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Abstract. Nowadays, the rapid development of ICT has brought more flexible forms that push 
the boundaries of classic teaching methodology. This paper is an analysis of online teaching 
and learning forced by the COVID-19 pandemic, as compared with traditional education ap-
proaches. In this regard, we assessed the performance of students studying in the face-to-face, 
online and hybrid mode for an engineering degree in Computer Science at the Lublin University 
of Technology during the years 2019–2022. A total of 1827 final test scores were examined us-
ing machine learning models and the Shapley additive explanations method. The results show 
an average increase in performance on final tests scores for students using online and hybrid 
modes, but the difference did not exceed 10% of the point maximum. Moreover, the students’ 
work had a much higher impact on the final test scores than did the study system and their profile 
features.

Keywords: higher education, online learning, XGBoost, SHAP values, COVID-19, student mo-
tivation.

1. Introduction

Higher education has undergone tremendous changes during the COVID-19 pandemic. 
The onset of the pandemic, falling in the summer semester of 2020, forced students to 
stay at home and use online learning platforms. The sudden transition to online educa-
tion exposed, however, some challenges, as well as benefits. For the 2020/2021 and 
2021/2022 academic years, different action strategies were then adopted: some universi-
ties reinstated in-person participation in classes, some remained fully online and others 
applied hybrid solutions. 

Online learning is made possible due to harnessing the potential of the Internet and 
independent technological devices to develop and to allow the use of on-line materials 
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and tutoring for education purposes, instructional delivery and management of programs 
through networked interactivity (Fry, 2001; Zhang and Wu, 2022). There are two types 
of online learning now proffered: asynchronous online learning and synchronous online 
learning (Hrastinski, 2008). 

Asynchronous learning provides more flexible time for students and teachers since 
they need not be online at the same time. Students can review the learning materials 
at any time and spend more time in forums, virtual libraries, sites accessing lecturers’ 
online notes or online discussions boards. Unfortunately, asynchronous learning has sev-
eral disadvantages. Among such are the lack of in-person contact with the lecturer and 
the feeling of isolation and loneliness due to the absence of interpersonal contacts.

Synchronous online learning refers to real-time online learning that enables students 
and teachers to interact at the same time (Hong et al., 2020; Paul and Jefferson, 2019; 
Rawat and Singh, 2020). It provides a live platform that allows more direct interaction 
and immediate response between teachers and students. The main strength of synchro-
nous online learning lies its immediately and efficiently communicated environment 
(Giesbers et al., 2014). 

Along with several benefits and its flexibility, online learning also has several disad-
vantages. Among such are the lack of face-to-face interactions resulting in the feelings 
of isolation and loneliness (Stewart and Lowenthal, 2022). Many researchers (Hong 
et al., 2020; Paul and Jefferson, 2019; Rawat and Singh, 2020) have clearly shown that 
in-person participation has the greatest impact on student motivation – which is a pre-
requisite for successful learning. For online-only students, satisfaction with their studies 
is halved, with the greatest negative impact being in the areas of academic and personal 
development. Motivation to learn is a phenomenon largely conditioned by individual 
traits, particularly, the emotional factors of the individual. In online learning, it is easy 
to give in to external influences and distractions (Ha and Wong, 2010; Ditta, 2020; Sal-
guero et al., 2021).

Several research studies have been carried out recently to explore the effectiveness 
of online education in comparison to traditional offline education (Cotero et al., 2020; 
Harwood et al., 2018; Kumar et al., 2009). On-line educational platforms, for instance, 
seem to be very helpful in furthering individual modes of work by making self-studies 
more efficient (Charytanowicz, 2019; Núñez et al., 2017; Suszyński et al., 2020). Due 
to changes caused by the COVID-19 pandemic, online education has been popularized 
and more fully developed. The pandemic has increased not only the importance of emer-
gency online studying, but has also provided an opportunity for a broader discussion of 
the efficacy of online higher education (Makarova, 2021; Singh et al., 2021; Stewart and 
Lowenthal, 2022). 

Large data resources generated by online educational applications have allowed the 
usage of machine learning models to explore students’ performances. The prediction 
output generated by machine learning models can be explained by applying Shapley 
analysis. The work (Sahlaoui et al., 2021) can serve as a good example of this. This 
paper presents preliminary research depicting the importance of tree-based machine 
learning algorithms and their application in predicting student performance. The results 
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showed that the use of the proposed strategies and techniques improved the accuracy 
of the prediction models. Moreover, the SHAP value and the associated visualizations 
increased transparency.

Through machine learning methods and the SHAP approach, certain researchers 
have aimed to discover which features have the most significant impact on ADHD stu-
dent performance in arithmetic, writing and reading (Balbino et al., 2022). Here, SHAP 
values aided in identifying and assessing the most relevant features for academic per-
formance. 

However, currently there is a lack of papers that, with the aid of Shapley analysis, 
allow for better explanation and understanding of student performance. Therefore, the 
study conducted in this paper investigates the problem of student performance forecast-
ing from the point of view of input features. Our research contributes to a proper assess-
ment of online learning effects by comparing the relationships between student learning 
in the traditional classroom (before the pandemic) with synchronous fully online learn-
ing due to the pandemic and the hybrid mode introduced in order to adapt to the ongoing 
pandemic. For addressing the assessment of the student performance, our investigation 
deals with two basic courses in the CS area: Introduction to Computer Science and 
Numerical Analysis Algorithms. We have attempted to answer the following two main 
research questions:

What is the effect of online teaching and learning forced by COVID-19 pandemic 1. 
on student performance of the 1st degree studies in Computer Science?
What are the main factors that affect student knowledge?2. 

The remainder of the paper is organized as follows. Section 2 presents the context of 
the study, materials and methodology followed so as to discuss the fundamentals of fea-
ture importance realized by Shapley analysis. Section 3 explores and explains the results 
obtained. Section 4 concludes our work, with limitations and future scope presented in 
Section 5.

2. Materials and Methods

2.1. Context of the Study

The study was carried out among students of undergraduate engineer studies in CS 
at the Lublin University of Technology (LUT) in Poland, during the winter semesters 
(October–mid-February) of the academic years 2019/2020, 2020/2021 and 2021/2022. 
It should be noted that LUT has implemented a quality assurance system of education 
in accordance with the requirements of the Ministry of Higher Education and Science, 
and the Faculty of Electrical Engineering and Computer Science has received positive 
accreditation and has been assigned a very high scientific category (A). The curricula 
created for Computer Science covers all areas of knowledge described according to the 
ACM/IEEE undergraduate education model (Miłosz et al., 2014; Tang et al., 2018). This 
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curricula was modified in the academic year 2019/2020 based on ACM/IEEE and ACM 
CCECC documentation. The ACM CCECC document (“Computer Science Curricular 
Guidance”, 2018) defines the following knowledge areas:

Algorithms and Complexity. (1) 
Computational Science. (2) 
Discrete Structures. (3) 
Human-Computer Interaction. (4) 
Networking and Communications. (5) 
Parallel and Distributed Computing. (6) 
Programming Languages. (7) 
Software Engineering. (8) 
Social Issues and Professional Practice. (9) 
Architecture and Organization. (10) 
Cybersecurity. (11) 
Graphics and Visualization. (12) 
Information Management. (13) 
Operating Systems. (14) 
Platform-based Development. (15) 
Software Development Fundamentals. (16) 
Systems Fundamentals. (17) 

All these areas are included in the currently implemented curricula and they are 
completed with measurable student learning outcomes. Moreover, the LUT cooperates 
with several ICT companies in order to adapt its curricula to the needs of local and in-
ternational labour markets and changes in ICT technology. Both full-time and part-time 
study options are offered and they last 3.5 years. 

During the winter semester of the academic year 2019/2020, the teaching was based 
on traditional face-to-face lectures and laboratories with smaller groups of about 15 stu-
dents. The educational process was aided by a rich Moodle learning platform. 

From the summer semester of the academic year 2019/2020 until the summer se-
mester of the academic year 2020/2021, all classes were conducted using synchronous 
online teaching and learning due to the SARS-CoV-2 pandemic and the suspension of 
classroom-based studies. The decision to transition to online learning was made 15th 
March of 2020. The use of online education platforms hence had become a neces-
sity. Face-to-face classes were replaced by fully online teaching sessions. Synchronous 
learning was similar to traditional classroom approaches. Classes were taught in their 
normal schedule and students were required to log in and participate in classes by 
connecting by way of their personal computing devices, with cameras operative. All 
activities including presentations, student work, discussions and feedback were done 
completely online, while physical presence was replaced by screen sharing and virtual 
communication via MS Teams. The educational strategy aided by the Moodle learning 
platform was maintained. 

In the academic year 2021/2022, the hybrid mode was introduced due to the need 
to adapt to the ongoing epidemic. Laboratories were conducted as face-to-face class-
es, while lectures were replaced by synchronous online teaching sessions and screen 
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sharing via the MS Teams platform because of the very large number of students and 
increased risk of infection for COVID-19. As before, teaching and learning was aided 
by the Moodle platform. 

2.2. Course Selection

To compare the effectiveness of traditional, online and hybrid education on student per-
formance, the courses were selected according to three main criteria: (1) the courses 
covered algorithms and programming; (2) the course curricula was not modified in the 
academic years 2019/2020, 2020/2021 and 2021/2022; (3) student knowledge was as-
sessed according to the same tools using Moodle. 

Two compulsory courses of the 1st and 3rd semester of the undergraduate engineer 
studies were selected: Introduction to Computer Science, and Numerical Analysis Al-
gorithms. These are basic courses in the CS area, and have a four-credit workload and 
a five-credit workload, respectively, according to the European credit transfer system. 
In the full-time study system curriculum, both courses last 15 weeks, including two 
hours of lecture and two hours of laboratory per week – in total, 60 hours per course. 
Lectures and classes are held from Monday to Friday. The equivalent part-time study 
system covers exactly the same curricula and learning outcomes, albeit with the number 
of face-to-face teaching hours reduced to half. Lectures and classes are held two or three 
times a month on weekends: Saturday–Sunday 08:00–20:30. This study system allows 
the student to work more hours, or to pick up a full-time job. Because of this loss of 
class-room hours, students are expected to spend much more hours in self-study. 

The first course covers core computer science and programming concepts, as well 
as the development, description, efficiency analysis and correctness of basic algorithms, 
with basic practical coding skills developed through Python (Charytanowicz et al., 
2020). The second course is offered by most curricula in CS as a core course. It in-
cludes the learning of fundamental techniques for deriving efficient numerical solutions 
to problems in science and engineering. These are: errors in numerical computations, 
interpolation, approximation of functions, integration, differential equations, direct and 
iterative methods in linear algebra. The intent is for students to be able to self-design 
algorithms and code programs in C++ language.

2.3. Study Participants

The study participants were selected from students of undergraduate engineer studies in 
CS of the 1st and 3rd semester (sem.) in the academic years 2019/2020, 2020/2021 and 
2021/2022. Students were invited to complete the short online quizzes and final test via 
Moodle platform of two basic courses in the CS area: Introduction to Computer Science 
(1st sem.) and Numerical Analysis Algorithms (3rd sem.). Positive response was given 
by more than 80% of all students of each year and semester, and ranged between 81% 
and 93%. Table 1 shows the number of enrolled students with regard to particular year 
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and semester. The last two rows contain the number and percentage of these students 
participating in the quizzes and tests. They naturally formed the study group of partici-
pants aged 18 to 22 years.

A total of 1827 final test scores were collected. Table 2 lists the number of partici-partici-
pants assigned to particular academic year, semester and study system, as well as their 
gender.

In total, males constituted 88% of the study sample. Regarding nationality, 86% 
came from Poland and 14% from other countries, mainly Ukraine. 

2.4. Procedure

For both selected courses, appropriate Moodle courses were created to aid the teach-appropriate Moodle courses were created to aid the teach-aid the teach- the teach-
ing and learning process. Each student was given a personal log-in name and password 
to access the Moodle course. The Moodle course consisted of proffered resources and 
activities that were to be completed. This was used not only as a repository of materials, 
but also as an interactive learning tool for motivating students to work and for assessing 
student progress. An additional strategy was introduced to help students self-check for 
common errors. After each issue topic or lecture, students completed a short online quiz, 
which was set to have a time limit and to allow only one attempt with a random sequen-

Table 1
Number of students enrolled at the university and number of students who participated  

in the quizzes and tests of the particular academic year and semester

Number of students 2019/2020 
Face-to-face mode

2020/2021 
Fully online mode

2021/2022 
Hybrid mode

1st sem. 3rd sem. 1st sem. 3rd sem. 1st sem. 3rd sem.

Enrolled at the university 414 263 416 306 329 339
Participating in the quizzes and tests 334 230 374 285 288 316

Percentage of participants   81%   87%   90%   93%   88%   93%

Table 2
Number of participants assigned to particular academic year,  

semester and study system – and their gender

Study system 2019/2020 
Face-to-face mode

2020/2021 
Fully online mode

2021/2022 
Hybrid mode

1st sem. 3rd sem. 1st sem. 3rd sem. 1st sem. 3rd sem.

Full-time 
(male/female)

283  
(251/32)

194 
(172/22)

316 
(275/41)

234 
(207/27)

226 
(192/34)

279 
(237/42)

Part-time 
(male/female)

  51  
(47/4)

  36 
(34/2)

  58 
(54/4)

  51 
(47/4)

  62 
(57/5)

  37 
(35/2)

Total 334 230 374 285 288 316
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tial navigation mode, one question per page. Immediate feedback was given to students, 
indicating which questions were answered correctly. The total score for these quizzes 
was 20. Tests were developed by the lecturer that created the curricula and course mate-
rial and had prepared and delivered the lecture. 

It is worth noting that during the academic years 2019/2020, 2020/2021 and 
2021/2022, both course lectures were conducted by the same individuals. Lecture pre-
sentations and additional materials were prepared in 2019 year according to the modified 
curricula and they did not change during the conducted research. Test questions were 
modified each year to prevent their sharing between students.

Student knowledge was assessed throughout the semester via a final online test 
worth over all, 20 points (1 point for each question), performed through Moodle. The 
final test included randomly selected multiple-choice, numerical, short answer or essay 
questions related to the issues discussed during the course. The sequential navigation 
mode was also applied. In this, students cannot return to previously attempted ques-
tions. Large groups of students were divided into smaller groups and all students took 
the final test simultaneously to minimize the possibility of answers being exchanged 
among students.

Despite the sudden transition to online education in March 2020, synchronous online 
teaching and learning allowed conducting teaching and learning activity according to the 
implemented curricula and learning outcomes. Moreover, the short online quizzes and 
final tests performed through Moodle were appropriate to the online mode. The main 
difference was in the personal contact with the teacher. In the winter semester of the 
academic year 2019/2020, classes were conducted face-to-face and final tests were held 
at the University. When the online mode was enacted, final tests were conducted through 
online proctoring. 

2.5. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) was built as an enhanced version of the gradient 
boosting decision tree (GBDT) algorithm (Chen and Guestrin, 2016). XGBoost provides 
strong regularisation by adopting a stepwise shrinkage process instead of the traditional 
weighting process provided by GBDT. It also optimizes the loss function using first and 
second-order gradient statistics.

For a given data set 
2.5. 
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+ Ω(𝑓𝑡) 

 
ℒ (𝑡) = ∑ 𝑙 �𝑦𝑖 ,𝑦�𝑖

(𝑡−1) + 𝑓𝑡(x𝑖)�𝑛
𝑖=1 + Ω(𝑓𝑡) , 

 

Ω(𝑓�) = 𝛾𝑇 + 1
2 λ�𝑤𝑖

2
𝑇

𝑖=1
 

 
Ω(𝑓�) = 𝛾𝑇 + 1

2 λ∑ 𝑤𝑖
2𝑇

𝑖=1  . 
 

ℒ� (𝑡) = ��𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�
𝑛

𝑖=1
+ 𝛾𝑇 + 1

2 λ�𝑤𝑗2
𝑇

𝑗=1
 

 

ℒ� (𝑡) = ∑ �𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�𝑛
𝑖=1 + 𝛾𝑇 + 1

2 λ ∑ 𝑤𝑗2𝑇
𝑗=1  , 

 
𝐼𝑗 = {𝑖|𝑞(x𝑖) = 𝑗} 

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 + λ

 

ℒ� (𝑡)(𝑞) = �
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 + λ
𝑇

𝑗=1
+ 𝛾𝑇  

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 +λ

  , 

ℒ� (𝑡)(𝑞) = ∑
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 +λ
𝑇
𝑗=1 + 𝛾𝑇 ,  

𝑛        𝑚        𝐾       𝑓�       𝑞       𝑤     𝑡      Ω      𝑙           𝑦�       𝑦𝑖         𝑇      λ        𝑔𝑖         ℎ𝑖         𝑙       𝑗       𝑞(x)     𝑤𝑖
∗       𝑗      ℒ� (𝑡)       𝑞        

 
 

  

 corresponds to an independent tree structure 

2.5. 
𝐷 = {(x𝑖 ,𝑦𝑖)} 

 
𝑓� ∈ ℱ 

 

𝑦�𝑖 = �𝑓�(x𝑖)
𝐾

�=1
 

 
𝑦�𝑖 = ∑ 𝑓�(x𝑖)𝐾

�=1  , 
 

ℱ = {𝑓(𝑥) = 𝑤𝑞(x)} 
 

 𝑤 ∈ ℝ𝑇  
 

𝑞:ℝ𝑚 → 𝑇 
 

ℒ (𝑡) = �𝑙 �𝑦𝑖 ,𝑦�𝑖
(𝑡−1) + 𝑓𝑡(x𝑖)�

𝑛

𝑖=1
+ Ω(𝑓𝑡) 

 
ℒ (𝑡) = ∑ 𝑙 �𝑦𝑖 ,𝑦�𝑖

(𝑡−1) + 𝑓𝑡(x𝑖)�𝑛
𝑖=1 + Ω(𝑓𝑡) , 

 

Ω(𝑓�) = 𝛾𝑇 + 1
2 λ�𝑤𝑖

2
𝑇

𝑖=1
 

 
Ω(𝑓�) = 𝛾𝑇 + 1

2 λ∑ 𝑤𝑖
2𝑇

𝑖=1  . 
 

ℒ� (𝑡) = ��𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�
𝑛

𝑖=1
+ 𝛾𝑇 + 1

2 λ�𝑤𝑗2
𝑇

𝑗=1
 

 

ℒ� (𝑡) = ∑ �𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�𝑛
𝑖=1 + 𝛾𝑇 + 1

2 λ ∑ 𝑤𝑗2𝑇
𝑗=1  , 

 
𝐼𝑗 = {𝑖|𝑞(x𝑖) = 𝑗} 

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 + λ

 

ℒ� (𝑡)(𝑞) = �
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 + λ
𝑇

𝑗=1
+ 𝛾𝑇  

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 +λ

  , 

ℒ� (𝑡)(𝑞) = ∑
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 +λ
𝑇
𝑗=1 + 𝛾𝑇 ,  

𝑛        𝑚        𝐾       𝑓�       𝑞       𝑤     𝑡      Ω      𝑙           𝑦�       𝑦𝑖         𝑇      λ        𝑔𝑖         ℎ𝑖         𝑙       𝑗       𝑞(x)     𝑤𝑖
∗       𝑗      ℒ� (𝑡)       𝑞        
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and leaf weights 

2.5. 
𝐷 = {(x𝑖 ,𝑦𝑖)} 

 
𝑓� ∈ ℱ 

 

𝑦�𝑖 = �𝑓�(x𝑖)
𝐾

�=1
 

 
𝑦�𝑖 = ∑ 𝑓�(x𝑖)𝐾

�=1  , 
 

ℱ = {𝑓(𝑥) = 𝑤𝑞(x)} 
 

 𝑤 ∈ ℝ𝑇  
 

𝑞:ℝ𝑚 → 𝑇 
 

ℒ (𝑡) = �𝑙 �𝑦𝑖 ,𝑦�𝑖
(𝑡−1) + 𝑓𝑡(x𝑖)�

𝑛

𝑖=1
+ Ω(𝑓𝑡) 

 
ℒ (𝑡) = ∑ 𝑙 �𝑦𝑖 ,𝑦�𝑖

(𝑡−1) + 𝑓𝑡(x𝑖)�𝑛
𝑖=1 + Ω(𝑓𝑡) , 

 

Ω(𝑓�) = 𝛾𝑇 + 1
2 λ�𝑤𝑖

2
𝑇

𝑖=1
 

 
Ω(𝑓�) = 𝛾𝑇 + 1

2 λ∑ 𝑤𝑖
2𝑇

𝑖=1  . 
 

ℒ� (𝑡) = ��𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�
𝑛

𝑖=1
+ 𝛾𝑇 + 1

2 λ�𝑤𝑗2
𝑇

𝑗=1
 

 

ℒ� (𝑡) = ∑ �𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�𝑛
𝑖=1 + 𝛾𝑇 + 1

2 λ ∑ 𝑤𝑗2𝑇
𝑗=1  , 

 
𝐼𝑗 = {𝑖|𝑞(x𝑖) = 𝑗} 

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 + λ

 

ℒ� (𝑡)(𝑞) = �
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 + λ
𝑇

𝑗=1
+ 𝛾𝑇  

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 +λ

  , 

ℒ� (𝑡)(𝑞) = ∑
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 +λ
𝑇
𝑗=1 + 𝛾𝑇 ,  

𝑛        𝑚        𝐾       𝑓�       𝑞       𝑤     𝑡      Ω      𝑙           𝑦�       𝑦𝑖         𝑇      λ        𝑔𝑖         ℎ𝑖         𝑙       𝑗       𝑞(x)     𝑤𝑖
∗       𝑗      ℒ� (𝑡)       𝑞        

 
 

  

. To reduce errors within the ensemble trees, the objective function 
of XGBoost can be represented as:

2.5. 
𝐷 = {(x𝑖 ,𝑦𝑖)} 

 
𝑓� ∈ ℱ 

 

𝑦�𝑖 = �𝑓�(x𝑖)
𝐾

�=1
 

 
𝑦�𝑖 = ∑ 𝑓�(x𝑖)𝐾

�=1  , 
 

ℱ = {𝑓(𝑥) = 𝑤𝑞(x)} 
 

 𝑤 ∈ ℝ𝑇  
 

𝑞:ℝ𝑚 → 𝑇 
 

ℒ (𝑡) = �𝑙 �𝑦𝑖 ,𝑦�𝑖
(𝑡−1) + 𝑓𝑡(x𝑖)�

𝑛

𝑖=1
+ Ω(𝑓𝑡) 

 
ℒ (𝑡) = ∑ 𝑙 �𝑦𝑖 ,𝑦�𝑖

(𝑡−1) + 𝑓𝑡(x𝑖)�𝑛
𝑖=1 + Ω(𝑓𝑡) , 

 

Ω(𝑓�) = 𝛾𝑇 + 1
2 λ�𝑤𝑖

2
𝑇

𝑖=1
 

 
Ω(𝑓�) = 𝛾𝑇 + 1

2 λ∑ 𝑤𝑖
2𝑇

𝑖=1  . 
 

ℒ� (𝑡) = ��𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�
𝑛

𝑖=1
+ 𝛾𝑇 + 1

2 λ�𝑤𝑗2
𝑇

𝑗=1
 

 

ℒ� (𝑡) = ∑ �𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�𝑛
𝑖=1 + 𝛾𝑇 + 1

2 λ ∑ 𝑤𝑗2𝑇
𝑗=1  , 

 
𝐼𝑗 = {𝑖|𝑞(x𝑖) = 𝑗} 

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 + λ

 

ℒ� (𝑡)(𝑞) = �
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 + λ
𝑇

𝑗=1
+ 𝛾𝑇  

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 +λ

  , 

ℒ� (𝑡)(𝑞) = ∑
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 +λ
𝑇
𝑗=1 + 𝛾𝑇 ,  

𝑛        𝑚        𝐾       𝑓�       𝑞       𝑤     𝑡      Ω      𝑙           𝑦�       𝑦𝑖         𝑇      λ        𝑔𝑖         ℎ𝑖         𝑙       𝑗       𝑞(x)     𝑤𝑖
∗       𝑗      ℒ� (𝑡)       𝑞        

 
 

  

 ,

where: 

2.5. 
𝐷 = {(x𝑖 ,𝑦𝑖)} 

 
𝑓� ∈ ℱ 

 

𝑦�𝑖 = �𝑓�(x𝑖)
𝐾

�=1
 

 
𝑦�𝑖 = ∑ 𝑓�(x𝑖)𝐾

�=1  , 
 

ℱ = {𝑓(𝑥) = 𝑤𝑞(x)} 
 

 𝑤 ∈ ℝ𝑇  
 

𝑞:ℝ𝑚 → 𝑇 
 

ℒ (𝑡) = �𝑙 �𝑦𝑖 ,𝑦�𝑖
(𝑡−1) + 𝑓𝑡(x𝑖)�

𝑛

𝑖=1
+ Ω(𝑓𝑡) 

 
ℒ (𝑡) = ∑ 𝑙 �𝑦𝑖 ,𝑦�𝑖

(𝑡−1) + 𝑓𝑡(x𝑖)�𝑛
𝑖=1 + Ω(𝑓𝑡) , 

 

Ω(𝑓�) = 𝛾𝑇 + 1
2 λ�𝑤𝑖

2
𝑇

𝑖=1
 

 
Ω(𝑓�) = 𝛾𝑇 + 1

2 λ∑ 𝑤𝑖
2𝑇

𝑖=1  . 
 

ℒ� (𝑡) = ��𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�
𝑛

𝑖=1
+ 𝛾𝑇 + 1

2 λ�𝑤𝑗2
𝑇

𝑗=1
 

 

ℒ� (𝑡) = ∑ �𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�𝑛
𝑖=1 + 𝛾𝑇 + 1

2 λ ∑ 𝑤𝑗2𝑇
𝑗=1  , 

 
𝐼𝑗 = {𝑖|𝑞(x𝑖) = 𝑗} 

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 + λ

 

ℒ� (𝑡)(𝑞) = �
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 + λ
𝑇

𝑗=1
+ 𝛾𝑇  

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 +λ

  , 

ℒ� (𝑡)(𝑞) = ∑
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 +λ
𝑇
𝑗=1 + 𝛾𝑇 ,  

𝑛        𝑚        𝐾       𝑓�       𝑞       𝑤     𝑡      Ω      𝑙           𝑦�       𝑦𝑖         𝑇      λ        𝑔𝑖         ℎ𝑖         𝑙       𝑗       𝑞(x)     𝑤𝑖
∗       𝑗      ℒ� (𝑡)       𝑞        

 
 

  

 shows the repetitions in order to minimize the errors and the term 

2.5. 
𝐷 = {(x𝑖 ,𝑦𝑖)} 

 
𝑓� ∈ ℱ 

 

𝑦�𝑖 = �𝑓�(x𝑖)
𝐾

�=1
 

 
𝑦�𝑖 = ∑ 𝑓�(x𝑖)𝐾

�=1  , 
 

ℱ = {𝑓(𝑥) = 𝑤𝑞(x)} 
 

 𝑤 ∈ ℝ𝑇  
 

𝑞:ℝ𝑚 → 𝑇 
 

ℒ (𝑡) = �𝑙 �𝑦𝑖 ,𝑦�𝑖
(𝑡−1) + 𝑓𝑡(x𝑖)�

𝑛

𝑖=1
+ Ω(𝑓𝑡) 

 
ℒ (𝑡) = ∑ 𝑙 �𝑦𝑖 ,𝑦�𝑖

(𝑡−1) + 𝑓𝑡(x𝑖)�𝑛
𝑖=1 + Ω(𝑓𝑡) , 

 

Ω(𝑓�) = 𝛾𝑇 + 1
2 λ�𝑤𝑖

2
𝑇

𝑖=1
 

 
Ω(𝑓�) = 𝛾𝑇 + 1

2 λ∑ 𝑤𝑖
2𝑇

𝑖=1  . 
 

ℒ� (𝑡) = ��𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�
𝑛

𝑖=1
+ 𝛾𝑇 + 1

2 λ�𝑤𝑗2
𝑇

𝑗=1
 

 

ℒ� (𝑡) = ∑ �𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�𝑛
𝑖=1 + 𝛾𝑇 + 1

2 λ ∑ 𝑤𝑗2𝑇
𝑗=1  , 

 
𝐼𝑗 = {𝑖|𝑞(x𝑖) = 𝑗} 

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 + λ

 

ℒ� (𝑡)(𝑞) = �
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 + λ
𝑇

𝑗=1
+ 𝛾𝑇  

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 +λ

  , 

ℒ� (𝑡)(𝑞) = ∑
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 +λ
𝑇
𝑗=1 + 𝛾𝑇 ,  

𝑛        𝑚        𝐾       𝑓�       𝑞       𝑤     𝑡      Ω      𝑙           𝑦�       𝑦𝑖         𝑇      λ        𝑔𝑖         ℎ𝑖         𝑙       𝑗       𝑞(x)     𝑤𝑖
∗       𝑗      ℒ� (𝑡)       𝑞        

 
 

  

 penalizes 
the complexity of the regression tree functions. This can be expressed as:

2.5. 
𝐷 = {(x𝑖 ,𝑦𝑖)} 

 
𝑓� ∈ ℱ 

 

𝑦�𝑖 = �𝑓�(x𝑖)
𝐾

�=1
 

 
𝑦�𝑖 = ∑ 𝑓�(x𝑖)𝐾

�=1  , 
 

ℱ = {𝑓(𝑥) = 𝑤𝑞(x)} 
 

 𝑤 ∈ ℝ𝑇  
 

𝑞:ℝ𝑚 → 𝑇 
 

ℒ (𝑡) = �𝑙 �𝑦𝑖 ,𝑦�𝑖
(𝑡−1) + 𝑓𝑡(x𝑖)�

𝑛

𝑖=1
+ Ω(𝑓𝑡) 

 
ℒ (𝑡) = ∑ 𝑙 �𝑦𝑖 ,𝑦�𝑖

(𝑡−1) + 𝑓𝑡(x𝑖)�𝑛
𝑖=1 + Ω(𝑓𝑡) , 

 

Ω(𝑓�) = 𝛾𝑇 + 1
2 λ�𝑤𝑖

2
𝑇

𝑖=1
 

 
Ω(𝑓�) = 𝛾𝑇 + 1

2 λ∑ 𝑤𝑖
2𝑇

𝑖=1  . 
 

ℒ� (𝑡) = ��𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�
𝑛

𝑖=1
+ 𝛾𝑇 + 1

2 λ�𝑤𝑗2
𝑇

𝑗=1
 

 

ℒ� (𝑡) = ∑ �𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�𝑛
𝑖=1 + 𝛾𝑇 + 1
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 ,
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 denotes the corresponding 
optimal value and can be used to measure the quality of a tree structure q.

2.6. Shapley Additive Explanations

Machine learning models are useful predictive tools that are, due to their high efficien-
cy and flexibility, frequently applied in regression tasks. To evaluate the performance 
of the machine learning models, mean squared error (MSE), root mean squared error 
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(RMSE), mean absolute error (MAE) and coefficient of determination (R-squared) 
are employed for estimating the accuracy of the forecast results. The formulae are as 
follows:  

2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

 ,
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𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

 ,

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 
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𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
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|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
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 ,

where: n is the sample size, 
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𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
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𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}
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𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!
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 is the i-th prediction result of the model, 

2.5. 
𝐷 = {(x𝑖 ,𝑦𝑖)} 

 
𝑓� ∈ ℱ 

 

𝑦�𝑖 = �𝑓�(x𝑖)
𝐾

�=1
 

 
𝑦�𝑖 = ∑ 𝑓�(x𝑖)𝐾

�=1  , 
 

ℱ = {𝑓(𝑥) = 𝑤𝑞(x)} 
 

 𝑤 ∈ ℝ𝑇  
 

𝑞:ℝ𝑚 → 𝑇 
 

ℒ (𝑡) = �𝑙 �𝑦𝑖 ,𝑦�𝑖
(𝑡−1) + 𝑓𝑡(x𝑖)�

𝑛

𝑖=1
+ Ω(𝑓𝑡) 
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𝑛
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2 λ ∑ 𝑤𝑗2𝑇
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𝐼𝑗 = {𝑖|𝑞(x𝑖) = 𝑗} 

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
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ℒ� (𝑡)(𝑞) = �
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �
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𝑇
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𝑤𝑖
∗ = −
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  , 

ℒ� (𝑡)(𝑞) = ∑
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �
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∑ ℎ𝑖𝑖∈𝐼𝑗 +λ
𝑇
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∗       𝑗      ℒ� (𝑡)       𝑞        

 
 

  

 is the i-th 
observed value and 
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𝑖 = 1, 2, … ,𝑛 
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𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!
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 denotes the average of 

2.5. 
𝐷 = {(x𝑖 ,𝑦𝑖)} 

 
𝑓� ∈ ℱ 

 

𝑦�𝑖 = �𝑓�(x𝑖)
𝐾

�=1
 

 
𝑦�𝑖 = ∑ 𝑓�(x𝑖)𝐾

�=1  , 
 

ℱ = {𝑓(𝑥) = 𝑤𝑞(x)} 
 

 𝑤 ∈ ℝ𝑇  
 

𝑞:ℝ𝑚 → 𝑇 
 

ℒ (𝑡) = �𝑙 �𝑦𝑖 , 𝑦�𝑖
(𝑡−1) + 𝑓𝑡(x𝑖)�

𝑛

𝑖=1
+ Ω(𝑓𝑡) 

 
ℒ (𝑡) = ∑ 𝑙 �𝑦𝑖 ,𝑦�𝑖

(𝑡−1) + 𝑓𝑡(x𝑖)�𝑛
𝑖=1 + Ω(𝑓𝑡) , 

 

Ω(𝑓�) = 𝛾𝑇 + 1
2 λ�𝑤𝑖

2
𝑇

𝑖=1
 

 
Ω(𝑓�) = 𝛾𝑇 + 1

2 λ∑ 𝑤𝑖
2𝑇

𝑖=1  . 
 

ℒ� (𝑡) = ��𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�
𝑛

𝑖=1
+ 𝛾𝑇 + 1

2 λ�𝑤𝑗2
𝑇

𝑗=1
 

 

ℒ� (𝑡) = ∑ �𝑔𝑖𝑓𝑡(x𝑖) + 1
2 ℎ𝑖𝑓𝑡

2(x𝑖)�𝑛
𝑖=1 + 𝛾𝑇 + 1

2 λ ∑ 𝑤𝑗2𝑇
𝑗=1  , 

 
𝐼𝑗 = {𝑖|𝑞(x𝑖) = 𝑗} 

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 + λ

 

ℒ� (𝑡)(𝑞) = �
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 + λ
𝑇

𝑗=1
+ 𝛾𝑇  

 

𝑤𝑖
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗
∑ ℎ𝑖𝑖∈𝐼𝑗 +λ

  , 

ℒ� (𝑡)(𝑞) = ∑
�∑ 𝑔𝑖𝑖∈𝐼𝑗 �

2

∑ ℎ𝑖𝑖∈𝐼𝑗 +λ
𝑇
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 , 
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𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛
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𝑖 = 1, 2, … ,𝑛 
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𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 
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. The lower value of 
MSE, RMSE and MAE implies higher accuracy of a regression model. The value of 
R-squared ranges from 0 to 1 and is interpreted as a percentage. A higher value of R-
squared is considered desirable.

Explaining the model and understanding how the features are related to the outputs 
can be done using the Shapley additive explanations method (SHAP) (Aas et al., 2021; 
Friedman, 1986; Lundberg and Lee, 2017). The Shapley values method is a mathemati-
cal concept based on cooperative game theory. The idea used for explanations of model 
predictions is to treat features that explain the prediction models as players and the pre-
diction as the total payout. This method requires retraining the model on all coalitions 
(subsets) of players 

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
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|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

, where F is the set of all players. It assigns an importance 
value to each player 
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 that represents the effect on the model prediction of including that 
player. To compute this effect, a model 

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

 is trained with that player present, and an-
other model 

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

 is trained with the player withheld. The importance or the influence of the 
player is obtained by calculating the difference 

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

 of model predic-
tion with and without the player 

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

. Since the effect of withholding a player depends on 
other players in the model, the preceding differences are computed for all possible coali-
tions 

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

. The Shapley values are then computed as weighted average of all con-
tributions of a player 

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

 to a model score, as follows:

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

 ,

where: 

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

 refers to the cardinal of the set A and 

 
2.6. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=�

 

MSE = 1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

RMSE = �1
𝑛�(𝑦𝑖 − 𝑦�𝑖)2

𝑛

𝑖=�
 

MAE = 1
𝑛�|𝑦𝑖 − 𝑦�𝑖|

𝑛

𝑖=�
 

 
R2 = 1 − ∑ (𝑦𝑖−𝑦�𝑖)2𝑛

𝑖=�
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=�

  , 

MSE = 1
𝑛 ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=�   , 

RMSE = �1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=�   , 

MAE = 1
𝑛 ∑ |𝑦𝑖 − 𝑦�𝑖|𝑛

𝑖=�   , 
 

𝑖 = 1, 2, … ,𝑛 
 

𝑆 ⊆ 𝐹 
 

𝑓𝑆∪{𝑖} 
 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) 
 

𝑆 ⊆ 𝐹\{𝑖} 
 

𝜙𝑖 = �
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑖}

�𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)� 

 
𝜙𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} �𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)�  , 
 
 
 
 

𝑛      𝑦�𝑖     𝑖      𝑦𝑖      𝑖      𝑦�      𝑦𝑖     𝐹   𝑖      𝑓𝑆      𝑖      𝑖      |𝐴|      𝐴     𝑥𝑆      𝑆     
 
 

 represents the values of the input 
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3. Results

The research procedure consisting of two steps. In order to analyze student performance 
of the 1st degree studies in Computer Science, in both traditional, online and hybrid 
education, we applied the mean, standard deviation (SD) and 95% confidence interval 
(CI) for the tests scores of two courses: Introduction to Computer Science (1st semester) 
and Numerical Analysis Algorithms (3rd semester). The following study features were 
considered: study mode (face-to-face, fully online and hybrid) and study system (part-
time studies and full-time studies). 

Features affected student knowledge were evaluated using an efficient and flexible 
machine learning algorithm called ‘extreme gradient boosting regression’ (XGBoost). 
XGBoost was built as an enhanced version of the gradient boosting decision tree al-
gorithm (Wade, 2020; Freeman et al., 2016). The interpretability of the model and 
feature analysis was done by the Shapley additive explanations method (Lundberg and 
Lee, 2017). 

3.1. Comparative Analysis of the Final Test Scores 

Table 3 and Table 4 present the mean, SD and 95% CI of the final test scores for face-to-
face, online and hybrid modes of full-time and part-time studies. There were no statisti-
cally significant differences between scores of male and female students and therefore 
the results were presented for the whole group. In the tables, the bold font indicates best 
and worst results.

As can be seen in Table 3, higher final scores of the course: Introduction to Computer 
Science were achieved for the fully on-line manner of full-time studies (13.70 ± 2.29). 
These scores are also similar to the results obtained for the hybrid mode. However, 
significantly worse results can be seen for the face-to-face manner of full-time studies 
(11.01 ± 3.94), the difference is about 2 points. 

Table 4 allows us to draw similar conclusions – higher final scores of the course: 
Numerical Analysis Algorithms were achieved for the fully online manner of full-
time studies (12.37 ± 3.27). In contrast, significantly worse results can be seen for the 

Table 3
Mean, SD and 95% CI of the final test scores of the 1st semester course:  

Introduction to Computer Science

Study  
system

Study mode
Face-to-face  
2019/2020

Fully online  
2020/2021

Hybrid  
2021/2022

Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI

Full-time 11.01 ± 3.94 10.54 – 11.46 13.70 ± 2.99 13.37 – 14.04 13.48 ± 2.90 13.10 – 13.86
Part-time 12.13 ± 4.32 10.91 – 13.34 11.74 ± 3.11 10.92 – 12.56 13.67 ± 3.09 12.88 – 14.45
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face-to-face manner of full-time studies (10.64 ± 3.25) and the difference is about 2 
points. 

Table 5 and Table 6 present the mean, SD and 95% CI of the short quizzes scores 
for face-to-face, online and hybrid modes of full-time and part-time studies of the 1st 
semester and the 3rd semester course, respectively. In the tables, the bold font indicates 
best and worst results.

The student scores of final tests were strongly positively correlated with the short 
quizzes scores for both courses: Introduction to Computer Science (the Pearson correla-
tion coefficient r = 0.8038) and Numerical Analysis Algorithms (r = 0.7978).

Table 4
Mean, SD and 95% CI of the final test scores of the 3rd semester course:  

Numerical Analysis Algorithms

Study  
system

Study mode
Face-to-face  
2019/2020

Fully online  
2020/2021

Hybrid  
2021/2022

Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI

Full-time 10.64 ± 3.25 10.18 – 11.10 12.37 ± 3.27 11.95 – 12.79 12.13 ± 3.10 11.76 – 12.49
Part-time 11.42 ± 3.10 10.37 – 12.47 11.31 ± 2.65 10.57 – 12.06 12.03 ± 3.59 10.83 – 13.23

Table 5
Mean, SD and 95% CI of the short quizzes scores of the 1st semester course:  

Introduction to Computer Science

Study  
system

Study mode
Face-to-face  
(n = 334)

Fully online  
(n = 374)

Hybrid  
(n = 288)

Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI

Full-time 13.42 ± 3.49 13.01 – 13.83 14.89 ± 2.81 14.58 – 15.20 15.77 ± 2.32 15.47 – 16.07
Part-time 16.08 ± 3.25 15.16 – 16.99 13.07 ± 2.83 12.32 – 13.81 15.23 ± 3.33 14.38 – 16.07

Table 6
Mean, SD and 95% CI of the short quizzes scores of the 3rd semester course:  

Numerical Analysis Algorithms

Study  
system

Study mode
Face-to-face  
(n = 230)

Fully online  
(n = 285)

Hybrid  
(n = 316)

Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI

Full-time 14.34 ± 3.31 13.87 – 14.81 14.40 ± 3.05 14.01 – 14.80 14.94 ± 3.00 14.59 – 15.29
Part-time 14.67 ± 3.02 13.64 – 15.69 15.41 ± 2.24 14.78 – 16.04 15.14 ± 2.56 14.28 – 15.99
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3.2. Machine Learning Models

The following independent variables were considered: 
Short quizzes score (0–20 points). ●
Study mode (face-to-face, fully online, hybrid). ●
Course selection (Introduction to Computer Science – 1st semester, Numeri- ●
cal Analysis Algorithms – 3rd semester).
Study system (part-time, full-time). ●
Nationality (Polish, others). ●
Gender (woman, man).  ●

The dependent variable (outcome) is the final test score (0–20 points).

3.2.1. Model Development

With regard to examining the prediction performance of the XGBoost regression mod-
el, the input data was divided into training and testing subsets composed of 80% and 
20% of samples, respectively. To improve the precision, five-folds cross validation was 
applied to train and evaluate our models. The XGBoost parameters were optimized 
using a simple grid search algorithm (Pedregosa et al., 2011) to estimate the optimal 
parameters. Within the process of validation, the influence of the following parameters 
was explored:

Learning rate: 0.01, 0.1. ●
The maximum depth of a tree: 3, 5, 7, 9, 15. ●
The minimum sum of weights of all observations required in a child: 1, 2, 4, 6. ●
The fraction of observations to be used as random samples for each tree: 0.5, 0.7. ●
Subsample ratio of columns when constructing each tree: 0.5, 0.7. ●
The number of trees to fit: 100, 250, 500, 1000. ●

3.2.2. Model Validation

After performing a five-fold cross validation, the optimal, in terms of the highest pre-
diction ability, set of XGBoost parameters was obtained and used to verify the model 
on the independent test set. The R-squared score was utilized to evaluate the perfor-
mance of the model in comparison to the classical multiple regression model. We 
found that the XGBoost regression model outperformed the multiple regression model 
in both training and testing, with the average R-squared values being above 70%. We 
also noted that the XGBoost model obtained higher R-squared values with regard to 
all five folds. In addition, the XGBoost model resulted in more consistent values and 
smaller MSE, RMSE and MAE values, compared to the multiple regression model 
(see Table 7 and Table 8).

The difference between the original and predicted final test scores is presented in 
Fig. 1. The proposed XGBoost model offered a balanced prediction throughout the train-
ing and testing data sets.
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While the model attained good accuracy rates, it is difficult to comprehend. Still, 
thanks to the SHAP values, this can be explained, hence it can provide both global and 
local interpretation.

3.2.3. Model Interpretation

The feature importance of the model is plotted in a bar chart using the SHAP aggrega-
tions, as illustrated in Fig. 2. 

A SHAP value being much closer to zero means that the data point contributes very 
little to the predictions. In contrast, if the SHAP value is strongly positive or strongly 
negative, this outcome reveals that the data point greatly contributes towards predicting 
the positive or negative class. 

Table 7
The average evaluation metrics in the training set for the five folds

Model MSE RMSE MAE R-squared

XGBoost regression 3.034 1.742 1.254 0.744
Multiple regression 4.034 2.008 1.470 0.660

Table 8
The average evaluation metrics in the test set for the five folds

Model MSE RMSE MAE R-squared

XGBoost regression 3.550 1.884 1.302 0.701
Multiple regression 4.088 2.011 1.479 0.655

Fig. 1. The final test score prediction results according to the XGBoost model  
for exemplary 160 testing set participants
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Fig. 2 highlights the major importance of short quizzes scores, in that the large posi-
tive/negative SHAP values indicate that the change of this feature can have a more no-
ticeable influence than that of the other variables. Short quizzes score (2.169), study 
mode (0.572), course (0.473) and study system (0.145) display the highest SHAP val-
ues. As positive short quizzes score SHAP values were evident, we can conclude that 
if student short quizzes scores are higher, then student performance sees improvement 
accordingly. However, study profile features such as study mode, course (semester) and 
study system were also important with regard to the student performance. By contrast, 
student profile features such as nationality (0.089) and gender (0.067) did not have a 
huge effect on student performance, indicating that the change of these features does not 
have a noticeable influence on model prediction.

Through SHAP, we created summary plots (Fig. 3) to demonstrate the feature impor-
tance and contribution in predictions. Herein, all of the features are listed on the y-axis 
in rank order, the top one being the greatest contributor to the predictions and the bottom 
one being the least or zero-contributor. The x-axis depicts the Shapley value, and the 
color shows the degree of the effect (the red and blue colors show positive and negative 
predictions, respectively). 

Fig. 3 reveals that if student short quizzes scores are higher, then student performance 
shows improvement accordingly. This means that student’s work and commitment have 
a positive impact on the final test scores. The second row of the summary plot relates 
to the traditional face-to-face, fully online and hybrid study mode. In terms of the study 
mode, a negative effect on student performance is found for the face-to-face mode and 
a positive effect is found for the fully online mode. This effect is much lower in com-
parison to short quizzes scores. This finding is consistent with our statistical analysis. 
The final grades of the first course: Introduction to Computer Science are higher than 
for the second course: Numerical Analysis Algorithms. Furthermore, the full-time study 
system is positively related to student performance, while nationality and gender do not 
have a huge effect on student performance. However, we can notice that Polish students 
achieved a bit better results.

Fig. 2. Global feature importance for the XGBoost model based on the mean absolute 
magnitude of the SHAP values.
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This plot is a suitable tool for obtaining an improved understanding of how certain 
features affect the model decision. Still, to obtain a deeper understanding of our model, 
we then developed related force plots. These provided us with information on feature 
contributions for specific observations. In our study, the force plot in Fig. 4 highlights 
the features responsible for predicting student performance. Features that have more 
predictive control are shown in red, whereas features that have lower predictive control 
are shown in blue. Moreover, the output value is the prediction with features, whereas 
the base value is the value that would be predicted without any features, that is, the mean 
prediction. 

Fig. 4 shows that the baseline is 12.27 and the actual prediction is 12.71. We found 
that study system, nationality, short quizzes score and course features can increase the 
prediction value, while study mode can decrease the final output prediction. The utilized 
force plots, therefore provided information about the key features responsible for student 
performance at the observation level.

4. Final Comments and Summary

The COVID-19 lockdown coincided with the implementation of modified curricula in 
the teaching of Computer Science (CS) in LUT, in 2019. This allowed obtaining data to 
ascertain differences in learning success for face-to-face, synchronous online and hybrid 

Fig. 3. Summary plots for the XGBoost model.

Fig. 4. Force plot depicting feature contribution towards a single prediction.
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learning modes during the years 2019–2022. All students followed the same study cur-
ricula consistent with the expectations of the labour market (Łukasik et al., 2020; Miłosz 
et al., 2020). It is worth adding that this curricula covers items that are of the greatest 
demand in the ICT industry.

We considered XGBoost for regression and SHAP values to be powerful tools for 
student performance prediction and interpretation. The conducted studies formulate im-
portant conclusions that explain student-learning achievement. According to SHAP val-
ues, short quizzes scores had the greatest impact on the student performance. This means 
that student’s effort and commitment are key elements to being successful in the final 
test scores. The second most important factor is the study mode: traditional fully on line, 
synchronous online and hybrid. Despite concerns over the COVID-19 lockdown and 
the sudden transition to online learning, final test scores of students using synchronous 
online and hybrid learning increased by about 10% of the point maximum. However, 
the study profile features such as course (semester) were also important with regard to 
student performance. According to the SHAP values, the study system had a bit lower 
impact on the final test score. In contrast, student profile features of nationality and gen-
der had the lowest impact on final test scores

The conducted analysis revealed a significant increase in performance on final tests 
scores for students using the synchronous online mode and the hybrid mode, in com-
parison to traditional face-to-face studies. The difference was about 2 points regardless 
of the study semester (see Table 3 and Table 4, Section 3.1). Furthermore, in the case 
of traditional studies, in the 1st and 3rd semester, higher grades were obtained in the 
part-time study system when compared to the full-time system. In contrast, in the case 
of synchronous online studies, in the 1st and 3rd semester, higher grades were obtained 
in the full-time study system. However, these differences are not statistically significant 
and they were of about 1 point. In the case of hybrid studies, we noticed similar levels 
of student performance. 

Summarizing, the results obtained substantiate the use of online synchronous learn-
ing as a form of learning that supports traditional educational approaches and enables 
university education to be more affordable and accessible. 

5. Limitations and Future Work 

Certain limitations of this work result from the act that the research concerned Computer 
Science students of undergraduate engineer studies who had to switch to the online 
learning due to the COVID-19 lockdown. Therefore, we examined the effectiveness of 
traditional and fully online and hybrid education on student performance in Computer 
Science, but we did not investigate the effects of the three modes of learning within 
the whole University. Still, it is important to emphasize that the research concerned all 
students of the first two years of studies, both full-time and part-time systems. To full 
understand the effect of mode of learning, different machine learning prediction models 
and other explainable approaches to investigating the problem need to be considered 
and applied. This is the task to be included in future works. We will also focus on the 
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extending the dataset by using more variables and by combining the effects of several 
variables. Additionally, further work will concern the complete cycle of studies. The 
main aim will be to investigate the influence of online learning on the final results of 
Computer Science students within the undergraduate engineer program. We also will 
focus on the hybrid education system that was initiated in the 2021/2022 academic year 
and will most likely be introduced permanently in the part-time studies curricula.
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