
Research Report

Evaluating Targeted Double
Scoring for the Performance

Assessment for School
Leaders Using Imputation

and Decision Theory
ETS RR–23-01

Jing Miao
Sandip Sinharay
Chris Kelbaugh

Yi Cao
Wei Wang

December 2023

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fets2.12363&domain=pdf&date_stamp=2023-01-19


ETS Research Report Series

EIGNOR EXECUTIVE EDITOR

Laura Hamilton
Associate Vice President

ASSOCIATE EDITORS

Usama Ali
Senior Measurement Scientist

Beata Beigman Klebanov
Principal Research Scientist

Brent Bridgeman
Distinguished Presidential Appointee

Heather Buzick
Senior Research Scientist

Tim Davey
Director Research

John Davis
Impact Research Scientist

Larry Davis
Director Research

Jamie Mikeska
Senior Research Scientist

Gautam Puhan
Director Psychometrics & Data Analysis

Jonathan Schmidgall
Senior Research Scientist

Jesse Sparks
Senior Research Scientist

Michael Walker
Distinguished Presidential Appointee

Klaus Zechner
Senior Research Scientist

PRODUCTION EDITORS

Kim Fryer
Manager, Editing Services

Ayleen Gontz
Senior Editor

Since its 1947 founding, ETS has conducted and disseminated scientific research to support its products and services, and
to advance the measurement and education fields. In keeping with these goals, ETS is committed to making its research
freely available to the professional community and to the general public. Published accounts of ETS research, including
papers in the ETS Research Report series, undergo a formal peer-review process by ETS staff to ensure that they meet
established scientific and professional standards. All such ETS-conducted peer reviews are in addition to any reviews that
outside organizations may provide as part of their own publication processes. Peer review notwithstanding, the positions
expressed in the ETS Research Report series and other published accounts of ETS research are those of the authors and
not necessarily those of the Officers and Trustees of Educational Testing Service.

TheDaniel Eignor Editorship is named in honor ofDr.Daniel R. Eignor,who from2001until 2011 served theResearch and
Development division as Editor for the ETS Research Report series. The Eignor Editorship has been created to recognize
the pivotal leadership role that Dr. Eignor played in the research publication process at ETS.

 23308516, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ets2.12363, W

iley O
nline L

ibrary on [29/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ETS Research Report Series ISSN 2330-8516

R E S E A R C H R E P O R T

Evaluating Targeted Double Scoring for the Performance
Assessment for School Leaders Using Imputation and
Decision Theory

Jing Miao, Sandip Sinharay, Chris Kelbaugh, Yi Cao, & Wei Wang

Educational Testing Service, Princeton, NJ, USA

In a targeted double-scoring procedure for performance assessments that are used for licensure and certification purposes, a subset of
responses receives an independent second rating if the first rating falls into a preidentified critical score range (CSR)where an additional
rating would lead to considerably more reliable pass-fail decisions. This study evaluates the CSRs using two approaches—one based
on imputation of missing scores and the other based on statistical decision theory—using data from the Performance Assessment for
School Leaders (PASL). Results from the evaluation indicate that the currently used CSRs are effective.

Keywords critical score range; decision consistency; linear regression; expected loss function
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Portfolio (or performance) assessments have been called for to provide direct evidence of teaching practice in licensure
decisions, and studies have found that portfolio assessments contribute unique information in addition to traditional
standardized tests (e.g., Wilson et al., 2014). However, such assessments are extremely costly to score because the tasks
require extended responses that often include supporting artifacts (e.g., documents and video recordings). In practice, all
responses typically receive at least two independent ratings (e.g., as recommended by Williamson et al., 2012), and some
receive a third rating for adjudication if needed. It seems intuitive that when a candidate scores very high or very low on a
task, having a second rating is not very likely to change the pass or fail outcome on the total test. However, for candidates
with scores in the borderline area or critical score range (CSR), a second rating is more likely to change the outcome. The
targeted double-score (TDS) procedure was developed based on this logic (Finkelman et al., 2008; Miao et al., 2021; Miao
& Cao, 2019) and has been implemented for several testing programs, including the PRAXIS® Performance Assessment
for Teachers (PPAT®) and the Performance Assessment for School Leaders (PASL).

ThePASL includes three tasks, each with four steps (or parts). Thetasks are scored at the step level using a 0- to 4-point
scale (see Table 1), and the task score is the sum of the four step scores. T he total test score (whose maximum value is 64)
is the weighted sum of the task scores, with Task 3 weighted twice as much as the other two tasks.

Starting from Fall 2019, the PASL adopted the TDS procedure, in which task responses receive an independent second
rating (i.e., operational Rating 2, and hereafter referred to as OR2) if their scores from the first rater (R1) fall in a prespec-
ified CSR. The final score for the response is the average of the two ratings.1 For those with R1 scores outside of the CSRs,
about 10% are randomly sampled to receive an independent second rating (i.e., agreement sample Rating 2, and hereafter
referred to as AR2). This random sample is referred to as the agreement sample. The OR2s and AR2s allow us to evaluate
interrater agreement across the full score range (see Table 2).

The CSRs were originally defined based on a visual examination of themean total test scores conditional on task scores.
As an example, Figure 1 shows the mean test score conditional on Task 1 scores—the R1 scores were used to create the
f igure. T he solid blue line represents the conditional means of R1 test score, with the band of ±1 SD marked by the two
dotted blue lines. The green horizontal line represents the test cut score of 42. The two red dashed lines mark the CSR of 8
to 11, where an independent second rating is quite likely to change the pass-fail outcome for a test taker. This approach of
defining CSRs based on a plot like Figure 1 is straightforward, but somewhat arbitrary, as one can choose a narrower CSR
of 9 to 10 or a wider CSR of 8 to 11. It is, therefore, important to validate the CSRs with empirical analyses, considering
both psychometric quality of the resulting scores and scoring cost.

Corresponding author: J. Miao, E-mail: jmiao@ets.org
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J. Miao et al. Evaluating Targeted Double Scoring for PASL

Table 1 Structure of the Assessment

Task features Task 1 Task 2 Task 3

Number of steps 4 4 4
Score range for each step 0–4 0–4 0–4
Maximum possible task score 16 16 16
Task weight 1 1 2

Table 2 Targeted Double-Scoring Procedure

R1 score
% of responses
double scored Purpose

Above the CSR 10 AR2, for evaluating inter-rater agreement
Within the CSR 100 OR2, averaged with R1 score for reporting
Below the CSR 10 AR2, for evaluating inter-rater agreement

Note. R1 = first rater; CSR = critical score range; AR2 = agreement sample Rating 2; OR2 = operational Rating 2.

Figure 1 Mean Test_R1 score conditional on Task1_R1 score.

In this study, we used two different approaches to evaluate the CSRs—the missing data imputation approach and the
decision theory-based approach. In the missing data imputation approach, we built a regression model to impute the
missing scores resulting from the TDS approach and constructed synthetic double scores (SDSs) to be the criteria for
evaluating the psychometric quality of different CSR options. The decision theory-based approach assumes certain losses
for various decisions and applies statistical decision theory to observed data only to find optimum CSRs with the least
loss. We sought to answer two questions:

1. Are the current CSRs ef fective (i.e., are we targeting double scoring at the right range)?
2. Are there better alternatives with lower cost but no deterioration in quality (i.e., do we need to adjust the current

CSRs)?

Method: Evaluating the Critical Score Ranges Using Missing Data Imputation

Building the Regression Model

Thedata for this study were accumulated across 3 testing years from Fall 2018 to Spring 2021, with valid reported scores
for 3,334 test takers. We first used all available data on double-scored task responses (N = 971, 993, and 1,230 for Tasks
1, 2, and 3, respectively) to build a regression model, which would generate a predicted Rater 2 (PR2) task score for
all responses. The analysis was conducted separately for each task on data from the test takers whose task responses were
scored by two human raters, R1 and R2 (either OR2 or AR2). Multiple linear regressionmodels were built for each task, in

2 ETS Research Report No. RR-23-01. © 2023 Educational Testing Service

 23308516, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ets2.12363, W

iley O
nline L

ibrary on [29/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



J. Miao et al. Evaluating Targeted Double Scoring for PASL

which the R2 task score was the dependent variable and all 12 R1 step scores were predictors (or independent variables).
Preliminary modeling analyses show that demographic variables such as gender and ethnicity did not improve model
prediction and were therefore excluded from the model. To evaluate the prediction accuracy of the optimal regression
model, root mean squared difference (RMSD) was computed as

RMSD =

√∑N
i=1

(
yi − ŷi

)2
N

, (1)

where N is the total number of examinees, yi is the actual R2 score of examinee i on the task, and ŷi is the PR2 score
on this task. In addition, exact agreement (EA), exact plus adjacent agreement (E+AA), and quadratic weighted kappa
(QWK) were also computed to examine the extent of agreement between the rounded PR2 task scores and the actual R2
task scores.

Because all the records in the data set were used as calibration data to build themodel, to further validate themodel, 10-
fold cross-validation was conducted, where the model was built on 90% of the data and validated based on the remaining
10% of the data 10 times. In cross-validation, the general steps are as follows:

1. Divide the total double-scored sample into 10 equal groups in terms of sample size.
2. Use the first nine groups as the calibration sample to build the model and then predict the scores for the 10th group,

which is used as the prediction sample. Compute RMSD.
3. Repeat Step 2 by using the ninth group, the eighth, and so on as the prediction samples and the remaining nine

groups as the calibration samples.

The model was then used to predict the missing R2 task scores for examinees whose responses were single scored.
Using the concept of prediction interval in linear regression (e.g., Draper & Smith, 1998, pp. 81–83), the final PR2 task
scores were obtained as rounded (to the nearest integer) random draws from a normal distribution with the predicted
values as the means and the standard errors of the predicted values of individual observations as the standard deviations.
All the regression analyses were conducted using the R software.

The estimated regression coefficients in the final regression models for the three tasks are listed in Table 3, with coef f i-
cients printed in blue indicating statistically significant (at 5% level) predictors. The squared multiple coefficients for the
three regressions were 0.16, 0.19, and 0.20, respectively.

Table 4 shows the RMSD, EA, E+AA, and QWK for each task based on averaged estimates from the 10 prediction
samples. From Table 4, all the RMSD values are relatively high compared to the task scales (16 points). Although these
linear models are the optimal ones we can obtain based on the available information, the RMSDs indicate that the models
do not predict the second human scores very well. In addition, all the four agreement statistics are fairly low.

However, note that the values of the agreement measures, when computed from the full sample using the regression
models described in Table 3, show a slightly better agreement, as shown in Table 5. For example, the values of QWK are
between 0.18 and 0.19, which indicates a slight agreement (e.g., Landis & Koch, 1977) between the actual and predicted
scores.

Table 6 provides the descriptive statistics of PR2 scores as compared to R1 scores. Themeans of PR2 scores are slightly
lower than those of R1 scores (by −.22, −.04, and −.02, respectively), and the standard deviations appear to be very
similar.

Table 3 Regression Models With Coefficients for Predicted Rater 2 Scores

Task 1 Task 2 Task 3

Predicted score N α S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

T1PR2 971 5.46 .29 .06 .26 .35 .17 .20 .17 .00 .31 −.07 .14 .16
T2PR2 993 4.45 .33 −.15 .38 .25 .16 .38 .20 .34 .18 .20 .04 .09
T3PR2 1,230 3.81 .27 .14 .23 .12 .14 .26 .11 .17 .47 .06 .23 .38

Note. α represents the regression intercept. T1PR2 = Task 1 predicted Rater 2; T2PR2 = Task 2 predicted Rater 2; T3PR2 = Task 3
predicted Rater 2; S1 = Step 1; S2 = Step 2; S3 = Step 3; S4 = Step 4. Coefficients printed in blue indicate statistically significant (at 5%
level) predictors.

ETS Research Report No. RR-23-01. © 2023 Educational Testing Service 3
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J. Miao et al. Evaluating Targeted Double Scoring for PASL

Table 4 Measures of Model Prediction Accuracy From the Validation Samples

Task RMSD EA EA+AA QWK

Task 1 2.56 0.13 0.45 0.16
Task 2 2.64 0.13 0.42 0.09
Task 3 2.32 0.12 0.43 0.15

Note. RMSD = root mean squared difference; EA = exact agreement; E+AA = exact plus adjacent agreement; QWK = quadratic
weighted kappa.

Table 5 Measures of Model Prediction Accuracy From the Full Sample

Task RMSD EA EA+AA QWK

Task 1 2.42 0.17 0.46 0.19
Task 2 2.51 0.16 0.46 0.18
Task 3 2.38 0.17 0.48 0.19

Note. RMSD = root mean squared difference; EA = exact agreement; E+AA = exact plus adjacent agreement; QWK = quadratic
weighted kappa.

Table 6 Descriptive Statistics for Rater 1 (R1) Score and Predicted Rater 2 (PR2) Score

Score N Mean SD Min Max

Task 1 R1 3,334 10.97 2.79 0 16
Task 1 PR2 3,334 10.75 2.82 0 16
Task 2 R1 3,334 10.86 2.99 0 16
Task 2 PR2 3,334 10.82 2.98 0 16
Task 3 R1 3,334 10.59 3.03 0 16
Task 3 PR2 3,334 10.57 2.98 0 16

Compiling the Synthetic Double-Score Data

We then compiled the SDS data for analyses to evaluate the efficacy of the CSRs. We computed the synthetic Rater 2 (SR2)
task score as follows:

• SR2 equals to the OR2 score if available;
• SR2 equals to the AR2 if available;
• SR2 equals to the PR2 score if neither OR2 nor AR2 is available.

The SDS task score is the average2 of R1 and SR2, and the SDS test score is the weighted sum of the SDS task scores.
We used SDS scores as the criteria for comparisons.

Evaluating the Critical Score Ranges

Using the graphic tool introduced earlier, we first identified five task-level CSRs3 for evaluation. We applied these CSRs to
calculate test scores and pass-fail outcomes under each condition specified in Table 7. To determine the optimal option, we
compared the results on alpha reliability, pass rate, agreement of classification, and scoring scope, with the SDS condition
results as the criteria. The scoring scope is the total number of scores produced for each condition as a percentage of the
total number of scores produced in the 7 to 10 baseline condition.4

The operational procedure uses the 7 to 10 CSRs for all three tasks; a small number of responses may receive third-
rater adjudication when the difference between R1 and R2 exceeds the predefined allowable difference.5 In this study,
we only considered R1 and R2 scores without third-rater adjudication; therefore there are small differences between the
“operational” and the “7 to 10” condition. Results in Table 7 show that the current 7 to 10 CSR is the optimal option among
the group of five, if we are making double-score decisions on R1 task score. The more costly options do not improve the
psychometric quality; the narrower range of 9 to 10 has lower cost but shows deterioration in quality.

4 ETS Research Report No. RR-23-01. © 2023 Educational Testing Service
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J. Miao et al. Evaluating Targeted Double Scoring for PASL

Table 7 Targeted Double-Scoring Conditions With Task-Level6 Critical Score Ranges

Scoring condition Alpha reliability Pass rate (%) % agree with SDS criteria Scoring scope7 (%)

SDS (criteria) 0.84 80
Operational 0.83 85 93.6
7 to 10 0.83 83 93.8 100
7 to 11 0.83 78 92.9 111
8 to 11 0.83 78 92.9 110
9 to 11 0.82 74 90.3 106
9 to 10 0.83 75 89.0 95

Note. SDS= synthetic double scores. Green shading indicates that 7 to 10 is the optimal option among the group of five. Green indicates
desirable values, while red indicates the opposite.

Table 8 Targeted Double-Scoring Conditions With Test-Level Critical Score Ranges

Scoring condition Alpha reliability Pass rate (%) % agree with SDS criteria Scoring scope (%)

SDS (criteria) 0.84 80
Operational 0.83 85 93.6
37 to 41 0.81 83 88.0 94
39 to 42 0.81 81 96.2 96
37 to 42 0.82 80 97.3 98
37 to 44 0.82 80 99.1 107
37 to 45 0.83 80 99.6 111

Note. SDS= synthetic double scores. Green shading indicates that 39 to 42 is the optimal option among the group of five. Green indicates
desirable values, while red indicates the opposite.

Table 9 Targeted Double-Scoring Conditions with Task-Level and Test-Level Critical Score Ranges

Scoring condition Alpha reliability Pass rate (%) % agree with SDS criteria Scoring scope (%)

SDS (criteria) 0.84 80
Operational 0.83 85 93.6
(8 to 11)× (37 to 42) 0.83 82 94.5 93
(7 to 10)× (37 to 45) 0.82 83 93.7 95
(8 to 11)× (37 to 44) 0.82 82 94.5 98
(7 to 11)× (37 to 44) 0.82 82 95.0 98
(7 to 11)× (37 to 45) 0.82 82 95.1 101

Note. SDS = synthetic double scores. Green shading indicates that (8 to 11)× (37 to 42) is considered the optimal option among the
group of five.

In search of more cost-efficient alternatives (i.e., to answer the second research question), we also considered CSRs
using test scores. One approach is to use R1 test score CSR; if a candidate’s weighted sum of three R1 task scores falls in
a predef ined CSR, all tasks will be double scored. Table 8 provides results from five test-level CSRs right below or around
the cut score of 42. Balancing considerations of quality and cost, we considered 39 to 42 to be the optimal from this group
of five, if we are making double-score decisions on R1 test score.

Another approach is to use dual-level CSRs considering both the task-level and the test-level scores; i.e., a task response
will get a second score if both the R1 task score and R1 test score fall in the respective CSRs. Considering results from task-
level and test-level analysis, we analyzed different dual-level combinations. Table 9 provides results from five conditions
with better performances. The optimal one in this group of five is the combination of task-level CSR of 8 to 11 and test-level
CSR of 37 to 42. It has the lowest scoring cost among the five options, which are of similar psychometric qualities.

Altogether, we compared a total of 15 sets of CSRs (Tables 7–9) using three different approaches and identified the
optimum CSR for each. Table 10 provides the summary statistics of task and test scores of the three optimum scoring
conditions. Single-score (R1) statistics are provided for reference. Overall, the different conditions produce similar score
distributions; TDS results tend to have slightly higher means than SDS and single-scored (R1) conditions; single-scored
(R1) scores have largest standard deviations; and the TDS scores have SDs between SDS and single-scored conditions.

ETS Research Report No. RR-23-01. © 2023 Educational Testing Service 5

 23308516, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ets2.12363, W

iley O
nline L

ibrary on [29/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



J. Miao et al. Evaluating Targeted Double Scoring for PASL

Table 10 Descriptive Statistics of Task and Test Scores Under Different Scoring Conditions

Task Scoring conditions N Mean SD Min Max

Task 1 SDS (criteria) 3,334 10.86 2.58 0 16
TDS operational 3,334 11.11 2.73 0 16
TDS Condition 1: Task (7 to 10) 3,334 11.11 2.73 0 16
TDS Condition 2: Test (39 to 42) 3,334 10.97 2.76 0 16
TDS Condition 3: (8 to 11)× (37 to 42) 3,334 11.02 2.77 0 16
Single score (R1) 3,334 10.97 2.79 0 16

Task 2 SDS (criteria) 3,334 10.85 2.80 0 16
TDS operational 3,334 11.01 2.93 0 16
TDS Condition 1: Task (7 to 10) 3,334 11.01 2.93 0 16
TDS Condition 2: Test (39 to 42) 3,334 10.88 2.97 0 16
TDS Condition 3: (8 to 11)× (37 to 42) 3,334 10.92 2.97 0 16
Single score (R1) 3,334 10.86 2.99 0 16

Task 3 SDS (criteria) 3,334 10.59 2.82 0 16
TDS operational 3,334 10.78 2.97 0 16
TDS Condition 1: Task (7 to 10) 3,334 10.78 2.97 0 16
TDS Condition 2: Test (39 to 42) 3,334 10.68 2.99 0 16
TDS Condition 3: (8 to 11)× (37 to 42) 3,334 10.72 2.98 0 16
Single score (R1) 3,334 10.59 3.03 0 16

Test SDS (criteria) 3,334 43.13 10.26 0 60
TDS operational 3,334 43.75 10.67 0 62
TDS Condition 1: Task (7 to 10) 3,334 43.69 10.68 0 62
TDS Condition 2: Test (39 to 42) 3,334 43.25 10.69 0 62
TDS Condition 3: (8 to 11)× (37 to 42) 3,334 43.38 10.66 0 62
Single score (R1) 3,334 43.01 10.70 0 62

Note. SDS = synthetic double scores; TDS = targeted double scores; R1 = Rater 1.

Table 11 Reliability Estimates and Classification Agreement Under Different Scoring Conditions

Scoring condition Alpha
Decision
accuracy

Decision
consistency

Pass
rate (%)

% agree
with SDS

Scoring
scope (%)

SDS 0.84 0.90 0.86 80
TDS Operational 0.83 0.86 0.85 85 93.6
TDS Condition 1 0.83 0.86 0.85 83 93.8 100
TDS Condition 2 0.81 0.88 0.84 81 96.2 96
TDS Condition 3 0.83 0.86 0.84 82 94.5 93

Note. SDS = synthetic double scores; TDS = targeted double scores. Green indicates desirable values.

Table 11 provides the reliability estimates for the three conditions, which have similar yet slightly lower values
than the SDS estimates. Alpha reliability is a measure of the internal consistency of the test and is related to test
length. In our data, each task included four steps scored by the same rater, and therefore the steps cannot be treated
as independent test items. Our estimates are based on the test length of three items and provide a lower limit of
alpha reliability. Reliability of classification measures are calculated when a cut score is used for pass or fail decisions
(Livingston & Lewis, 1995). Decision accuracy refers to the extent to which the classifications of test takers based
on their scores on the test form agree with the classifications made using perfectly reliable test scores. Decision con-
sistency refers to the agreement between these classifications based on two nonoverlapping, equally difficult forms
of the test. By definition, decision consistency values are always lower than the corresponding decision accuracy
values.

Table 11 also provides pass rates and classification agreement rates, which are more tangible measures to nontechnical
stakeholders. The pass rate ranges from 80% for the SDS condition to 85% for the operational condition, whereas the three
TDS conditions have similar pass rates in between. The classification agreement rate ranges from 93.8% for Condition 1
and 96.2% for Condition 2, all above 93.6% agreement rate for the operational condition. Thethree TDS conditions appear
to be similar in quality, but Condition 3 can be considered the optimum for its lowest cost (see Table A2 in the appendix
for calculation details).

6 ETS Research Report No. RR-23-01. © 2023 Educational Testing Service
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J. Miao et al. Evaluating Targeted Double Scoring for PASL

Method: Evaluating the Critical Score Ranges Using Decision Theory Analysis

The Motivation Behind the Approach

We decided to also apply statistical decision theory (e.g., Rudner, 2009) to choose optimal CSRs because this approach
only utilizes available data and does not involve the use of imputed data. In applications of statistical decision theory
(henceforth referred to as decision theory), an investigator chooses one among a set of possible actions or decisions. A
major tool in decision theory is a loss function that quantifies the gain or loss associated with each possible action. An
application of decision theory also involves an unknown element that is typically expressed as a probability distribution.
The investigator computes the average (or expected) loss averaged over the probability distribution for each action and
chooses the action that leads to the minimum average loss among all possible actions.

The Expected Loss Function

In the context of this paper, an action corresponds to the choice of a specific CSR for a task, and the unknown elements
are the R1 and R2 scores on that task and the other tasks of the PASL. If the R1 score of an examinee lies within the CSR
(that leads to the double scoring for the examinee on the task), the resulting loss is assumed to be equal to the cost of an
extra rating on the task. Let us denote this cost as c. For each R1 score (on the task of interest) that lies outside the CSR,
no double scoring is performed, but that event is assumed to lead to a loss of

• LP if the examinee passes the PASL based on Rater 1 task score (that is, with single scoring) and would have failed
the test if the task were double scored;

• LF if the examinee fails the PASL based on Rater 1 task score (with single scoring) and would have passed the test if
the task were double scored;

• 0 if the examinee’s pass-fail status is the same irrespective of whether one or two ratings are used on the task.

The quantity LP primarily quantifies the loss that borderline examinees who incorrectly passed the PASL would cause
by performing poorly at their professions. The quantity LF represents the loss corresponding to the potentially unfair
failing and the resulting loss of job income of a borderline examinee. This formulation of the problem capitalizes on the
fact that double scoring leads to an improvement in the quality of the scores compared to single scoring, which has been
noted by, for example, Williamson et al. (2012). The expected loss corresponding to a CSR is then given by

ELCSR = cP(CSR) +
[
LP P(Pass with 1 rating and fail with 2 ratings & Outside CSR)

+ LF P(Fail with 1 rating and pass with 2 ratings & Outside CSR)
]
[1 − P(CSR)], (2)

where P(CSR) denotes the probability that the Rater 1 task score of a randomly chosen PASL examinee falls within the CSR
and where P(Pass with 1 rating and fail with 2 ratings & Outside CSR) is the probability of a random examinee passing
the PASL based on the R1 score and failing the test if the task were double scored given that the examinee’s R1 score on
the task lies outside the CSR.

Equation 2 can be used to estimate the expected loss of each CSR if the probabilities in the equation can be accurately
estimated. If a representative sample of double-scored responses for the task of interest is available, then the probabilities
in Equation 2 can be estimated by the corresponding sample proportions; the sample of double-scored examinees that
were used in the imputation-based approach (described in the previous subsection) was used as the representative sample
to estimate the probabilities in the above equation.8 The CSRs that led to the smallest estimated expected losses were
chosen as the optimum CSRs. The approach of choosing the CSR by minimizing the expected loss constitutes an optimal
approach in the sense that (a) such an approach has desirable theoretical properties and (b) situations can be constructed
in which the follower of other approaches will be assured of inferior results. More details about the approach can be found
in Sinharay et al. (2022).

Results From Application of the Decision Theory-Based Approach to Our Data

To estimate the expected loss using the above equation, one needs appropriate values of c, LP, and LF—these values
are problem specific. Conversations with the administrators of the test made it clear that one task rating costs about
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J. Miao et al. Evaluating Targeted Double Scoring for PASL

Figure 2 Expected losses for various critical score ranges and various combinations of LP and LF.

$40 on average after including all expenses. Therefore, c was set equal to 40. The following five combinations of LP and
LF (each of which represents cost in dollars) were used in the computations of the estimated expected losses: {40,40},
{400,400}, {800,200}, {200,800}, and {4,000,4,000}. The first and fifth combinations were chosen to represent two extremes,
representing the cost of an incorrect decision (arising out of single scoring) to be very low and very high, respectively. The
other three combinations represent more moderate conditions. Although LP = LF in three of the five combinations, the
combinations {800,200} and {200,800} were chosen to represent unequal losses from the two types of incorrect decisions.
Thevalues, such as 200, 400, and 800 and so on, were chosen after a discussionwith those familiar with the testing program
and roughly represent realistic losses caused by various decisions.

Figure 2 shows the estimated expected losses along the vertical axis for Task 1 for six CSRs that include the operational
CSR for the task (7 to 10), one extreme CSR (the set 0–16 representing double scoring of all responses), and four other
CSRs that were found to lead to small estimated expected losses on average in a preliminary investigation. Each line
corresponds to a CSR and connects f ive points that represent the estimated expected losses for f ive combinations of LP
and LF that are represented along the horizontal axis for that CSR. The six CSRs are denoted using different symbols, as
denoted in the legend of the figure. The figure and similar figures for the other two tasks indicate that 6 to 11, 7 to 11, and
8 to 11 led to the minimum estimated expected loss for all tasks.

We also performed another set of decision theory-based analysis using CSRs based on both the task scores and the
total R1 score9—this analysis revealed that the minimum estimated expected loss for a task was achieved for the CSR that
is 8 to 11 for the task and 37 to 42 for the total R1 score (the results were very close but slightly worse for the CSR that
is 7 to 11 for the task and 37 to 42 for the total R1 score). In addition, the minimum estimated expected losses from this
analysis were on average 10–20% smaller than that for CSRs based only on task scores (and not on total scores).

Therefore, the decision theory-based analysis indicates that revising the double-scoring policy to double score a
response when the Task R1 score is between 8 and 11 (or 7 to 11) and the total R1 score is between 37 to 42 is optimal
from a decision-theoretic point of view. This is consistent with the results from the imputation-based approach.

Summary

In this study we applied two approaches to evaluate the CSRs currently used for PASL and also to search for more cost-
efficient alternatives. One approach imputed missing data to create an SDS as the criterion for evaluation; the other used
only observed data but made some assumptions on the losses associated with different conditions. The two approaches
arrived at converging results.

The current task level CSRs of 7 to 10 were shown to be adequate in terms of psychometric quality. The decision
theory-based analysis results indicate that 6 to 11, 7 to 11, and 8 to 11 led to the lower estimated expected loss than

8 ETS Research Report No. RR-23-01. © 2023 Educational Testing Service
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7 to 10; however, the scoring cost corresponding to each of these three CSRs was 10–11% higher than the current
procedure.

The dual-level CSRs (i.e., task level 8 to 11 in combination with R1 test score 37 to 42) have the potential to reduce
the scoring cost by 7%; however, the implementation would involve substantial reconfigurations to the current scoring
system and work processes. It needs to be determined whether the cost of implementing such change can be offset by the
potential savings from reduced scoring scope.

TDS is a cost-effective procedure for performance assessment where automated scoring is not yet feasible. This study
provides a framework for establishing and evaluating the CSRs where a full double-scored criterion is not available. This
approach can be adopted when designing new assessments with constructed responses that cannot be easily scored auto-
matically. It is also possible to apply our methods and analysis to data from other tests and simulated data, including tests
that have items with various formats and various types.

Our study has several limitations. First, although we considered score reliability and did not consider validity in this
paper, it is possible to compareCSRswith respect to predictive validity if an external criterion is available. Second, although
we used linear regression to impute missing data, other advanced methods for missing-score imputation (e.g., those from
Sinharay, 2021) can be applied in future research.

Notes

1 For a small number of cases, a third rating may be needed for adjudication if the first two ratings are discrepant.
2 Third rater adjudication is used in a very small number of cases and not considered in this study.
3 CSRs can be different for each task, but they happen to be the same for all three tasks in this case.
4 Detailed calculation is provided in Table A1.
5 The allowable difference is 4 points for task 1 and task 2, and 3 points for double-weighted task 3.
6 Task level CSRs can be different for each task, but they happen to be the same for the data in this study.
7 See Table A1 for more information on scoring scope calculation.
8 While estimating the probabilities, weighting was used to account for the fact that all responses with Rater 1 score in the CSR are

double scored. butle only 10% of the responses with R1 score outside the CSR are double scored.
9 An analysis was also performed after defining the CSRs based on only the task scores—the expected losses were not smaller than

those in Figure 2—so CSRs based only on task scores were not considered any more.
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Appendix

Table A1 Estimated Scoring Scope for Three Sets of Task-Level Critical Score Ranges

CSR Score level N of R1 N of OR2 N of AR2 Total scoring % of baseline

7 to 10 Task 1 3,210 643 257
Task 2 3,194 672 252
Task 3 3,186 910 228
Test 9,590 2,225 737 12,552 100

8 to 11 Task 1 3,210 1,098 211
Task 2 3,194 1,148 205
Task 3 3,186 1,359 183
Test 9,590 3,605 599 13,794 110

7 to 11 Task 1 3,210 1,129 208
Task 2 3,194 1,172 202
Task 3 3,186 1,393 179
Test 9,590 3,694 589 13,873 111

Note. CSR = critical score range; R1 = Rater 1; OR2 = optimal Rating 2; AR2 = agreement sample Rating 2. Red indicates undesirable
values.

Table A2 Estimated Scoring Scope for Specified Targeted Double-Score Conditions

Scoring condition Score level N of R1 Task-level CSR Test-level CSR N of OR2 N of AR2 Total scoring % of baseline

#1 Task 1 3,210 7 to 10 NA 643 257 4,110
Task 2 3,194 7 to 10 672 252 4,118 NA
Task 3 3,186 7 to 10 910 228 4,324
Test 9,590 2,225 737 12,552 100

#2 Task 1 3,210 NA
39 to 42

541 267 4,121
Task 2 3,194 NA 541 265 4,103 NA
Task 3 3,186 NA 541 265 4,094
Test 9,590 1,623 797 12,010 96

#3 Task 1 3,210 8 to 11
37 to 42

349 286 3,845
Task 2 3,194 8 to 11 371 282 3,847 NA
Task 3 3,186 8 to 11 595 259 4,040
Test 9,590 1,315 827 11,732 93

Note. R1 = Rater 1; CSR = critical score range; OR2 = optimal Rating 2; AR2 = agreement sample Rating 2.
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