 (17, 11)
CCC 1915 DDD a 4696 331 (17, 7)
DDD 3044 DDD a 4696 3037 (100, 65)
DDD 3044 CCC a 3318 455 (15, 14)
CCC a 3318 DDD a 4696 520 (16, 11)

The scatter on the grades is the one parameter that is hardest to constrain, as long as it modelled as a single parameter.
Giving each course its own scatter, where all the scatters derive from a parent distribution (in a hierarchical model), helps, but
not much. The online code repository gives an example of how to modify the model to do this.

With the considerable scatter, the very small overlapping student populations, and the highly dissimilar grade distributions,
it is hard to constrain much about the data set at hand. The difficulty in converging is a red flag for interpretation of the
inference.

3.3 A Well-Behaved Sub-network
In order to constrain course properties of some of the better-connected courses in the Open University LA data set, we select
the four courses in our network that are most closely connected: CCC, CCC a, DDD, and DDD a. The numbers of students per
course as well as per connection are given in Table 1.

This selection of courses still requires a model that uses a distinct scatter of the grades for each course. It results in some
courses with very low sensitivity (0.2), which means that the course hardly distinguishes performance by grades and most of
the variation in the grade must come from scatter caused by factors that are not modelled.

When also disregarding CCC (with its undesirable pile-up of students with a grade of 100), the model is much easier to
tune, but with only three out of the original eight courses left, one could question the applicability of these models for the Open
University data set. We conclude that these models require a data set with significant overlap in student populations between
courses, grade distributions that do not pile up on either end of the scale (i.e., are calibrated in difficulty to actually differentiate
between student performances), and at least some correlation between grades for different courses. As indicated, see Section 5
for suggestions on how to relax that last requirement.

4. Modelling Student Results at the Amsterdam College of Law
The Amsterdam College of Law teaches a range of bachelor programs at the University of Amsterdam. There are obligatory
courses for all students, as well as electives that can belong to the same program or not. Students therefore can follow a wide
range of curricula, in which a small part will be taken by all or most. We constructed a data set of all students at the College of
Law in a bachelor program in one academic year. Due to re-takes or electives taken from another year in the program there can
be overlap between the junior, sophomore, and senior cohorts. We only take students into account who pass the course. This
is far from ideal, and we would like to stress the importance of pure and complete registration of grades. In this data set, for
students who failed courses, the registration seems very incomplete (with exam failures and no-shows being indistinguishable
in some cases, and no information about grades in other cases). When we construct the network as described in Section 2.2, we
find a collection of multiple separate networks, which are not connected by an edge consisting of at least 10 students. Of these,
we select the largest fully connected sub-network, which consists of 30 courses taken by between 108 and 858 students and
with average grades ranging from 6.5 to 7.4 out of 10. Note that the minimum score in this data set is 6 out of 10, since that is
the minimum for a pass. Figure 7 shows a graphical representation of the course network.

4.1 Modelling a Well-Connected, Large Network
The network shows a highly connected structure of about half the courses, where the course connecting student population is
very big. Toward the outskirts of the network, the courses are attended by fewer people, so the overlap of students is also lower.
Some courses are connected to almost every other course, while other courses have considerably fewer connections, because
these are parts of smaller programs within the same faculty. The well-connected nature of this network makes it well suited for
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Figure 7. The largest fully connected sub-network of all courses at the University of Amsterdam’s College of Law. The nodes
are the 30 courses, with the size corresponding to the number of students who followed the course and the colour indicating the
average grade (dark is low; yellow is high). The thickness of the edges indicates the size of the overlapping student population
(i.e., how many students attended both courses).

our approach, even though there is a big variation in the background and career paths of the students making up this network.
This is essentially the opposite of the very sparsely connected network of the Open University in the previous section.

When modelling this network we need results for all courses. One course did not have a grade but instead only registered a
pass or fail. When taking this course into account with a single grade for everybody (e.g., 6 for everyone, or the average of the
whole data set for everyone), we find that the model cannot constrain the difficulty for this course at all. Firstly, when students
of all performances obtain the same grade, the difficulty gets a very high uncertainty, and secondly, the grade assigned to
everybody who passed the course sets the average difficulty retrieved by the model. Although this renders the determination of
the difficulty of this course useless, it does strengthen our faith in the modelling technique, since this is precisely the behaviour
expected from the model and its ingredients. It is clear, however, that for a careful evaluation of a course and its contribution to
a curriculum, it is important that assessments of students happen on a common scale, at least if models like these are to be
employed.

After the removal of this one course, the retrieved difficulties of all other courses remain unchanged, so there is little
sensitivity to this source of noise in the data set. There are now 1985 students and 29 courses.

We model this population with the same model as we used for the idealized experiments in Section 2.5, depicted in Figure
3. It converges well without having to differentiate the scatter of the grades around the expected grade over courses, like we
needed to in the Open University data set in Section 3. The scatter is somewhat large in comparison to the range of grades:
the posterior mean of the scatter (ε in Equation 3) is at 0.83 (range of grades is 6–10). Still, all difficulties, sensitivities, and
performances seem well determined, as displayed in Figure 8, where we compare the uncertainty in the individual difficulties,
sensitivities, and performances (measured as the standard deviation of the individual posterior PDFs; blue histograms) with the
variation in those quantities (measured as the standard deviation of the means of the individual posterior PDFs; red vertical
line). It is clear that the difficulties can be very well determined and that the variation in difficulties is strongly dominated by
the variation between the courses and not the variation within the courses. The same is true, although to a lesser extent, for the
sensitivities of the courses. When looking at the performance of students, we see that there is a small population of students
that have a very well defined performance, but that for a majority of students, the overall variation in fitted performances is only
marginally larger than the uncertainty in the determination of individual performances. We conclude that course difficulty and
course sensitivity are well determined and can be used at face value, but that the individual student performance needs to be
taken with a grain of salt, and that inferences are likely to be only practically applicable on a cohort basis, or at least when
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aggregating a group of students in some meaningful way.
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Figure 8. A comparison of standard deviations of course difficulty (left), course sensitivity (middle), and student performance
(right). We compare the distribution of the standard deviations of the posterior PDFs of all individual courses (or students) in
the histograms with the standard deviation of the means of those posteriors (vertical red line). For courses, the spread in
difficulty and sensitivity between courses is much bigger than the uncertainty on the individual difficulties. For students, many
posterior PDFs are much narrower than the spread between the means, but the difference is much smaller and the standard
deviation of the mean is at the 93rd percentile of the distribution of individual standard deviations.

The recovered difficulties vary from 2 to 5.5, and the sensitivities from 0.4 to 1.6 and, with that, stay in a comfortable range
given the model set-up. This illustrates that in a well-connected network the modelling as we describe in this paper works very
well and results in well-defined and meaningful inferences about course properties.

5. Applications and Future Work
When enough confidence in the model exists, judging by arguments similar to those above, the application of models like these
awaits. As we have said before, we strongly urge against the use of these models for direct inference of student performance.
On the course and curriculum level, though, options are wider. Below, we outline several noteworthy application areas and
potential directions for model expansion. The application areas are only maximally useful if the LA cycle can be closed (Clow,
2012) by feeding back the modelling results to the actual learning process, which is what we describe for various applications
in the subsections below.

5.1 Predictive Modelling of Student Cohorts
Even though performance on a per-student basis is not meaningful, the aggregate of these over a cohort can readily be used
(the uncertainty for the cohort being roughly a factor

√
N smaller than the per-student uncertainty on the performance). With

data about results of a cohort in the past, as well as (model-inferred) data on course difficulty of courses to be taken in the
future by said cohort, progress of the population can readily be modelled. Typically, this is done with predictive modelling
techniques (Jeffreys, 2015; Daud et al., 2017; Cui et al., 2019; Raji et al., 2021), but these can be strict on the data: missing data
are hard for ML models to deal with, requiring the use of data imputation methods. The framework presented here does not
mind missing data and can therefore be readily employed for all use cases of predictive modelling alluded to in the introduction,
even in the case of incomplete and uncertain data. It can evaluate abilities and future performance with the data at hand, and if
lots of data are missing for a student or course it only means that inference and prediction will be more uncertain, resulting in a
wider posterior PDF for the variable one is interested in. Simply sampling the posterior PDFs per student and aggregating them
will result in a full posterior PDF for aggregate results.

Such predictions can help in evaluating the likely throughput of students in an educational program—the fractional dropout
(again, who will drop out will be less well determined unless methods like those described in Böttcher and colleagues (2020)
and Lacave and colleagues (2018) are used) as well as the total number of credit points obtained (in, e.g., the Netherlands this is
a crucial number for budgetary reasons) can be predicted, including a realistic bandwidth of uncertainty. Finances, as well as
scheduling of classes, and even the utilization of real estate, can be informed by expected future results of the current student
cohort.

One thing that can be done with individual student inference is flagging outlier results. As long as this indicator is not used
by itself, it is helpful to have sensitive indicators of potential fraud on, e.g., take-home exams. As will be shown in a follow-up
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paper (Caprani et al., in prep.), using information from their previous course results, as well as in-course progress, it is possible
to flag potential fraudsters using the modelling techniques we present with much higher sensitivity than what could be done
without modelling course difficulty and student performance in the process (i.e., based on grade statistics alone). Such flags can
be used by the teacher and teaching assistant as an indicator for the student lagging behind and potentially needing some extra
assistance. Care should then be taken, of course, not to accuse the student, since results will not be accurate enough for that, but
only to signal potential learning problems, to be used in accordance with other signals that teachers might get. Taken over
several courses, when a student’s results get flagged very often, the uncertainty that the results are actually suspicious goes
down and a student advisor or academic counsellor could take appropriate action.

5.2 Course and Curriculum Evaluation
Other than looking at outliers among the students, one can focus on outliers among the courses. A well-designed curriculum has
courses that show a common thread, with appropriate, but not huge, excursions in topic, methodology, and perhaps difficulty.
Aggregating results from individual modelling as presented in this paper could lead to some of the quantified curriculum
analytics measures, as proposed by Ochoa (2016), which can be used in the accreditation process for higher education. Such
curriculum-level aggregate results can be useful for the curriculum committee or an academic affairs department that is aiming
for a well-balanced educational program to identify courses that need some attention in their design or their place or timing
within the curriculum.

On the level of courses, the methodology presented here also has a concrete application. In many cases, exam results are
corrected upward when the overall performance of a class is below expectation. Results are corrected to some desired class
average. This is justified if the results are low because of an exam that turned out to be more difficult than intended. In reality,
it can be a result of a difficult exam, but also of a below-average class. After the modelling as presented in this paper, one
can objectively distinguish between the two and inform justified corrections to the grades by whoever decides about these
corrections.

Eventually, also including a time dependency, as in, e.g., F. Chen and Cui (2020), could lead to full modelling of the entire
process of students following large educational programs (Munguia & Brennan, 2020). Time dependencies can be included in
the models we describe above if for example the student performance can be a function of time, where the functional form can
be dictated (e.g., linear) or can be a free, but smooth, function of time, with, e.g., Gaussian processes (Roberts et al., 2013).

Modelling the curriculum as a whole, including time dependency, can also be a basis for the evaluation of the reception of
education after sudden changes in the modes of education offered, which was very common in the early phases of the COVID-19
pandemic (Camargo et al., 2020). Programs and their learning goals did not in principle change, but many institutions needed
to promptly move from the classroom to much more virtual education. With a well-calibrated model of the curriculum in place,
the influence of such shocks on study results can almost instantly be measured and acted upon. Such moves to online learning
tools are in themselves a great way to enhance the variety of data used in LA (Celik et al., 2023).

Including time dependence will also be critical in a curriculum where the concept of mastery learning (e.g., Block, 1979;
Slavin, 1987) is applied. In such cases, explicit dependence of follow-up courses on the previous results needs to be implemented.
Bayesian generative models are easily made hierarchical, enabling the modeller to make the presence of follow-up courses in
the data dependent on results in earlier parts of the curriculum.

5.3 Higher-Dimensional Student Performance and Course Difficulty: Modelling a Skill Set
As indicated throughout the paper, the cognitive process of learning through courses has been very strongly simplified into a
one-dimensional approach here. Even though the results look promising and prove to be useful with these simplifications, the
move to higher dimensions is a trivial expansion of these models, which can result in insight into the multi-faceted process of
course and curriculum design.

Higher education is more than just learning one trick. Several skills of different natures are developed, and some students
may have natural talent for one particular set of skills and others for other skill sets, which ties in with the LA work of Chou and
colleagues (2017). In any educational program, a mix of skills is necessary for success. The framework described in this paper
can easily accommodate such a higher-dimensional view of study success. Moreover, it will be able to do so in a data-driven
way; i.e., we can let the data dictate how many dimensions (or skills, if you want) are needed to describe the data well.

If along all dimensions the expected grade for that dimension can be written, analogously to Equation 1, as

gdim =
gmax −gmin

1+ exp(s · (δdim −αdim))
+gmin, (4)

then the total grade for a course can be written as a weighted average of these dimensional grades, where the weights are free
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parameters that are a property of the course (to what extent the course “measures” student performance in this dimension),

g = ∑
dim

fdim ·gdim, (5)

if the weighting factors fdim are defined to sum to 1, i.e., if it is defined as the fraction of that course’s grade that is determined
by that particular dimension. Going to a higher number of dimensions increases the number of parameters that will be optimized
to fit the data. Therefore it is only natural that the data will be better described by a higher-dimensional model. Nevertheless,
increasing the dimensionality too much won’t help reduce the uncertainties, which gives us a handle on how many dimensions
will best describe the data. The number of dimensions for which the expected grade is optimally close to the observed grades,
with small scatter, is a data-informed determination of the dimensionality of the data. Such a data-driven approach has important
advantages over approaches in which these dimensions are predefined.

This optimal dimensionality might say something about different skills that can be tested in courses and exams. Skills
is a rather broad term, though, and it would be interesting to see what these skills actually appear to be, in particular for
researchers interested in the learning process through academic programs. The dimensions might show strong correlations
with the discipline of the educational program, the faculty it is given in, or something more related to the form of examination
(multiple choice versus open questions, or exams versus essays or presentations) or the Dublin Descriptors (Gudeva et al., 2012).
It would be very interesting indeed if student performance along the several dimensions might be an aid in recommending
particular electives or minors to students by student advisors or even apps that help a student choose, which would broaden the
scope of applicability of these models.

6. Conclusions
In this paper we propose a Bayesian LA model that uses only course grades to simultaneously determine the latent variables
of course difficulties and student performance. Our generative modelling approach avoids the black-box nature of ML (for
example) and also provides insight beyond that of purely descriptive statistical methods: we derive PDFs for latent variables of
both courses and students that can be used in objective interventions in the learning and grading process, as described in Section
5. The model is extensible and provides insights useful for predicting student and cohort performances and for evaluating
course and curriculum. We demonstrate its effectiveness and limitations using artificial and real-world data sets.

We conclude that in order for the models to be able to constrain the latent variables, a few requirements must be met:

1. There must be significant overlap of student populations between courses. As was clear in the Open University data set,
too little overlap in student populations makes it very hard to constrain properties of courses with respect to one another.
The idealized experiments show that under ideal circumstances, a 10% overlap is enough. In a realistic setting like at the
University of Amsterdam’s College of Law, there is plenty of overlap to model course difficulty, course sensitivity, and
student performance.

2. There must be variance in the grades. When one course does not differentiate between different students by giving
everybody the same grade (or no grade at all), the properties of this course cannot be constrained. Moreover, the results
of other courses in the same model will be skewed.

3. There must be some correlation between the grades for the different courses for the overlapping student population in the
one-dimensional modelling presented here. This is easy to understand: course difficulties have one value per course,
so the grades of students within one course should correlate with the latent student performance. If that is true for all
courses, then there must be some correlation between the grades for different courses as well. If this is not the case, one
could go to higher-dimensional course difficulty and student performance.

When these conditions are met for a data set, the difficulty of courses is typically well constrained, which means that
inferences about the courses can be used to assess the curriculum under evaluation for homogeneity and consistency. On various
levels of detail, one could investigate a curriculum, a set of courses, or sub-groups of students. The code is released publicly,
including examples of how to extend its functionality.
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