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For years, the United States has worked to increase the num-
ber of students who major in science, technology, engineer-
ing, and mathematics (STEM) fields in college with the goal 
of also increasing the number who choose a STEM occupa-
tion. The reason for this emphasis is that STEM education is 
seen as a major driver of moving the country forward both in 
terms of technology innovation and economic growth 
(National Science Board, 2007). Efforts to increase the num-
ber of majors in STEM continue. As recently as November 
2022, the U.S. Bureau of Labor Statistics predicted that in 
spite of having roughly 10 million employed in STEM occu-
pations in 2021, this total will need to grow to roughly double 
this number to meet the likely demand by 2031, a growth that 
is roughly twice that needed for non-STEM occupations.1

Advanced Placement (AP) coursetaking in high school has 
been seen as an important lever in STEM education through 
the role it may play in the choice of a STEM major in college 
and the choice of a STEM occupation after college. Indeed, 

several studies have found a positive relationship between AP 
coursetaking and choosing a STEM major in college 
(Ackerman et al., 2013; Jewett, 2019; Mattern et al., 2011; 
Morgan & Klaric, 2007; Robinson, 2003; Tai et al., 2010). 
However, recent research by Warne et al. (2019) and Sadler 
et al. (2014) found that when prior interest in STEM and other 
preexisting differences are taken into account, the relationship 
between AP coursetaking and students’ reported likelihood of 
choosing a STEM major in college or expecting to be in a 
STEM career is greatly attenuated or disappears entirely.

The current study further examines the importance of AP 
coursetaking in mathematics and science in the choice of a 
STEM major in college and the expectation of being in a 
STEM career at age 30. The examined research question fol-
lows: Is AP STEM coursetaking related to choosing a STEM 
major in college and to the expectation of being in a STEM 
occupation, taking into account prior experience with and 
interest in science, technology, engineering, and mathematics 
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along with other relevant covariates, or not? This question is 
examined (a) using a data set that is stronger in several regards 
than those used in previous studies and (b) employing propen-
sity score methods to account for the effect of a large set of 
potentially confounding variables. The results are quite differ-
ent from those found by Warne et al. (2019) and Sadler et al. 
(2014) and instead more closely align with those reported by 
Tai et al. (2010), who found that taking AP mathematics and 
AP science courses showed a significant net effect either on 
majoring in STEM, expecting to be in a STEM occupation at 
age 30, or both. Although our nonexperimental research 
design precludes drawing causal conclusions, the results are 
consistent with the hypothesis that taking AP calculus and AP 
science courses are differentially and meaningfully related to 
choosing a STEM major in college and expecting to be in a 
STEM occupation at age 30.

Background

Origins of the AP Program

The AP program originated as a response to the Cold War 
between the United States and the Soviet Union that devel-
oped after World War II. In response to the concern that the 
United States was not preparing enough students for college 
and postgraduate work, the Ford Foundation established the 
Fund for the Advancement of Education (FAE) in 1951.2 A 
central purpose of FAE was to better integrate high school 
and university curricula as a way of strengthening the transi-
tion from high school to college. Based on its own research, 
which showed that elite colleges and universities needed to 
teach material to students in their first year that they should 
have learned in high school, FAE developed a model curricu-
lum in 10 subject areas that would prepare high school stu-
dents for rigorous college work. In addition, FAE developed 
a set of tests (called Advanced Placement tests) to assess 
whether high school students had sufficiently mastered the 
materials to be ready for college-level coursework.

The AP program was taken over in 1955 by the not-for-
profit College Board, which has administered it ever since. 
Because AP coursework was seen by many colleges and uni-
versities as an indication of college preparedness, there has 
been a tremendous growth in the number of AP courses 
offered in high schools. According to the College Board, in 
2018 more than 1.24 million students (about the population 
of New Hampshire) in the class of 2018 took over 4.22 mil-
lion AP exams. Furthermore, nearly 40% of that class took at 
least one AP exam, compared to 25% 10 years earlier.3

Possible Benefits and Costs Associated With AP 
Coursetaking

The research literature suggests that there are many ben-
efits to AP coursetaking. Research has documented that AP 
coursetaking is associated with a higher likelihood of 

enrollment in a four-year college (Morgan & Klaric, 2007) 
and higher grade-point averages in college (Flowers, 2008; 
Scott et al., 2010). Using a propensity score analysis, Warne 
et al. (2015) found that students who completed AP exami-
nations in English had net positive differences of about 2.8 
to 4.1 on their ACT composite score, and the net increase for 
those completing AP calculus was between 1.0 and 2.7 
points on the ACT composite score. Smith et al. (2017), 
using a regression-continuity design, found that the higher 
the AP score across a number of subjects, the greater the 
likelihood of college completion. Shaw and Barbuti (2010) 
also found that students who had not taken any STEM-
related AP courses were much more likely to switch from 
STEM to non-STEM majors (with the exception of com-
puter and information sciences) than students who had taken 
STEM-related AP courses. Furthermore, the more STEM-
related courses taken, the greater the likelihood that they 
persisted in being a STEM major. Tai et al. (2010) found that 
students who successfully took AP calculus and science 
courses were more likely to earn an undergraduate degree in 
a STEM field than those who did not.

But not all studies have come to the same conclusion about 
the role of AP mathematics and science coursetaking in these 
various outcomes. For example, Geiser and Santelices (2004) 
found that there was no relationship between the number of 
AP courses taken and college first-year GPA. Klopfenstein 
and Thomas (2009) also found that when a broad range of 
student, college, and other factors were taken into account, AP 
coursetaking was unrelated to first-semester college grades as 
well as to continuation to a second year of college. Klopfenstein 
(2010) also found that performance on AP examinations was 
unrelated to time to college graduation.

Some researchers have also noted the costs associated 
with taking AP tests. Conger et al. (2019), using an experi-
mental design, found that while those students who were 
randomly assigned to take an AP science course had an 
increased skill level and interest in science, it came at the 
cost of having less confidence in their ability to be success-
ful in college science than those who were not assigned to 
take an AP science course. They also experienced higher 
levels of stress and lower grades, although the lower grades 
could have been due to having taken a more rigorous sci-
ence course than those not assigned to take an AP science 
course.4

Theoretical Explanations for the Importance of STEM AP 
Coursetaking

As noted previously, several studies have found a posi-
tive relationship between AP coursetaking and choosing a 
STEM major in college (Ackerman et al., 2013; Jewett, 
2019; Morgan & Klaric, 2007; Mattern et al., 2011; 
Robinson, 2003; Tai et al., 2010). One theoretical explana-
tion for this relationship is that talented individuals need 
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STEM coursetaking, majoring in STEM, and/or expecting a STEM occupation

“stretch” opportunities to reach their potential. Wai (2015), 
in a review of studies on the impact of an accelerated educa-
tion for gifted children, found that children whose educa-
tions were accelerated realized both greater educational and 
occupational success as adults than those whose educations 
were not accelerated. Relatedly, Warne et al. (2019) note 
that an AP course or set of courses could provide an impor-
tant component of a high “educational dose” to boost one’s 
potential. They further note that in the case of STEM, tal-
ented students in science, mathematics, or technology might 
perceive AP courses in mathematics and science as provid-
ing the educational dose needed to pursue a STEM degree 
in college that might otherwise be out of reach.

Another theoretical perspective suggests that AP course-
taking leads to and reinforces student interest in a field 
(Rossman et al., 2015). Creating interest in high school is 
important because research shows that those who expect to 
major in a STEM field in college have often made that deci-
sion in high school (Sadler et al., 2012). But the relationship 
between interest in high school and majoring in STEM in 
college is far from a perfect one. As a result, Warne et al. 
(2019) point out the importance of maintaining interest in 
STEM in high school, given that there is “a leaky pipeline” 
in which initial interest in STEM often wanes and students 
end up in non-STEM fields. That noted, a retrospective 
cohort study by Sadler et al. (2014) found that taking regular 
science and math courses in high school was positively 
related to an interest in a STEM career and that this relation-
ship was especially strong when a second year of calculus, 
physics, or chemistry was taken. Although there was also a 
significant zero-order relationship between taking AP calcu-
lus, chemistry, or physics and interest in a STEM career, 
none of these relationships were statistically significant 
when coursework in those areas was taken into account.

Possible Noncausal Explanations Behind the Relationship

Setting aside the theoretical reasoning of why AP cour-
setaking is important in one’s expecting to have a STEM 
major or career, recent research has shown that when prior 
STEM interest and other possible confounding variables 
are taken into account, the relationship between AP cour-
setaking and interest in or expectations for a STEM major 
or occupation is greatly attenuated or disappears entirely. 
The explanation for this finding is that prior interest in 
STEM (e.g., participation in a science club and/or science 
fair) as well as other preexisting differences between those 
who do or do not opt to take AP science or mathematics 
(e.g., middle school math or science grades, one or both 
parents with a STEM occupation) are what likely account 
for the positive correlations between AP STEM coursetak-
ing and choosing a STEM major or expecting to be in a 
STEM occupation rather than there being a causal connec-
tion between the two.

In support of this explanation, Sadler et al. (2014) found 
that when prior interest in STEM (especially early in high 
school) and the number of years of calculus, chemistry, and 
physics are considered, coursetaking in AP calculus and sci-
ence is insignificant in its relationship with one’s stated 
intention for a career in STEM. Similarly, Warne et al. 
(2019) found that relationships between students’ AP math-
ematics coursetaking and intended STEM career outcomes 
were negligible when prior STEM interest was considered, 
the sole exception being that students who took AP calculus 
showed a very small increase in the likelihood of a career in 
engineering or mathematics/computer science.

Issues of Generalizability

While one might conclude, based on the studies by Warne 
et al. (2019) and Sadler et al. (2014), that AP coursetaking in 
mathematics and science plays no more than a supporting 
role in students’ interest in or expectation to have a STEM 
major or occupation (for example, by sustaining an interest 
in STEM), it is worth noting that both studies relied on non-
random or otherwise specialized samples of students—a 
criticism that is detailed later. For example, in Warne et al. 
(2019), the dependent variables were whether students see 
themselves as an engineer now or in the future and/or the 
likelihood of choosing a STEM career in the future but mea-
sured when they were enrolled in an introductory English 
course in college. That is, the vast majority were freshmen in 
college. In the case of Sadler et al. (2014), the dependent 
variable, whether one expected to have a career in a STEM 
field, was also measured when the students in the sample 
were enrolled in an introductory college English class. That 
is, the studies were prospective but not longitudinal.

However, there are two studies (Jewett, 2019; Tai et al., 
2010) that examined the role of AP STEM coursetaking and 
the choice of a STEM major using nationally representative 
longitudinal samples; furthermore, both measured whether 
or not students actually chose a STEM major when in col-
lege. Using a sample of nearly 4,000 students in the National 
Education Longitudinal Study of 1988 (NELS:88) who had 
completed their baccalaureate degree by 2000—and whose 
majors were coded as either physical science or engineering, 
life science, or nonscience and whose previous interest in 
STEM and other preexisting differences was taken into 
account—Tai et al. (2010) found evidence of an association 
between taking AP examinations in mathematics and science 
and choosing a STEM major.

More precisely, the odds associated with getting a degree 
in the physical sciences or engineering (compared to a non-
science degree) were about four times higher for those who 
took the AP calculus examination than for those who did not 
take it. However, taking the AP calculus examination was 
unrelated to completing a degree in the life sciences. In con-
trast, the odds associated with earning a degree in the life 
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sciences (compared to a nonscience degree) were only about 
two times higher for those who took an AP science examina-
tion (biology, chemistry, physics, or mechanics) than for 
those who did not take one. However, taking an AP science 
examination was not associated with completing a degree in 
the physical sciences or engineering.

The limitations of Tai et al.’s (2010) study are twofold: first, 
the number of students in the sample who took the AP calculus 
and/or AP science examinations and majored in either the 
physical science/engineering or life science subject areas was 
small, ranging in size from 31 to 83; second, the data were col-
lected at a time before the huge growth of AP coursetaking 
occurred and, as the researchers note, “these findings might 
simply no longer be reflected in the current population of stu-
dents participating in the AP Program” (p. 117).

Jewett (2019) used data from the High School 
Longitudinal Study of 2009 (HSLS:09) to examine the 
effects of a number of STEM-related variables on the odds 
of choosing a STEM major in college. The variables exam-
ined included educational aspirations, measures of mathe-
matics and science self-efficacy, the number of STEM 
courses taken, and the number of AP STEM courses taken. 
Logistic regression models were run with sociodemographic 
controls included. The results showed statistically signifi-
cant odds ratios for all of the variables listed previously. 
Most relevant for the current study was the finding that the 
odds of choosing a STEM major increased by 1.31 for each 
additional AP STEM course taken. The range of the number 
of AP STEM courses taken was from 0 to 9 with a weighted 
mean of 0.77. The mean number of AP STEM courses taken 
by those who majored in STEM was 1.41 compared to 0.57 
for those not choosing a STEM major.

Two Competing Models

The various findings examining the role that AP course-
taking plays in the choice of STEM-related outcomes sug-
gest two possible models: one is where prior experience and 
interest in STEM account for the correlation between AP 
STEM coursetaking and the choice of a STEM major and/or 
a STEM occupation (see Model A in Figure 1). This model 
is consistent with the findings of Warne et al. (2019) and 
Sadler et al. (2014). The alternate model (see Model B in 
Figure 1) posits a causal path between prior experience and 
interest in STEM and AP coursetaking (which, in turn, has a 
causal link to the choice of a STEM major and/or a STEM 
occupation) as well as a causal path between prior experi-
ence and interest in STEM and the choice of a STEM major 
and/or STEM occupation. This model is consistent with the 
findings of Tai et al. (2010) and Jewett (2019).

Importantly, these two models are statistically indistin-
guishable in that both are just identified. This means that 
there are three correlations to estimate exactly three param-
eters with no degrees of freedom. For Model A, the first two 
parameters are the causal parameters from prior experience 

and interest in STEM to (1) AP coursetaking and (2) major-
ing/choosing an occupation in a STEM subject. The third 
parameter is the residual correlation between the two. For 
Model B, the first two parameters to be estimated are the 
same as for Model A, but the third is a causal path from AP 
coursetaking to majoring/choosing an occupation in STEM. 
Given that both models are just identified, the only test that 
can be done to distinguish between the two is whether there 
is a significant relationship between AP coursetaking and 
majoring/choosing an occupation in STEM after taking prior 
experience and interest in STEM into account. If the value is 
zero, the data are consistent with Model A. However, if the 
value is nonzero, the data are consistent with Model B. That 
noted, in the absence of a randomized controlled design, 
causality cannot be assumed.

There are four studies that are most relevant for testing 
whether the results are better explained by Model A (no 
direct effect of AP STEM coursetaking on expecting to be in 
or actually choosing a STEM major or STEM occupation) or 
Model B (a direct effect of AP STEM coursetaking on 
expecting to be in or choosing a STEM major or STEM 
occupation). These studies are listed in Table 1, along with 
(a) whether the sample is random and nationally representa-
tive of the student population from which it is drawn, (b) 
whether the dependent variable (e.g., STEM major) is actu-
ally measured or whether it is measured prospectively, and 
(c) whether the results suggest evidence of a direct effect of 
AP STEM coursetaking on the dependent variable (as in 
Model B in Figure 1) or do not suggest evidence of a direct 
effect (as in Model A in Figure 1).

Details about the samples used in each of the studies can 
be found in Appendix A. Only two of the studies use nation-
ally representative samples of U.S. students. Tai et al. (2010) 
used a nationally representative sample of eighth graders in 
1988, and Jewett (2019) used a nationally representative 
sample of ninth graders in 2009. These are the same two 
studies that also measured whether students actually chose a 
STEM major in college rather than using prospective mea-
sures (an expectation of majoring in STEM) as Warne et al. 
(2019) and Sadler et al. (2014) used in their studies.

The Current Study

Given that there are four studies that have taken prior 
interest in STEM into account (as well as other covariates 
that are likely related to preexisting differences) and that two 
of them find evidence for Model A and two find evidence for 
Model B, further research on the importance of AP STEM 
coursetaking and its relationship to STEM college and occu-
pational outcomes seems clearly warranted.

As noted previously, the central research question exam-
ined is whether or not AP STEM coursetaking is related to 
choosing a STEM major in college and to the expectation of 
being in a STEM occupation, taking into account prior expe-
rience with and interest in science, technology, engineering, 
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and mathematics along with other relevant covariates. That 
is, does the data support Model B or Model A?

The current study contributes to research examining the 
role of STEM AP coursetaking and its relationship to 
choosing a STEM major and expecting to be in a STEM 
occupation at age 30 in three important ways. First, we use 
a nationally representative dataset—HSLS:09—the data of 
which are considerably more recent than those by any of 
the other investigators. Recall that Tai et al. (2010) 

expressed concern about the validity of their findings given 
that they used the NELS:88 dataset. Second, our key study 
variables were collected longitudinally—for example, 
measures of prior career interest and mathematics achieve-
ment were collected when students were actually in ninth 
grade—rather than being based on college students’ recol-
lections of their ninth-grade career interest and achieve-
ment, and coursetaking data were based on school-provided 
transcripts rather than student self-reports, providing for 

FIGURE 1. Two implied causal models—Model A and Model B.
Note. Model A assumes that the correlation between AP STEM coursetaking in high school and choosing a STEM major in college and/or expecting to be 
in a STEM occupation at age 30 is due to a cluster of STEM-related prior experiences (e.g., participation in science fairs, prior mathematics achievement). 
By contrast, Model B assumes that the correlation between AP coursetaking in high school and choosing a STEM major in college and/or expecting to be 
in a STEM occupation at age 30 is due to a set of causal relationships where STEM-related experiences prior to high school are causally related to taking 
AP STEM courses in high school, which in turn are related to choosing a STEM major in college and/or expecting to be in a STEM occupation at age 30.
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increased reliability and less recall bias than in cross-sec-
tional studies. Finally, we needed a method that could miti-
gate or eliminate the bias due to possible confounding 
factors (factors that affect both course selection and our 
outcomes) and therefore employed propensity scoring 
methodology (PSM) with covariate balancing. In using this 
methodology, we included variables that we believed could 
account for prior interest in STEM as well as other relevant 
covariates. Nonetheless, there is no way with a nonexperi-
mental design to be certain that bias has been totally elimi-
nated. As a result, and as indicated previously, we cannot 
make claims of causality.

Methods

Data

The data for the current study come from the National 
Center for Education Statistics (NCES) restricted-use data 
files of HSLS:09, which was based on a nationally represen-
tative sample of first-year high school students.5 A key goal 
of HSLS:09 is to enable researchers to examine “the nature 
of the paths into and out of science, technology, engineering, 
and mathematics (STEM) curricula and occupations; and the 
educational and social experiences that affect these out-
comes, decisions, and experiences.”6 The data used in this 
study come from four data collections of HSLS:09: the base-
year collection; the 2013 update, high school transcript data; 
and the second follow-up in 2016. The base-year study sam-
pled approximately 950 high schools and approximately 
25,200 eligible students.7 The base-year data were collected 
in 2009 when the students in the study were in grade 9; the 
2013 update also includes student transcripts, which were 
collected from high schools after most students had gradu-
ated in 2013; and the second follow-up data were collected 
in 2016, when most students attending four-year colleges 
were in their third year. Data from the first follow-up were 
not used in this study.

In addition to extensive survey data collected from stu-
dents in 2009 (including data on prior activities related to 
STEM), students also completed algebra assessments at 
grades 9 and 11. However, not all students completed both 
the survey and the algebra test, thus reducing the base-year 
sample to about 23,320 students. Of these, 79% partici-
pated in the first follow-up in 2012, 83% had high school 
transcripts, and 75% participated in the second follow-up 
in 2016. The students who participated in the second fol-
low-up in 2016 were asked if they were enrolled in college 
and, if so, what their major was as well as their likely occu-
pation at age 30. The sample size for this set of students is 
about 13,430. Analyses that focus on whether students 
majored in a STEM subject included only those who were 
enrolled in a 2- or 4-year college at the time of the second 
follow-up in 2016, yielding a sample size of about 10,130 
students.8

Dependent Variables

The study has eight dependent variables that capture four 
categories of the various STEM majors and four categories 
of the various expected STEM occupations. The HSLS:09 
second follow-up recorded detailed information on college 
major chosen as well as occupational categories for stu-
dents’ expected occupations at age 30. This information 
allowed us to develop the four analytical categories for 
STEM majors and expected STEM occupations: medicine 
and health; biology, life science, and agriculture; physical 
science and engineering; and mathematics and computer 
science. Appendix Tables B1 and B2 display the coding 
used for the four HSLS:09 STEM occupational and four 
STEM major variables, respectively. Tables 2 and 3 show 
the observed percentages and frequencies for each of the 
four categories of STEM majors and expected STEM occu-
pations, respectively.

Independent Variables

There are five independent variables—two of which rep-
resent taking an AP mathematics course (AP calculus and 
AP statistics) and three of which are for AP science courses 
(AP biology, AP chemistry, and AP physics)—that were 
coded using school-provided transcript data from the 
HSLS:09 2013 update. HSLS:09 classified the courses that 
students took using the NCES School Courses for the 
Exchange of Data (SCED) system, thereby providing a uni-
form classification of courses across schools. Using the 
SCED codes for classes identified as AP mathematics or AP 
science, we created five AP coursetaking variables.9 It 
should be noted that the HSLS:09 coding combines AP and 
International Baccalaureate (IB) courses. However, since 
IB courses represent only about 0.5% of the courses taken, 
we labeled all five of the independent variables as “AP.” 
Dummy variable coding was applied to the five indepen-
dent variables, with values coded as 1 if a student took the 
AP/IB course and 0 if not.

Possible Confounders (Control Variables)

To estimate the impact of AP coursetaking, it is impor-
tant to consider possible prior experiences with and interest 
in STEM as well as other variables that might capture 
important preexisting differences between those who take 
AP mathematics or science courses and those who do not. 
We labeled these variables as “possible confounders” since 
they could be assumed to be related to both coursetaking 
and selecting a STEM major or occupation. Examples of 
two such possible confounders are an expressed interest in 
a STEM career in grade 9 and student performance on the 
HSLS:09 grade 9 algebra assessment. The former is a 
direct measure of prior interest in STEM, and the latter is 
important because many STEM courses require strong 
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mathematics skills. For example, Chen (2009) found that 
students pursuing a STEM career are more likely to have 
taken advanced mathematics in high school. Rose and 
Betts (2001) and Cribbs et al. (2015) also note that career 
success in science, technology, and engineering depends 
upon one’s mathematics skills.

We also included other measures of science and mathe-
matics interest, self-efficacy, utility, and identity—compo-
nents of expectancy value theory (Eccles, 2005; Eccles et al., 
1983; Wigfield & Eccles, 2000) as well as social cognitive 
theory (Bandura, 1977, 1986, 1994, 1997). All have been 
shown to be related to STEM outcomes (Lent et al., 2010) 
and all were measured as part of the HSLS:09 student sur-
vey. Each of these variables can be thought of as an impor-
tant motivator or a motivational belief that could lead to 

choosing to take AP mathematics or science courses and, as 
such, are possible confounders to be taken into account in 
our analyses.

HSLS:09 constructed eight indices with satisfactory 
internal consistency reliabilities as measured by Cronbach’s 
alpha (Cronbach, 1951): mathematics interest (α = 0.75), 
science interest (α = 0.73), mathematics self-efficacy (α = 
0.90), science self-efficacy (α = 0.88), mathematics utility 
(α = 0.78), science utility (α = 0.75), mathematics identity 
(α = 0.84), and science identity(α = 0.83). All were mea-
sured in the fall of students’ first year in high school, prior to 
completing any courses at the high school level.

Also included were measures of prior participation in a 
mathematics or science club or a mathematics or science 
competition, attendance at a mathematics or science camp, 

TABLE 1
Summary of the Four Most Relevant Studies

Authors Year
Nationally Representative 

Sample (Y/N)
Dependent Variable Measured 

Prospectively or Actually
Finds Support for Direct Effect 

of AP STEM Coursetaking

Warne et al. 2019 N Prospectively No
Jewett 2019 Y Actually Yes
Sadler et al. 2014 N Prospectively No
Tai et al. 2010 Y Actually Yes

TABLE 2
Weighted Percentages and Frequencies of STEM Major Choice in 2016

Categories Weighted Percentages Rounded Frequencies

Medicine and health 17.8% 1,500
Biology, life science, and agriculture 7.6% 840
Physical science and engineering 11.3% 1,090
Mathematics and computer science 4.8% 470
Non-STEM/don’t know 58.6% 5,540
Total 100.0% 9,450

Note. Frequencies are rounded to the nearest 10 per NCES disclosure review standards. Weighted percentages are obtained using W4W1W2W3STU.
Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09).

TABLE 3
Weighted Percentages and Frequencies of Expected STEM Occupation at Age 30 in 2016

Categories Weighted Percentages Rounded Frequencies

Medicine and health 16.1% 2,220
Biology, life science, and agriculture 0.9% 120
Physical science and engineering 7.9% 990
Mathematics and computer science 2.0% 300
Non-STEM/don’t know 73.1% 9,260
Total 100.0% 12,900

Note. Frequencies are rounded to the nearest 10 per NCES disclosure review standards. Weighted percentages are obtained using W4W1W2W3STU.
Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09).
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STEM coursetaking, majoring in STEM, and/or expecting a STEM occupation

and whether students had a mathematics or science tutor 
prior to high school attendance. Each of these activities can 
be thought of as proxies for having a prior interest in STEM, 
because exposure to nonformal mathematics and science 
activities (both inside and outside of school) has been shown 
to be related to the choice of a STEM-related career 
(Gottfried & Williams, 2013; Williams & Gottfried, 2010). 
Also included as a possible confounder was whether the stu-
dent’s father, mother, or both were in STEM occupations, a 
variable that has been shown to be related to the choice of a 
STEM major (Tilbrook & Shifrer, 2022).

Finally, students’ sociodemographic backgrounds were also 
taken into account by including controls for gender, race/eth-
nicity, family socioeconomic status (SES), and family poverty. 
A 2021 report from the National Science Foundation shows 
that the percentage of scientists, engineers, and other skilled 
workers varies significantly by gender, race, and ethnicity 
(National Science Foundation, 2021), and a longitudinal study 
by Betancur et al. (2018) shows how gaps in children’s science 
achievement vary by parental education and income. Finally, 
using data collected in Australia, a study by Cooper and Berry 
(2020) shows that low SES is the most significant barrier to 
having a STEM career.

Table 4 contains a list of all of the covariates along with a 
full description of each and the percentage of missing data 
associated with each.

Multiple Imputation

To address the issue of missing data, multiple imputation 
using chained equations (MICE) was employed to simulta-
neously impute missing values, taking into account the types 
of variables (e.g., binary, multinomial, ordinal, or continu-
ous) in the sample (Little & Rubin, 2019).10 A total of five 
datasets was generated and used for the study’s analyses. 
The effects of multiple imputation on the means and stan-
dard deviations of the variables used for the prediction of 
choosing a STEM major and a STEM occupation can be 
seen in Appendix B, Tables B3 and B4.

Propensity Score Modeling

A student’s decision to take an AP course is often based 
on characteristics and factors that are related to academic 
proficiency and academic-related outcomes, including the 
choice of a college major. Failing to account for factors that 
are related both to coursetaking and achievement-related 
outcomes can result in biased estimates when examining the 
relationship between the two. For example, high mathemat-
ics ability or motivation at the start of high school may 
increase both the likelihood of enrolling in an AP course and 
the likelihood of choosing a STEM major or profession for 
many students.

That is, students who took AP courses are likely to differ on 
average from students who did not take AP courses with 

respect to factors that are also related to student outcomes. To 
deal with this, we employed propensity score methods 
(Rosenbaum & Rubin, 1984) designed to reduce selection bias 
in comparing outcomes by identifying and accounting for such 
similarities to the extent that they are observable in the data. A 
propensity score (e.g., the probability of STEM AP coursetak-
ing) was computed for each student for each of the AP courses 
based on the possible confounders shown in Table 5—vari-
ables that are likely related to both AP coursetaking and stu-
dent outcomes—using the following statistical model:

Pi i= ( )Λ β′X

where Pi  is the probability of AP coursetaking for stu-
dent i , Xi  corresponds to student characteristics, and Λ ⋅( )  
is the standard logistic function.

The propensity scores computed from this model were 
used as the foundation for inverse probability of treatment 
weighting (IPTW) (Austin & Stuart, 2015; Dehejia & 
Wahba, 2002; Joffe & Rosenbaum, 1999; Rosenbaum & 
Rubin, 1984; Rubin, 2006). When the weights created in 
IPTW are used, the treatment and the comparison conditions 
are on average similar in their observables. Compared to 
classical propensity score-matching methods, the propensity 
score-weighting approach used here is particularly attractive 
because it retains the original sample size (Guo et al., 2020). 
This is important because the original sample represents the 
target population, and the loss of sample observations due to 
matching or resampling would affect the sample’s represen-
tativeness. Therefore, for our purposes, we computed aver-
age treatment-on-treated (ATT) weights that allowed for the 
computation of the effect of students taking a given AP 
course (i.e., AP calculus or science) on a given outcome 
(e.g., majoring in medicine or health) compared with stu-
dents who did not take the AP course. The treated students 
were given a weight of 1, whereas the comparison students 
had a weight of 

IPTW
P

P
i

i

i

=
−



1

where Pi
  is the estimated probability of taking the AP 

course computed from the first equation. Thus, the treated 
sample is being used as the reference population to which 
the treated and control samples are being standardized. 
Using the IPTW weights, the covariate balance between the 
“treated” and comparison groups was checked to ensure that 
they were similar.

Because the data were collected through a survey sam-
pling methodology, the IPTW weights were multiplied by 
the HSLS:09 survey weights to create the final weights:

Weight treatment treatment
P

P

Survey w

i i i
i

i

= + −
−













( )

_

1
1





* eeighti
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where treatmenti  refers to taking the AP course and 
Survey weighti_  represents the longitudinal survey weight 
(e.g., W4W1W2W3STU) for student i. The analyses were run 
separately for each of the five AP courses, resulting in five 
weight variables that were used in all subsequent analyses.

To test for the differences in outcomes between students 
who took a given AP course and those who did not, a sepa-
rate logistic regression model of the following form was run 
for each of the eight dependent variables:

Pr Yi i i( )= = +( )1 1Λ β ′ β′Treatment X

Covariate Balancing

Using the methodology mentioned previously, we tested 
the differences between students who took a specific AP 

course (e.g., AP calculus) and those who did not before and 
after covariate balance weighting. We standardized the dif-
ferences between these two groups for each of the observable 
characteristics that were used in the propensity score model. 
The results from these analyses are shown in Table 5. Across 
all AP courses, we found that the preexisting differences 
between those students who took the AP course and those 
who did not diminished substantially after weighting. After 
weighting, all the differences were lower than two-tenths of a 
standard deviation, and nearly all were below one-tenth of a 
standard deviation. Therefore, we expect the effects of con-
founding associated with these variables to be substantially 
reduced, if not eliminated, in our weighted estimates.

This approach, of course, can only account for observed 
variables. Unobserved confounders may still bias our esti-
mates, to the extent that they are uncorrelated with our 
observed confounders.

TABLE 5
Mean Differences in Standardized Covariates Before and After Covariate Balancing

AP calculus AP biology AP chemistry AP physics AP statistics

Variable Before After Before After Before After Before After Before After
Poverty −0.22 −0.01 −0.19 0.00 −0.23 0.01 −0.19 0.00 −0.22 0.00
Math/science club 0.47 −0.07 0.25 −0.06 0.41 −0.07 0.48 0.00 0.41 0.00
Math/science competition 0.71 −0.11 0.39 −0.07 0.63 −0.06 0.56 −0.01 0.43 0.00
Math/science camp 0.19 0.01 0.10 0.00 0.15 −0.02 0.30 −0.01 0.22 −0.01
Math/science tutor 0.05 0.01 0.04 −0.01 0.02 0.02 0.08 0.00 0.09 0.01
Female −0.06 −0.02 0.20 0.00 0.01 0.01 −0.33 0.01 0.03 −0.02
Black −0.21 0.01 −0.12 0.01 −0.20 0.01 −0.17 0.01 −0.15 0.00
Hispanic −0.16 0.01 −0.08 0.00 −0.20 0.02 −0.17 −0.01 −0.15 0.02
Asian 0.98 −0.14 0.77 −0.07 0.88 −0.08 1.04 −0.08 0.84 0.00
Multiple race −0.01 0.01 0.01 0.00 0.02 −0.01 0.07 0.01 −0.04 −0.01
Other race −0.06 0.00 −0.05 0.00 −0.07 0.00 −0.07 0.00 −0.01 −0.01
Mathematics identity 0.79 −0.01 0.35 −0.02 0.65 −0.03 0.72 0.00 0.50 −0.02
Science identity 0.60 −0.04 0.49 −0.01 0.59 −0.04 0.68 −0.01 0.37 −0.01
Mathematics efficacy 0.55 0.01 0.36 −0.03 0.50 −0.05 0.55 0.00 0.24 0.00
Science efficacy 0.59 −0.03 0.48 −0.03 0.50 −0.04 0.60 −0.02 0.35 −0.01
Grade 9 algebra score 1.30 −0.02 0.80 −0.06 1.14 −0.07 1.22 −0.03 0.98 −0.03
Socioeconomic status 0.81 −0.03 0.57 −0.03 0.78 −0.07 0.80 −0.02 0.66 −0.04
Mathematics utility 0.02 0.00 0.00 0.00 0.04 −0.01 0.05 0.00 −0.02 0.01
Mathematics interest 0.15 −0.01 0.06 0.00 0.14 −0.01 0.12 0.00 0.09 0.00
Science utility 0.08 −0.02 0.12 0.00 0.08 −0.01 0.10 0.00 0.04 0.00
Science interest 0.10 −0.01 0.12 0.00 0.09 −0.01 0.12 −0.01 0.06 0.00
Expected occupation at age 30 in grade 9:  
Medicine and health 0.13 −0.04 0.41 0.00 0.17 −0.01 −0.01 0.01 0.16 0.00
Biology, life science, and agriculture −0.01 −0.03 0.09 −0.01 0.05 −0.04 0.00 0.00 0.00 −0.01
Physical science and engineering 0.15 0.08 −0.10 0.00 0.10 0.01 0.38 −0.02 0.02 0.00
Mathematics and computer science 0.07 0.02 −0.05 0.00 0.04 0.00 0.16 0.03 0.06 0.00
Parent occupation STEM: One parent −0.51 0.03 −0.45 0.03 −0.51 0.06 −0.42 0.02 −0.37 0.01
Parent occupation STEM: Both parents 0.74 0.07 0.62 −0.1 0.63 −0.1 0.63 −0.1 0.57 0.00

Note. Analyses are weighted using W4W1W2W3STU.
Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09).
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Results

Table 6 shows the relationships between enrollment in 
AP mathematics and science courses for all eight depen-
dent variables where the outcomes are expressed as odds 
ratios.

AP Calculus

Concentrating first on the relationships between taking 
AP calculus and choosing a STEM major or expecting to be 
in a STEM career at age 30, meaningful relationships were 
seen with both choosing a major in the physical sciences or 
engineering and/or expecting to be in a career in one of 
these fields. More specifically, the odds of choosing a 
major in either of these fields for a student taking AP cal-
culus, taking into account prior background interest and 
other potential confounders via propensity score adjust-
ment, are about twice as great (1.9) as they are for a student 
not taking AP calculus. Similarly, the odds of expecting to 
be in a career at age 30 in either the physical sciences or 
engineering for a student taking AP calculus are roughly 
twice as great (2.1) as they are for a student not taking AP 
calculus. The other significant relationship is with choos-
ing a major in medicine or health, where the relationship is 
negative, though not particularly strong. The odds of 
choosing a major in either of these fields if one has taken 
AP calculus are 0.6, meaning that the odds are greater for 
choosing one of these fields if one has not taken AP calcu-
lus (1.4).

The relationships between taking AP calculus and choos-
ing a major or expecting to be in a career by age 30 in biol-
ogy, the life sciences, or agriculture or in mathematics or 
computer science were not statistically significant, nor was 
taking AP calculus significantly related to expecting to be in 
a career in medicine or health by age 30.

AP Statistics

The second row in Table 6 shows the relationship between 
AP statistics and majoring in or expecting to be in a career in a 
STEM field. As can be seen, none of the relationships were 
statistically significant. Because statistics as a major is not 
measured in the dataset, the import of taking AP statistics for 
majoring in statistics is best thought of as untested in this study.

AP Biology

The results for taking AP biology are shown in the third 
row of Table 6. Two statistically significant results were 
found. First is its relationship to majoring in biology, the life 
sciences, or agriculture, where the odds of doing so are 1.7 
times greater than for those students not taking AP biology, 
taking into account prior background interest and other poten-
tial confounders. Second is its relationship to choosing an 
occupation in medicine or health, where the odds of doing so 
are 1.6 times greater than for someone who did not take AP 
biology. That taking AP biology should have a net positive 
relationship with majoring in biology, the life sciences, or 
agriculture makes sense as does its relationship with expect-
ing to be in a career in medicine or health at age 30, given that 
medicine and health are based in biology and the life sciences. 
Finally, it makes sense that taking AP biology would be statis-
tically unrelated to the other outcomes, such as majoring in or 
expecting to be in an occupation in the physical sciences, 
engineering, mathematics, or computer science, as was found.

AP Chemistry

As can be seen in the fourth row in Table 6, there was only 
one statistically significant relationship between taking AP 
chemistry and the various outcomes and that was with major-
ing in the physical sciences or engineering, where the odds of 

TABLE 6
Odds Ratio Estimates of the Relationship Between AP Coursetaking and STEM-Related Outcomes, With Propensity Score Adjustment

STEM Majors Expected STEM Occupation at Age 30

 
Medicine 
and health

Biology, life science, 
and agriculture

Physical science 
and engineering

Mathematics and 
computer science

Medicine 
and health

Biology, life science, 
and agriculture

Physical science 
and engineering

Mathematics and 
computer science

AP calculus 0.6* 0.9 1.9** 1.6 0.9 1.4 2.0** 1.3

(0.3) (4.5) (0.6) (1.0) (3.0) (3.0) (0.7) (1.8)

AP statistics 1.1 0.8 0.9 1.1 1.0 0.2 0.6 1.5

(5.3) (1.0) (1.5) (3.3) (2.8) (0.1) (0.3) (1.1)

AP biology 1.1 1.7** 0.8 0.7 1.6* 1.6 0.9 0.6

(3.0) (0.6) (0.7) (1.0) (0.6) (2.8) (1.3) (0.5)

AP chemistry 1.0 1.0 1.6* 1.3 1.1 0.6 1.2 1.6

(3.5) (12.6) (0.6) (1.4) (5.2) (1.5) (1.4) (1.5)

AP physics 0.6 0.9 2.4** 1.4 0.5* 1.0 1.9* 1.7

(0.8) (3.1) (0.8) (1.3) (0.2) (5.3) (0.7) (1.1)

*p < .05. **p < .01. ***p < .001.
Note. Analyses are weighted using W4W1W2W3STU.
Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09).
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doing so are 1.6 times greater than for a student who did not 
take AP chemistry, again, taking into account prior back-
ground interest and other potential confounders. This finding 
also makes sense in that chemistry is a physical science and 
one of the fields in engineering is chemical engineering.

AP Physics

The effects of taking AP physics are similar to those asso-
ciated with taking AP calculus, as can be seen from the last 
line in Table 6. Both the pattern of results and the size of the 
effects are similar as evidenced by the fact that taking AP 
physics is significantly related to majoring in the physical 
sciences or engineering and/or expecting to be in a career in 
one of those fields at age 30. The odds ratios are also quite 
similar: the odds of choosing a major in either the physical 
sciences or engineering are over twice as great (2.4) for a 
student taking AP physics than for a student not taking it. 
And the odds of expecting one will be in a career at age 30 
in either the physical sciences or engineering, given that one 
has taken AP physics, are roughly two times greater (1.9) 
than for someone who has not taken AP physics. Finally, tak-
ing AP physics had a slightly negative but statistically sig-
nificant relationship with expecting to be in an occupation in 
medicine or health at age 30.

Discussion

Recall that Model B implies a direct relationship between 
AP STEM coursetaking and majoring in a STEM field and/
or expecting to be in a STEM career at age 30, whereas 
Model A does not assume a direct path from AP STEM cour-
setaking to majoring in a STEM field and/or expecting to be 
in a STEM career at age 30. Because in most cases there is a 
direct relationship between a given STEM AP course and its 
most closely affiliated major(s) and expected occupation (as 
well as to closely affiliated majors or occupations), the data 
favor Model B over Model A. Take AP biology as an exam-
ple. Taking AP biology was found to be significantly related 
to choosing a major in biology, the life sciences, or agricul-
ture and being in an occupation in medicine or health at age 
30 but was not statistically significant in its relationship to 
other STEM majors and occupations. The relationship 
between taking AP biology and expecting to be in the medi-
cal or health fields at age 30 makes sense given that the 
foundations of both fields rely heavily on biology.

Similar results were found for AP calculus. When taking 
into account previous interest and other preexisting differ-
ences, taking AP calculus was significantly related to choos-
ing a major in the physical sciences or engineering and 
expecting to be in an occupation in one of these fields at age 
30 but was unrelated to choosing a major or expecting to be 
in an occupation in other STEM fields. Although the data 
from this study do not explain why AP calculus is important 

for majoring in the physical sciences or engineering, the 
most likely explanation has to do with the demands for 
mathematics knowledge needed to successfully major in 
either, because much of engineering and physics is based on 
mathematics models (see, e.g., Harris et al., 2015; Hirst 
et al., 2004). That is, this result also makes sense.

As further evidence favoring Model B, taking AP chemis-
try was found to be related to choosing a STEM major in the 
physical sciences, and taking AP physics was related to 
choosing a major in the physical sciences or engineering as 
well as expecting to be in an occupation in one of those fields 
at age 30. However, taking AP chemistry or AP physics was 
unrelated to choosing any other STEM major or occupation 
with the exception of a small negative relationship with 
expecting to be in an occupation in the medical or health 
fields at age 30 for those taking AP physics. These results 
also seem sensible since both chemistry and physics are 
physical sciences, and one of the subspecialties within engi-
neering is chemical engineering.

Importantly as well, the results of the current study align 
quite well with those of Tai et al. (2010), who found that the 
odds of majoring in the physical sciences or engineering 
were about four times greater for someone taking AP calcu-
lus than for someone not taking it. They also found that the 
odds of majoring in the sciences were about twice as high for 
someone taking AP science (where AP biology, chemistry, 
physics, and mechanics were aggregated) than for someone 
not taking AP science. Although these odds are larger than 
those that were found in the current study, they are not 
implausible. Why? First, Tai et al.’s study predated the 
explosion in AP coursetaking, and the authors were explicit 
in noting that their results might not hold for more current 
populations. Second, besides student sociodemographics, 
there were only two other covariates in their model—aca-
demic achievement and whether students expected to be in a 
STEM occupation, as measured in the eighth grade—which 
might account for the larger odds.

Most important is the almost identical pattern of results 
from our study and Tai et al. (2010). Significantly, both Tai 
et al. (2010) and the current study were initially based on sam-
ples of students who were randomly chosen to be representa-
tive of U.S. eighth graders in the case of Tai et al. and ninth 
graders in the case of our study. And as noted previously, 
Jewett (2019)—who found that the number of AP STEM 
courses taken was related to choosing a STEM major—also 
used the HSLS:09 nationally representative sample of ninth 
graders. Furthermore, the current study as well as those of Tai 
et al. (2010) and Jewett (2019) measured actual majors chosen 
rather than relying on expected majors, as was the case in the 
Warne et al. (2019) and Sadler et al. (2014) studies.

Taken together, these results suggest that AP coursetaking 
is of substantial importance to the “STEM pipeline.” The 
odds of choosing a STEM major or expecting to be in a 
STEM occupation at age 30 are 1.6 and 2.4 times greater for 
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someone taking an AP mathematics or AP science course 
compared to someone not taking one, taking into account 
previous interest in STEM and other relevant covariates.11 
Although the observed effects are nontrivial, there are sev-
eral likely reasons why the effects were not larger than those 
observed. One, there are several reasons why students may 
take AP STEM courses in high school. One is access to bet-
ter and more experienced teachers or to increase students’ 
self-confidence (as mentioned in Warne et al., 2019); another 
is trying to impress college and university admissions com-
mittees with one’s academic prowess.12 Or students could be 
responding to parent, teacher, or peer pressure to take STEM 
AP courses. But none of these factors contradict the positive 
relationships observed between AP STEM coursetaking and 
majoring in a STEM discipline or expecting to be in a STEM 
occupation at age 30.

Conclusion

An important strength of the current study is that the results 
are based on HSLS:09—a nationally representative longitudi-
nal study. A second strength of this study is that it combines (a) 
student-supplied survey data in the first year of high school and 
(b) high school transcript data that documents what STEM 
courses were taken as well as grades earned with (c) student-
supplied survey data in what for most who have gone to college 
will be their junior year, by which time the vast majority will 
have had to have declared a major. That is, the current study 
relies on actual rather than prospective data, thereby increasing 
the validity of its results. Nevertheless, additional research is 
needed to determine whether the relationships observed hold 
for demographic characteristics such as sex, socioeconomic sta-
tus, and race/ethnicity and their intersectionality.

But it is also important to repeat that in the absence of a 
true experimental design, the results cannot be claimed as 
demonstrating a causal relationship between AP STEM cour-
setaking and choosing a STEM major or expecting to have a 
STEM occupation at age 30. Although an effort was made to 
include a range of possible confounders that could have other-
wise explained these relationships, it is possible that had other 
candidate confounders been included, the relationships could 
have either been attenuated or eliminated. But given the wide 
range of the confounders included in the model, any large-
scale changes in the relationships observed seem unlikely. It 
also needs to be mentioned that one other threat to the validity 
of the findings reported here is that the relationships observed 
could change over time due to changes in policies related to 
AP coursetaking, the content of the AP courses, or the popula-
tion of students taking them. These cautions suggest the need 
for continuing research with new data sets over time.

Finally, the findings from this study demonstrate the 
importance of replication for education research. As noted 
by Makel and Plucker (2014): “If education research is to be 
relied upon to develop sound policy and practice, then con-
ducting replications on important findings is essential to 

moving toward a more reliable and trustworthy understand-
ing of educational environments” (p. 313). We believe this 
study moves us toward that goal.

Appendices

Appendix A. Description of Samples From Key Studies 
Referenced

Warne et al. (2019). The data for this study came from the 
Outreach Programs and Science Career Intentions (OPSCI) 
survey, which was administered to nearly 16,000 first-year 
students at 26 colleges (14 two-year and 12 four-year col-
leges) enrolled in freshman English in the fall of 2013. As the 
authors note, it was not a representative sample of all Ameri-
can institutions of higher education (p. 103), and the sample of 
students was obtained using a complicated design that 
involved contacting department chairs of English at the 150 
sampled colleges and universities to gain access to instructors 
of freshman English courses. But of the 150 institutions con-
tacted, only 46 responded, of which only 27 resulted in locat-
ing at least one participating instructor. And of the 535 located 
instructors, 77% sent completed surveys from the students in 
their classes. That is, although the sample is large with respect 
to the number of participating students, the sample is not rep-
resentative of students entering college in fall 2013 nor of the 
colleges from which they were drawn.

Sadler et al. (2014). The data from this study were gener-
ated by first choosing a nationally representative sample of 
two- and four-year colleges and from within them a sample 
of beginning students enrolled in a mandatory introductory 
English class. The final sample of 6,860 students was gener-
ated using a multistep process. First, the population of U.S. 
colleges and universities included those that had at least 100 
students and offered coursework in science. These 3,779 
institutions were then stratified into six groups based on size 
and whether they were a two- or four-year college. From 
these institutions, a random sample of 160 professors was 
contacted for participation in the study, of whom 43 agreed 
to participate, although ultimately only 34 returned student-
completed questionnaires (21% of all contacted professors). 
Students who were not born in the United States or who 
were homeschooled, who were not beginning students, or 
who did not express a career interest were omitted, leaving a 
sample of 4,691 students from 34 institutions. The propor-
tion of students in four-year colleges versus two-year col-
leges was virtually the same as in the U.S. population at the 
time of the study (56% versus 44%).

The authors report that the distribution of colleges and 
universities based on the IPEDS Carnegie Classification in 
their sample was not statistically different from that of the 
population of colleges and universities in the United States. 
They had targets of 1/3, 1/3, and1/3 in terms of students’ 
attendance at small, medium, and large schools at both 
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two-year and four-year colleges. In actuality, students from 
large schools at both two-year and four-year colleges were 
somewhat overrepresented (39.6% and 41.8%) and those 
from medium-size schools somewhat underrepresented 
(24.6% and 26%), but the authors conclude that the actual 
percentages were “close enough to be an adequate repre-
sentation of the population” (p. 5). Given the complexity of 
the sampling strategy and the fact that there was no com-
parison of the sociodemographics of the students in their 
sample with those of entering students in the United States, 
there is no way to know how representative their sample of 
students was to the U.S. population of beginning students.

Tai et al. (2010). The data from this study came from the 
National Center for Education Statistics (NCES) National 
Education Longitudinal Study of 1988 (NELS:88). The 
study began with a cohort of about 25,000 randomly selected 
eighth-grade students in 1988. They were followed four 
additional times over the next 12 years, including the final 
follow-up. The analysis focused on the roughly 4,100 stu-
dents who had graduated from a four-year college who had 
earned their bachelor’s degree by the year 2000. That is, the 

study is based on a random sample that was representative of 
eighth graders in the United States in 1988.

Jewett (2019). The data for this study came from the National 
Center for Education Statistics (NCES) restricted-use data files 
of the High School Longitudinal Study of 2009 (HSLS:09), 
which was based on a nationally representative sample of first-
year high school students. More specifically, the data used in 
this study are drawn from three data collections: the base-year 
collection, the 2013 update, and the second follow-up in 2016. 
The base-year study sampled approximately 950 high schools 
and approximately 25,200 eligible students. The base-year data 
were collected in 2009, when the students in the study were in 
grade 9. The 2013 update collected data on college acceptances 
as well as transcripts, which were collected from high schools 
after most students had graduated in 2013; the second follow-
up data were collected in 2016, when most students attending 
four-year colleges were in their third year. The study used data 
from these three sources, and the sample size was roughly 7,750 
students. As noted previously, schools and students within 
schools were sampled, making this sample nationally represen-
tative of ninth graders in the United States in 2009.

Appendix B

TABLE B1
Recoding for Expected STEM Occupation at Age 30

Recoded Categories Original Categories

Medicine and health Health-care practitioners and technical occupations

Health-care support occupations

Biology, life science, 
and agriculture

Farming, fishing, and forestry occupations

Agricultural and food science technicians

Soil and plant scientists

Biochemists and biophysicists

Microbiologists

Zoologists and wildlife biologists

Biological scientists, all other

Conservation scientists

Foresters

Epidemiologists

Medical scientists, except epidemiologists

Life scientists, all other

Biological technicians

Physical science and 
engineering

Astronomers

Physicists

Atmospheric and space scientists

Chemists

Materials Scientists

Environmental scientists and specialists, including health

Geoscientists, except hydrologists and geographers

Hydrologists

Physical scientists, all other

Chemical technicians

Geological and petroleum technicians

Nuclear technicians

Forensic science technicians

Architecture and engineering occupations

TABLE B2
Recoding for STEM Majors

Recoded 
Categories Original Categories

Medicine and 
health

Health professions and related clinical sciences

Residency programs

Biology, life 
science, and 
agriculture

Agriculture, agriculture operations, and related sciences

Architecture and related services

Biological and biomedical sciences

Physical science 
and engineering

Physical sciences

Engineering

Engineering technologies/technicians

Mechanic and repair technologies/technicians

Mathematics and 
computer science

Computer and information sciences and support services

Mathematics and statistics

Note: See the HSLS:09 public-use codebook for details about the derived variable 
X4RFDGMJ12.
Source: U.S. Department of Education, National Center for Education Statistics, High 
School Longitudinal Study of 2009 (HSLS:09).

Recoded Categories Original Categories

Construction and extraction occupations

Installation, maintenance, and repair occupations

Mathematics and 
computer science

Computer and mathematical occupations

Uncodable and missing Uncodable

Missing

Note: See the HSLS:09 restricted-use codebook for details about the derived variable 
X4STU30OCC6.
Source: U.S. Department of Education, National Center for Education Statistics, High 
School Longitudinal Study of 2009 (HSLS:09).

TABLE B1. (CONTINUED)

(continued)
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TABLE B3
Descriptive Statistics for the Covariates Used in the STEM Major Analysis Before and After Imputation

Missing Rate Before Imputation After Imputation

Variable Mean SD Mean SD

Poverty 12.23 0.13 0.34 0.14 0.35

Math/science club 2.06 0.05 0.22 0.05 0.22

Math/science competition 2.06 0.07 0.26 0.07 0.26

Math/science camp 2.06 0.01 0.11 0.01 0.11

Math/science tutor 2.06 0.06 0.24 0.06 0.24

Female 0.00 0.53 0.50 0.53 0.50

Black 0.00 0.12 0.32 0.12 0.33

Hispanic 0.00 0.20 0.40 0.20 0.40

Asian 0.00 0.04 0.20 0.04 0.20

Multiple race 0.00 0.08 0.26 0.08 0.27

Other race 0.00 0.01 0.10 0.01 0.10

Read science books 1.30  

 Never 0.67 0.47 0.67 0.47

 Rarely 0.11 0.32 0.11 0.32

Hours of video games 5.17  

 Less than 1 hour 0.16 0.36 0.16 0.36

 1 to 2 hours 0.17 0.37 0.17 0.38

No homework done 1.57  

 Never 0.68 0.47 0.69 0.46

 Rarely 0.22 0.41 0.21 0.41

No paper 1.67  

 Never 0.43 0.49 0.43 0.49

 Rarely 0.51 0.50 0.51 0.50

No books 1.76  

 Never 0.41 0.49 0.41 0.49

 Rarely 0.56 0.50 0.56 0.50

Late to class 1.75  

 Never 0.48 0.50 0.49 0.50

 Rarely 0.50 0.50 0.49 0.50

Occupation at age 30 in grade 9 4.97  

 Medicine 0.23 0.42 0.23 0.42

 Biology/life science/agriculture 0.02 0.13 0.02 0.14

 Physical science/engineering 0.10 0.30 0.10 0.30

 Mathematics/computer science 0.02 0.13 0.02 0.13

Parent occupation STEM 13.11  

 One parent 0.21 0.41 0.20 0.40

 Both parents 0.03 0.18 0.03 0.17

Mathematics identity 1.38 0.17 0.99 0.14 0.99

Science identity 1.48 0.15 0.98 0.13 0.99

Mathematics efficacy 9.70 0.14 0.96 0.11 0.97

Science efficacy 15.25 0.11 0.97 0.08 0.97

Grade 9 algebra score 0.53 0.24 0.91 0.20 0.91

Socioeconomic status 0.00 0.11 0.77 0.09 0.77

Mathematics utility 9.79 0.00 0.98 0.01 0.99

Mathematics interest 11.21 0.09 0.98 0.08 0.99

Science utility 15.34 0.02 0.97 0.01 0.97

Science interest 16.73 0.07 1.00 0.04 1.01

X1SES 0.00 0.64 1.27 0.63 1.27

Occupation at age 30 in grade 9: Medicine/health 4.97 0.19 0.39 0.18 0.39

Occupation at age 30 in grade 9: Biology/life science/agriculture 3.32 0.01 0.10 0.01 0.10

Occupation at age 30 in grade 9: Physical Science/engineering 3.32 0.08 0.27 0.08 0.27

Occupation at age 30 in grade 9: Mathematics/computer science 3.32 0.02 0.15 0.02 0.15

Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09).
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TABLE B4
Descriptive Statistics for the Covariates Used in the STEM Occupation Analysis Before and After Imputation

Missing Rate Before Imputation After Imputation

Variable Mean SD Mean SD

Poverty 15.46 0.19 0.39 0.19 0.39
Math/science club 2.54 0.05 0.21 0.05 0.21
Math/science competition 2.54 0.06 0.23 0.06 0.23
Math/science camp 2.54 0.01 0.11 0.01 0.11
Math/Science tutor 2.54 0.06 0.24 0.06 0.24
Female 0.00 0.50 0.50 0.50 0.50
Black 0.00 0.14 0.34 0.14 0.34
Hispanic 0.00 0.22 0.42 0.22 0.42
Asian 0.00 0.04 0.19 0.04 0.19
Multiple race 0.00 0.08 0.27 0.08 0.27
Other race 0.00 0.01 0.11 0.01 0.11
Read science books 1.97  
 Never 0.65 0.48 0.65 0.48
 Rarely 0.12 0.32 0.12 0.32
Hours of video games 6.11  
 Less than 1 hours 0.16 0.37 0.16 0.36
 1 to 2 hours 0.20 0.40 0.20 0.40
No homework done 2.26  
 Never 0.70 0.46 0.70 0.46
 Rarely 0.18 0.39 0.19 0.39
No paper 2.44  
 Never 0.43 0.50 0.44 0.50
 Rarely 0.48 0.50 0.48 0.50
No books 2.52  
 Never 0.43 0.49 0.43 0.49
 Rarely 0.53 0.50 0.53 0.50
Late to class 2.48  
 Never 0.52 0.50 0.52 0.50
 Rarely 0.46 0.50 0.46 0.50
Occupation at age 30 in grade 9 5.74  
 Medicine/health 0.21 0.41 0.21 0.40
 Biology/life science/agriculture 0.02 0.13 0.02 0.13
 Physical science/engineering 0.10 0.30 0.10 0.30
 Mathematics/computer science 0.02 0.13 0.02 0.13
Parent occupation STEM 16.43  
 One parent 0.18 0.38 0.18 0.38
 Both parents 0.03 0.16 0.02 0.15
Mathematics identity 2.09 0.05 1.00 0.04 1.01
Science identity 2.20 0.03 0.99 0.03 0.99
Mathematics efficacy 11.80 0.04 1.00 0.02 0.99
Science efficacy 18.37 0.02 0.98 0.00 0.97
Grade 9 algebra score 1.04 −0.01 0.95 −0.01 0.95
Socioeconomic status 0.00 −0.07 0.76 −0.07 0.76
Mathematics utility 11.79 0.02 1.00 0.02 1.00
Mathematics interest 13.38 0.03 0.99 0.03 1.00
Science utility 18.25 0.01 1.00 0.00 1.00
Science interest 19.79 0.02 1.01 0.00 1.01
X1SES 0.00 0.59 1.25 0.59 1.25
Occupation at age 30 in grade 9: Medicine/health 5.74 0.16 0.37 0.16 0.37
Occupation at age 30 in grade 9: Biology/life science/agriculture 4.00 0.01 0.10 0.01 0.10
Occupation at age 30 in grade 9: Physical Science/engineering 4.00 0.08 0.27 0.08 0.27
Occupation at age 30 in grade 9: Mathematics/computer science 4.00 0.02 0.14 0.02 0.14

Source: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09).



17

Acknowledgments

The authors thank the reviewers and the editors as well as Markus 
Broer, Michael Garet, and Alan Ginsburg for their useful com-
ments on earlier drafts of the paper.

Data and Published Codes Access Link

https://nam10.safelinks.protection.outlook.com/?url=https 
%3A%2F%2Fwww.openicpsr.org%2Fopenicpsr%2Fproject%2F1919
03%2Fversion%2FV1%2Fview&data=05%7C01%7Caml7768%4
0psu.edu%7C3872dba8eb4f4346944008db5ba32c29%7C7cf48d4
53ddb4389a9c1c115526eb52e%7C0%7C0%7C63820452859995
7845%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwM
DAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D
%7C3000%7C%7C%7C&sdata=30CEzhKLCgaXry3wO3pFtIk2t
Bx%2BC7E1RlqylAoq83M%3D&reserved=0

ORCID iDs

George W. Bohrnstedt  https://orcid.org/0000-0002-1571-284X

Burhan Ogut  https://orcid.org/0000-0003-1729-1396

Yifan Bai  https://orcid.org/0009-0008-2749-5062

Notes

1. See https://blog.dol.gov/2022/11/04/stem-day-explore-grow 
ing-careers.

2. See https://blog.prepscholar.com/history-of-ap-classes-exams 
for a short history of the AP program.

3. See https://www.prnewswire.com/news-releases/student-
participation-and-performance-in-advanced-placement-rise-in-
tandem-300793268.html.

4. This review of the literature is not intended to be exhaustive 
given the space limitations of the journal but instead was designed 
to show that the research on the benefits of AP coursetaking is 
mixed, with only some of it showing positive outcomes. This con-
clusion also applies to the literature on AP mathematics and AP 
science coursetaking and their relationships to students’ stated 
likelihood of interest in a STEM major or a STEM career. For a 
more complete review of the benefits and limitation of taking AP 
courses, see Warne et al. (2015).

5. A full description of HSLS:09 can be found at https://nces.
ed.gov/surveys/hsls09/.

6. See https://nces.ed.gov/pubs2014/2014360.pdf, p. 1.
7. Note that figures are rounded to the nearest 10, as required by 

NCES, which conducted HSLS:09.
8. Again, these figures are rounded to the nearest 10, as required 

by NCES.
9. The SCED codes are 02124, 02125, and 02134 for AP cal-

culus; 03056 and 03057 for AP biology; 03106 and 03107 for AP 
chemistry; and 03155, 03156, 03157, 03160, 03163, 03164, 03165, 
and 03166 for AP physics.

10. MICE begins with a regression model to predict the poten-
tial values of missing data for the variable with the least missing-
ness, given the observed complete data. Once this variable has been 
imputed, it is used in a sequence to impute the next variable with 
the least missingness. The imputation model included both con-
tinuous and discrete variables, and the proper model was selected 

for the type of variable (e.g., logistic regression model for binary 
variables). The mi impute chained package in Stata 15 was used to 
perform the imputation.

11. The sole exception to this pattern of findings is for taking 
AP statistics.

12. This was suggested by one of the reviewers.
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