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The preparation gap [Salehi et al., Phys. Rev. Phys. Educ. Res. 15, 020114 (2019)] refers to gaps in
students’ prior knowledge that can negatively affect their learning as they engage in introductory physics
courses. To better characterize the gap, the current study distinguished the impact of various prior
knowledge components on learning gains. Measured components came from within the course domain
(e.g., energy and force, angular kinematics) and outside it (e.g., algebra, vectors, calculus, and scientific
reasoning). We conducted the study in two different institutional contexts: An algebra-based course offered
at a Northeastern State University (NESU) and a calculus-based course offered at a Midwestern Private
University (MWPU). Furthermore, we defined three levels of physics learning outcome measures with
increasing difficulty. Multiple regression analysis was used to predict learning gains with the various prior
knowledge components as predictor variables. The results indicate that greater prior knowledge from both
within and outside the domain predicted higher learning gains and explained 30%–50% of the variance
in outcome measures. Predictive, in-domain prior knowledge was the same for both groups—i.e., prior
knowledge of energy and force, as measured by the Mechanics Baseline Test [Hestenes and Wells, Phys.
Teach. 30, 159 (1992)]. Predictive, outside-domain prior knowledge differed between the groups. Better
scientific reasoning was highly predictive of learning in the NESU (algebra-based) group but did not
predict learning in the MWPU (calculus-based) group. Math prior knowledge predicted learning in both
groups, although different topics within the math domain. These results suggest that measuring
distinguishable components of prior knowledge will better characterize the preparation gap in ways that
can be informative to educators. Specifically, measuring multiple, distinct types of prior knowledge can
indicate which types are leading to a preparation gap for some students, putting them at a disadvantage for
learning, whereas measuring a single type of prior knowledge or measuring prior knowledge too coarsely
(without distinguishing among types) cannot provide sufficient diagnostic power.

DOI: 10.1103/PhysRevPhysEducRes.19.020122

I. INTRODUCTION

College professors of physics may notice that students
enter their courses with different types and amounts of prior
knowledge, not only in the target domain of instruction
(physics) but also in related knowledge areas, such as
mathematics [1–4]. When prior knowledge is missing,
researchers have termed this phenomenon a preparation
gap [5] that can hinder success in introductory, under-
graduate physics courses. The goal of this work is to
further define and measure gap components that could be

addressed by educators or the broader educational system
to improve learning gains in these courses.
Prior knowledge has long been identified as a key

predictor of learning and performance [6–9]. Studies
suggest that prior knowledge within the target domain
affects comprehension and retrieval [10–12], concept
learning [13,14], category membership inferences [15],
use of strategies related to learning and studying [16,17],
and motivation [18]. Prior knowledge plays a special
role in problem-solving, improving the perception of
critical (vs surface) problem features [19] and allowing
the solver to modify a familiar solution for use in the
present problem [20]. These findings lead us to expect
that domain prior knowledge (DPK)—i.e., prior knowledge
in the domain of instruction—should be significantly,
positively predictive of learning, defined as a positive
change in knowledge over a specific period of time due to
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one or more learner-centered actions or behaviors, in
introductory courses.
In practice, the benefit of DPK on learning has been

variable when assessing novice learners in classroom-based
studies. A recent meta-analysis [21] based on 493 studies
found that the average effect of DPK on gain scores (i.e.,
learning) was slightly negative and not significantly different
from zero. The researchers contrasted this result with the
positive correlation they found between DPK and post-test
performance. They attribute the positive correlation between
pretest and post-test to the influence of past achievement on
performance [8] and reiterate that this result does not show
prior knowledge confers benefit to learning.
These findings echo Hake’s [22] study of 62 course-level

samples in physics that found a positive correlation
(r ¼ 0.55) between pretest and post-test scores, which
he argued would occur in the absence of any instruction
and was likely attributable to the stability of individual
differences in performance. Indeed, when Hake measured
the correlation of pretest scores to absolute gain (post-pre)
or normalized gain (post-pre/100%-pre) scores, which
reflect changes in performance, results ranged from neg-
ative to practically zero, suggesting no significant effect of
DPK on learning. Both the meta-analytical study [21] and
Hake’s work point to the importance of correlating pretest
scores with gains scores when determining the role of prior
knowledge in learning, rather than simply finding the
correlation of scores from pretest to post-test.
Coletta and Phillips [23] reexamined Hake’s [22] data

and found if they used (a) Hake’s entire dataset [including
traditional and interactive engagement (IE) classes], there
was no significant correlation between pretest scores and
normalized gain; (b) Hake’s IE classes only, some corre-
lation existed (r ¼ 0.25, p ¼ 0.1); and (c) Hake’s IE
classes combined with their own IE classes (more than
doubling the number to 73 total), there was a larger
correlation (r ¼ 0.39, p ¼ 0.0006). Coletta and Philips’
results suggest that DPK may not predict learning in every
classroom. Importantly, they also found that DPK was not
the only, nor the largest, source of meaningful prior
knowledge variation that impacted physics learning.
Coletta and Phillips [23] measured both in-domain,

physics knowledge and outside-domain prior knowledge
of scientific reasoning and found that variation in the
outside-domain prior knowledge was an especially potent
predictor of learning. Other researchers have also measured
DPK and outside-domain prior knowledge of algebra [2,3].
Similar to Coletta and Phillips’ results when they used a
scientific reasoning measure, algebra predicted physics
learning to a greater degree than starting knowledge of
physics. Consistently, outside-domain prior knowledge has
been highly predictive of physics learning in novices.
We refer to this outside-domain prior knowledge as

ancillary prior knowledge (APK), which is prior knowl-
edge of concepts and skills that are outside the domain
of instruction and yet regularly applied when learning

concepts and skills within the domain [24]. For example,
knowledge of algebra and vector arithmetic (from the
domain of mathematics) would be APK when students
are learning to solve problems using Newton’s laws of
motion (in the target domain of physics) because knowl-
edge of algebra and vectors is required for solving these
types of problems. The word ancillary denotes necessary
support to the primary activity—i.e., learning in the target
domain—while falling outside the lesson’s domain.
The key finding that motivated this study is that gaps in

ancillary knowledge can hinder performance in domain-
related learning. This finding has been widespread. The
APK construct has been applied in studies occurring in
a broad range of learning domains. In each of these studies,
weaker APK related to less learning, e.g., in chemistry
[25–27], engineering [28], biology [29], economics [30],
psychology [24], and geosciences [31].
Gaps in APK are perhaps more concerning than gaps in

physics knowledge for students in introductory physics
courses, because domain knowledge is the deliberate focus
of instruction, whereas APK often is not. Some APK (e.g.,
a lesson on vector math) may be included in the instruction,
but such ancillary knowledge is rarely systematically
measured or taught. Therefore, variability in the untaught
APK areas (i.e., knowledge that is often not addressed in
the lesson) is an unaddressed source of variance in task
performance and a potential source of task failure.
Ancillary knowledge that is deemed necessary for

domain learning could be identified prior to domain
instruction and provide valuable information to educators.
Instructors may find it hard to recognize students’ missing
ancillary knowledge during normal domain instruction
because it can be hard to distinguish the sources of task
failure: missing APK vs missing DPK vs both. After
identifying such APK gaps, however, remediation has
proven an effective instructional strategy, e.g., remediating
gaps in mathematics knowledge has proven effective in the
context of physics and engineering instruction [28,32,33].
The prior studies providing evidence that variation in

APK predicts learning gains usually contrast only one type
of APK with DPK vs multiple types of APK, cf. Hudson
and Liberman [34]. Moreover, APK and DPK are typically
measured monolithically using a single pretest, instead of
measuring components of PK that may draw on multiple
pretest measures. By contrast, our approach is to measure
variability in students’ starting knowledge of all relevant
sources of DPK (e.g., energy, force, and angular kinemat-
ics) and APK (e.g., algebra, vectors, calculus, and scientific
reasoning). One goal of measuring and statistically con-
trolling for multiple, instruction-relevant APK and DPK
precursors of domain learning is to reduce the likelihood of
biased or spurious correlations [35], i.e., cases where
variation in one type of prior knowledge appears related
to learning gains but is also related to an unmeasured type
of prior knowledge that is the actual predictor of learning.
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Furthermore, only a few prior studies have considered
how DPK and APK predict learning when considering
differences in groups’ characteristic prior knowledge.
Researchers have contrasted groups based on institution
selectivity [5,23], science, technology, engineering, and
mathematics (STEM) vs non-STEM majors [36] or general
vs advanced course level [3]. Such studies in differently
characterized samples are limited and, therefore, cross-
sample conclusions are still emerging.
Moreover, studies comparing differently characterized

groups of learners have included different mixes of PK
and/or prior achievement (PA) variables, so a direct
comparison is difficult. It is important to note that PA
differs from PK in several ways. PA measures (e.g., SAT,
ACT, IQ, and GPA), by design, are coarse-grained mea-
sures of participants’ accumulated learning and may reflect
the influence of additional constructs (e.g., motivation,
socioeconomic status, and intelligence) leading to con-
founding among these constructs. PA is often measured by
college readiness assessments, aptitude assessments, or past
performance and is highly predictive of learning and per-
formance (d ¼ 0.67) [8]. PK measures, on the other hand,
generally align more closely with the target tasks or lessons
and therefore have the potential to be much finer-grained
measures of knowledge (and, often, more recent).
Despite the small number of studies that have used

differently characterized samples, differences in the factors
that predict learning have been found between samples.
Coletta and Phillips [23] administered a physics concept
inventory (CI) at pretest and correlated these results to
normalized gains on the same CI at post-test at four
institutions: one highly selective and three less selective.
A subset of students at one less selective institution also
took the Classroom Test of Scientific Reasoning (CTSR)
[37], a measure of APK scientific reasoning. The research-
ers found a correlation between individual students’ DPK
and their normalized CI gains—and an even stronger
relationship between APK scientific reasoning and nor-
malized CI gains for the subset that took the CTSR—at the
three less selective universities, showing a role for both
DPK and APK in learning. However, there was no relation-
ship of DPK to normalized gains at the highly selective
university (APK scientific reasoning was not measured in
this group).
The authors suggested that DPK was not correlated with

CI gains for students at the highly selective university due
to the measure not being sensitive enough (i.e., it did not
pick up variability within the sample). This highlights the
importance of having measures sensitive to variation in the
PK of a given sample. They also suggested that APK
scientific reasoning and/or SAT scores likely would have
been high for the highly selective university group and
reasoned this “hidden variable” would have correlated with
learning. However, given that uniformly high scores on
the DPK measure did not correlate with gains, we question

whether a different measure on which students scored
uniformly high—APK scientific reasoning or PA—would
have shown an association with learning. For the current
study, we selected measures based on the assumption that a
preparation gap will be more detectable by PK measures
with the most, rather than least, within-sample variability.
Nakakoji and Wilson [3] evaluated direct and indirect

effects of previous math grades and a PA measure on final
grades in a lower-level and upper-level physics course at
the same institution. With less advanced students, PA both
directly affected physics grades and indirectly affected
math grades, which in turn affected the physics grade. In
more advanced students, PA had no direct effect on physics
grade and only had an indirect effect on physics grade,
mediated through the math grade. Therefore, PA’s direct
influence was found with lower-level, but not higher-level,
students, whereas the influence of APK math on physics
learning was found in both groups.
Salehi et al. [5] assessed demographic factors, PA (SAT/

ACT Math), and DPK at three universities with different
selectivity levels. PA and DPK significantly predicted exam
scores in each sample. Effects of DPK were highly
consistent across institutions, whereas effects of PA were
strong but not as uniform. Smaller or larger correlation PA
coefficients were not clearly aligned to the degree of
institutional selectivity. As these three studies [3,5,23]
show, additional empirical work is needed to develop an
understanding of the effects of PK (APK vs DPK) vs PA on
learning in differently characterized samples, and indeed
how these measures of correlated knowledge types can best
distinguish unique aspects of PK or PA that are most related
to preparation for physics learning.
In the current study, we included students who were

enrolled in introductory physics courses at the postsecond-
ary level. From this population, we selected two samples
that differed in important ways. Sample 1 consisted of
STEM and non-STEM majors enrolled at a large, selective
northeastern state university (NESU) in an algebra-based
introductory course, with an instructional focus on concepts
and a relatively lesser focus on solving problems. Sample 2
was almost exclusively STEM majors enrolled at a highly
selective, midwestern private university (MWPU) in a
calculus-based introductory course, with an instructional
focus on both concepts and problem-solving.
It is likely that based on the type of course and the nature

of the institution and student majors, a given sample’s PK
profile will differ—students may have little DPK but
stronger APK, be relatively strong in both, or be relatively
weak in both—and therefore the effect of PK on learning
will differ. Examining such variability in starting levels of
DPK and APK and identifying how particular PK profiles
affect learning should bring a clearer understanding of the
nature of the preparation gap in various learner groups that
leads to recommendations for remedying prior knowledge
gaps associated with these profiles.
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A. The multivariate model

Figure 1 depicts four categories of variables that theory
and/or research have suggested affect domain learning:
domain prior knowledge (DPK), ancillary prior knowledge
(APK), prior achievement or aptitude (PA), and metacog-
nition and motivation (M&M). We focused on these groups
of variables because the first three, DPK, APK, and PA, are
often placed under the umbrella of PK measures, and the
fourth, M&M, was intended to capture any meaningful
differences in motivation given key differences in the
samples and courses. DPK, PA, and M&M are captured
in theories on domain learning, whereas APK has been left
out of many theoretical discussions, and yet empirical work
has pointed to its role in learning. We included variables
from all four categories to determine which would predict
learning in the physics domain using multivariate analyses.
Whilewewere comprehensive in our search for potentially

relevant PK for the DPK and APK measures, we selected
limited measures from PA and M&M. Furthermore, this
model does not represent all potentially relevant variables
for physics learning in novices, such as background and
demographic variables. See Docktor and Mestre [38] for a
synthesis of the research approaches and factors to consider
in studies of physics learning.

B. Defining and measuring prior knowledge

Dochy and Alexander [39] defined prior knowledge
(PK) as all of a person’s knowledge available before a
given task. This definition is sufficiently broad to cover all
of the types of knowledge that may prove useful to a person
approaching a new task. However, the breadth of this
definition makes it more challenging to operationalize—
i.e., establish necessary and sufficient measures of—PK
and study its effects on learning.
In this work, we (a) bring attention to a relatively new

distinction in PK measures (i.e., APK vs DPK), (b) focus
on the content areas of PK (e.g., physics, mathematics)
where lack of discrimination between APK and DPK may
be particularly problematic, and (c) include as many
sources of potential variation in PK as possible, many of
which we expect are correlated but nevertheless explain
unique variance in learning. At a higher level, these goals
aim to address the undesirable metapractices of insufficient
measures of PK and ambiguity in the definition of distinct
aspects of the PK construct.

1. DPK measures

Researchers who study physics learning in class-
room settings often use concept inventories (CIs, see

FIG. 1. Four categories of variables that could impact learning in the physics domain: domain prior knowledge (DPK), ancillary prior
knowledge (APK), prior achievement or aptitude (PA), and metacognition and motivation (M&M). The specific variables included are
noted with an asterisk (*). The horizontal blocks for APK, PA, and M&M signify they have the potential to apply across domains, i.e., in
more than one domain, but, importantly, are not general in the sense that each would apply indiscriminately for every domain.
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http://physport.org [40]) that measure knowledge of the
broad domain and/or specific subdomain(s). Frequently used
measures include the Force Concept Inventory (FCI)
[2,5,22,23] and the Force Motion Conceptual Evaluation
(FMCE) [1,2,4,5].
CIs can be used effectively as pretests (i.e., they are often

understandable to the novice) and post-tests [22] given at
the start and end of an academic term that provides
instruction in all or most of the tested topics. CI use
facilitates comparisons across institutions, terms, and
instruction [41]. Moreover, CIs seem to capture much of
the variation in preparation that could be attributed to other
background factors, such as the type of high school physics
class taken and grades achieved in these classes [1].

When administered at the beginning and end of the
term, CIs provide a good approximation of learning [41].
For example, Coletta and Phillips [23] correlated the FCI
as the baseline measure in an introductory mechanics
course with the normalized gain score on the FCI as
the outcome measure. Meltzer [2] used the Conceptual
Survey in Electricity (CSE) in a general physics course in
the same manner.
These studies computed a normalized gain score and

included the baseline measure as one of the predictor
variables—along with the relevant APK measures—a
method we adopted in the current study. However, we used
normalized change rather than normalized gain as our
outcome measure. Normalized change [42] is similar to
normalized gain but is used to compare gains for individual
students, whereas normalized gain is generally used to com-
pute the average gain at the classroom level. Normalized
change also includes a correction so thatwhen an individual’s
score is lower at post-test than pretest, it decreases the penalty
to be more commensurate with similar gains.

2. APK measures

When including outside domain prior knowledge,
researchers have most frequently considered the role of
scientific reasoning or mathematics in physics learning.
Following our plan to include all related PK constructs in
the pretest or post-test, we identified measures for each.
(a) Scientific reasoning. The CTSR [37] is a com-

monly used instrument in science education research [26],
particularly in physics education research [23]. We
included CTSR items that measured correlational reason-
ing, hypothetical-deductive reasoning, and identifying
or controlling variables, all topics that our task analysis
identified as relevant to solving target physics problems.
(b) Mathematics. To measure mathematics prior knowl-

edge, researchers typically use prior coursework [43] or
item-based instruments [2,3]. The latter, quantitative type
of measure includes items that assess specific concepts and
skills needed to perform physics problems and therefore
may be more predictive of physics learning than partici-
pation in or grades in past mathematics coursework [44].
We drew items from a diagnostic instrument for algebra

used in past studies of physics learning [2], as well as
higher-level mathematics (e.g., vectors, calculus) items
available from instruments on PhysPort [40].
(c) Unconfounded APK measurement. When measuring

APK, items meant to measure APK should be independent
of DPK, e.g., not contextualized in the domain of physics,
to ensure that APK alone is being assessed. Some instru-
ments contain both unconfounded and confounded APK
items. For example, the Vector Evaluation Test (VET) [45]
has items that test knowledge of vectors in a physics
context. If those items are used to measure vectors as a
mathematical concept (i.e., APK), student scores do not
clearly differentiate between knowledge of vectors (inde-
pendent of physics), physics domain knowledge, or both.
Similarly, the CTSR [37] includes some items that evaluate
scientific reasoning in the context of physics conservation
concepts. Students could answer these items using scien-
tific reasoning, but they may also answer them using
physics knowledge (i.e., having some physics knowledge
could help students score better), making it difficult to
distinguish the type of PK that is driving predictions of
learning. We excluded these types of items from our pretest
and post-tests to “unconfound” the measurement of APK
from DPK and enhance construct validity.

3. Selecting and piloting PK measures

While it is common to use CIs when investigating physics
classroom learning, the selection criteria for such inventories
are rarely discussed. Given that we expected PK to vary
between, not justwithin, our two samples,we felt it important
to select APK and DPK measures that would align with the
level of instruction typically provided to each sample. In
particular, we needed to ensure measures were sensitive for
the sample(s) under study. If the PK measures were too easy
[23], they would not be sensitive enough to detect a relation-
ship of PK to learning should one exist and would not
correspond to the level of the more challenging course
instruction that was expected to produce a change in learning
from pretest to post-test. The MWPU group was the sample
for which this “too easy” scenario was more likely, given
their generally strong background in science and math.
Given the issues in measuring PK, we needed to identify

items for our various pretest instruments that would (a) cover
the APK concepts and skills relevant to introductory physics
problems, (b) exclude any items on APKmeasures that were
confounded with DPK (e.g., because of physics content in
the item), and (c) be appropriately sensitive to the likelyAPK
and DPK variation in our NESU vs MWPU samples. To
accomplish this, we used several methods: task analysis,
instructor consultation, and piloting.
We conducted two types of task analysis. First, we sat with

two students who were recent graduates of the target course
and asked them to talk through (i.e., think aloud) the types of
math and science knowledge that they would use on physics
problems from the various CIs. This process identified the
APK subareas that we needed to cover. We then shared these
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results with course professors to see if they agreed with the
identified knowledge areas orwould identify additional types
of knowledge and found that instructors’ and students’ task
analyses agreed. Next, we worked with three professors to
identify items that addressed those areas of knowledge that
would be neither too easy nor too difficult for the students in
our study as well as be most relevant to course instruction.
Finally, we piloted these measures to assess their appropri-
ateness for the two samples.
Via the pilot with MWPU students, we determined the

APK algebra pretest items initially selected [46] were too
easy.We selectedmore difficult items from the samemeasure
and supplemented thesewith items found online. APK vector
pretest items selected from theVET [45] also proved too easy,
sowe chosemore difficult items from thismeasure and added
calculus [47] and graphing functions [48] items. Similarly,
scores on the DPK energy and force pretest that were initially
selected, a subset of items from the Next Gen Physical
Science Diagnostic (NGPSD) [49], were near the ceiling and
were replaced with a greater number of items from the
Mechanics Baseline Test (MBT) [50] for MWPU students.
These “easier” test items were still administered to the

NESU students, both the APK algebra items [46] and DPK
items from the Next Gen Physical Science Diagnostic
(NGPSD) [49], along with the smaller, initial set from the
Mechanics Baseline Test (MBT) [50]. While this approach
hindered direct comparison between the two samples for
every measure in the study, a subset of MBT items were
taken by both samples, as were items from the Rota-
tional Kinematics Inventory (RKI) [51] and the CTSR [37].

Items taken by both samples are marked with asterisks in
Tables I and II. All other measures differed. For example,
the NESU group received only algebra items, whereas the
MWPU group received more advanced algebra items plus
calculus and graphing function items.
The NESU and MWPU groups’ PK measures each

included multiple types of DPK measures—energy and
force (DPK-EF), angular kinematics (DPK-AK)—and
multiple types of APK math measures, which included
algebra (APK-A), vectors (APK-V), calculus (APK-C), and
graphing functions (APK-GF). Each group also received an
APK scientific reasoning (APK-SR) measure. Therefore,
the PK constructs of DPK, APK math, and APK scientific
reasoning were consistent between the two samples but the
measurement of the constructs varied.
The combined PK measures were given at both pretest

and post-test. For DPK-EF, we defined three outcome
measures called level 1, level 2, and level 3, for which
we calculated each individual’s normalized change score.
Each level was comprised of progressively harder items
requiring more problem-solving and computation: level 1
(L1: NGPSD [49]), level 2 (L2: MBT [50]), and level 3 (L3:
matter and interactions textbook [52] and instructor-created
problems). Levels 1 and 2 were administered to NESU
students and levels 2 and 3 to MWPU students.

C. Additional measures: PA and motivation

1. Prior achievement measures

To aid in the detection of PK effects on learning, we
advocate for the use of PA measures (in addition to APK

TABLE I. APK and DPK pretest items for NESU students. Reference items are given for publicly available measures. Items
administered to both samples are noted with an asterisk.

Prior knowledge type
Number
of items Source Reference items

APK
Algebra (APK-A) 6 Meltzer (2002) [46] · · ·
Vectors (APK-V) 4 Vector Evaluation Test (VET) [45] VET_2; VET_3; VET_4;

VET_24
Scientific reasoning (APK-SR) 8 Classroom Test of Scientific Reasoning (CTSR) [37] CTSR_11*; CTSR_12;*

CTSR_13*; CTSR_14;*
CTSR_19*; CTSR_20;*
CTSR_21*; CTSR_22*

DPK
Angular kinematics (DPK-AK) 6 Rotational Kinematics Inventory (RKI) [51] RKI_4*; RKI_7*; RKI_8*;

RKI_9*; RKI_10*;
RKI_11*

Energy and force L1 (DPK-EF L1) 12 Next-Gen Physical Science Diagnostic (NGPSD) [49] UEM2; UEM5; UPC4;
UPC5; UPEF4; UPEF5;
MIF2; MIF3; MIF4;
MIF7; MIF8; MIF9

Energy and force L2 (DPK-EF L2) 6 Mechanics Baseline Test (MBT) [50] MBT_7*; MBT_11*;
MBT_12*; MBT_18*;
MBT_23*; MBT_24*

3 Additional problems written by course professors · · ·
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and DPK) to control for prior achievement as a known
source of variance. Researchers have found PA to be a
nontrivial factor even when combined with other APK or
DPK measures [5]. Moreover, accounting for PA in the
model can strengthen the claim that adequate PK, in
addition to PA, is important for learning.
It is becoming more common to include PA measures

(e.g., SAT math) with DPK measures (i.e., CIs) in multi-
variate analyses. Salehi et al. [5] and Hewagallage et al. [1]
found that combining both types of measures explained
more variance in final exam scores [5] or CI post-test scores
[1] than either alone. However, it is still relatively uncom-
mon to include both APK and PA alongside DPK measures
in multivariate analyses. Most commonly, researchers have
used either APK or PA measures, but not both, for example,
using a math pretest when SAT scores are unavailable [2].
Although we would have liked to include a prior

achievement measure for both groups, we were only able
to obtain SAT or ACT scores for the MWPU group, and so
these scores only appear in the linear regression models for
MWPU. (If ACT scores were given, they were converted to
SAT scores using a concordance table published by ACT
and The College Board [53]).

2. Motivation measures

We included a motivation measure because past research
suggests motivation may play a role in physics learning
[54,55]. Additionally, we wished to control for potential
differences in motivation between samples. Students were
enrolled at two institutions with differing levels of selec-
tivity and were in different levels of introductory physics
courses. We included two subscales from the Motivated
Strategies for Learning Questionnaire (MSLQ) [56].
Task Value (TV) measures how interesting, useful, or
important the task is for the student (e.g., “It is important
for me to learn the course material in this class.”). Control
of Learning (CL) measures whether the student believes
efforts to study will improve learning and performance
(e.g., “If I study in appropriate ways, then I will be able to
learn the material in this course.”).

D. The current studies

1. Research questions

This study was designed to explore the effects of
multiple types and subtypes of PK on introductory physics

TABLE II. APK and DPK pretest items for MWPU students. Reference items are given for publicly available measures. Items
administered to both samples are noted with an asterisk.

Prior knowledge type
Number
of items Source Reference items

APK
Algebra (APK-A) 2 Meltzer (2019) [46] · · ·

3 Google search for “hard algebra problems” · · ·
Calculus (APK-C) 5 The Calculus Concept Inventory (CCI) [47] CCI_7; CCI_9; CCI_12;

CCI_14; CCI_15
Vectors (APK-V) 5 Vector Evaluation Test (VET) [45] VET_26; VET_27;

VET_29; VET_30;
VET_31

Graphed functions (APK-GF) 3 Concise Data Processing Assessment (CDPA) [48] CDPA_3; CDPA_4;
CDPA_7

Scientific reasoning (APK-SR) 8 Classroom Test of Scientific Reasoning (CTSR) [37] CTSR_11*; CTSR_12;*
CTSR_13*; CTSR_14;*
CTSR_19*; CTSR_20;*
CTSR_21*; CTSR_22*

DPK
Angular kinematics (DPK-AK) 6 Rotational Kinematics Inventory (RKI) [51] RKI_4*; RKI_7*; RKI_8*;

RKI_9*; RKI_10*;
RKI_11*

Energy and force L2 (DPK-EF L2) 14 Mechanics Baseline Test (MBT) [50] MBT_7*; MBT_9;
MBT_11;* MBT_12;*
MBT_15; MBT_16;
MBT_18;* MBT_20;
MBT_21; MBT_22;

MBT_23*; MBT_24;*
MBT_25; MBT_26

Energy and force L3 (DPK-EF L3) 2 Matter & Interactions, Vol. 1 [52] Ch. 5, Checkpoint 2
Ch. 6, Checkpoint 3

5 Additional problems written by course professors · · ·
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learning in two learner samples. The research questions
were as follows:
(1) Does APK predict learning, over and above the

effects of DPK?
(2) Are the significant predictors of learning the same

for samples with presumably different PK levels
from different institutions?

2. Plan of analysis

These studies computed each individual’s normalized
gain score and included their baseline APK and DPK
measures (i.e., pretest scores) as predictor variables in
multiple linear regression models [57].
We report results in three sections. Section II details the

procedure and results of the NESU sample. The outcome
measures were (i) normalized change in L1 DPK and
(ii) normalized change in L2 DPK. Section III details
the procedure and results of the MWPU sample. The out-
come measures were (i) normalized change in L2 DPK and
(ii) and normalized change in L3 DPK. Section IV details
the results of the direct comparison between NESU and
MWPU for those items that were taken by both samples. The
outcome measure was normalized change on the shared L2
DPK items.
The pretest and post-test for each sample used identical

forms, with the exception of the motivation measures,
which were given at the pretest only. We performed a
hierarchical linear regression for each outcome measure
after testing for normality of the predictor variables,
making necessary transformations, computing bivariate
correlations of APK, DPK, and the covariates, testing
for multicollinearity, and, finally, computing normalized
change [42] scores for each repeated measure.
Step 1 of the hierarchical linear regression modeled the

effects of the APK variables, DPK variables, and covariates
(motivation-control of learning, motivation-task value,
Pretest time, and post-test time). For MWPU only, we
included the additional covariates SAT math and verbal
scores. Step 2 added normalized change (N-change) scores
for each APK and DPK score to evaluate if learning on
these component measures predicted N-change in the L1,
L2, or L3 outcomes, over and above effects of all types

of starting PK. Naturally, when a N-change variable was the
outcomemeasure, we removed its component submeasure(s)
as a predictor in step 2 (e.g., for the N-change DPK L1
outcome, N-change DPK L1 was excluded as a predictor).

II. STUDY 1 METHOD

A. NESU participants

Participants were undergraduate students in an introduc-
tory physics course who completed the study for course
extra credit. The course, Physics 101, is algebra-based
and covers mechanics and thermodynamics. Participation
was open to all enrolled students in Spring 2020. Ninety-
one students completed the pretest (time: M ¼ 29.20 min,
SD ¼ 14.04 min) and 71 completed the post-test (time:
M ¼ 36.38 min, SD ¼ 20.55 min). There were 43 par-
ticipants who completed both pretest and post-test and also
spent greater than ten minutes on each, so these matched
pairs were included in the analyses. After the course ended,
we checked for attrition bias by comparing course grades
(prior to the addition of study-related extra credit) of
participants who completed the study and those who did
not. There was no significant difference between the groups,
Fð1; 91Þ ¼ 1.053, p ¼ 0.308, in course grade achieved.

B. NESU procedure

The tests were administered online, outside of classroom
time, using Open Learning Initiative (OLI) software [58].
Students had two weeks at the beginning and end of the
semester to complete each test. The course instructor was
not blind to the items used but did not alter teaching
materials, such as lecture slides, quizzes, or exams, from
previous semesters in light of the chosen items.

III. STUDY 1 RESULTS

A. NESU data normality and correlations
of predictor variables

Predictor variables were normally distributed. Tests to
see if the data met the assumption of collinearity indicated
that multicollinearity was not a concern, with all VIF < 2.
Correlations between each pair of predictor variables are
reported in Table III. The highest pairwise correlation was

TABLE III. NESU bivariate correlations of predictor variables and covariates. Note: *p < .05, **p < .01.

APK-A APK-V APK-SR DPK-EF L1 DPK-AK DPK-EF L2 CL TV

APK-A 1
APK-V 0.307** 1
APK-SR 0.154 0.091 1
DPK-EF L1 0.168 0.020 0.351** 1
DPK-AK 0.010 −0.002 0.162 0.214* 1
DPK-EF L2 0.296** 0.168 0.236* 0.241* −0.113 1
CL 0.165 0.105 0.038 0.048 −0.005 0.059 1
TV 0.119 0.065 0.068 0.048 0.210* −0.016 0.471** 1

DELAHAY, LOVETT, ANDERSON, and SEN PHYS. REV. PHYS. EDUC. RES. 19, 020122 (2023)

020122-8



between the two motivation measures: CL and TV,
r ¼ 0.47. Eight pairs of predictor variables were signifi-
cantly, positively correlated.

B. NESU learning gains in APK and DPK

We report pretest and post-test scores and N-change
scores for each measure in Table IV. NESU students
learned the most, relative to what they could have gained,
in the areas of DPK-EF L1 (i.e., NGPSD items) and
APK-V, and the least in the areas of APK-SR and DPK-
EF L2 (i.e., MBT items).

C. NESU hierarchical linear regression analysis

1. Energy and force L1 learning

For N-change EF L1, both models were significant.
Model 1, Fð10; 30Þ ¼ 2.794, p ¼ 0.014, R2 ¼ 0.482,

R2
adj¼0.310, was significantly different from zero. Model 2,

Fð4; 26Þ ¼ 1.830, p ¼ 0.089, R2 ¼ 0.496, R2
adj ¼ 0.225,

was not significantly different from model 1 (ΔR2 ¼ 0.014,
p ¼ 0.946), so we report model 1 results (see Table V).
APK-SR and DPK-EF L2 were significant, positive

predictors of learning for NESU students. The significant,
negative predictor DPK-EF L1 means that students with less
starting knowledge generally learned more during the term.
The significant, negative predictor APK-A is more challeng-
ing to interpret and is discussed in the post hoc analysis.

2. Energy and force L2 learning

For N-change EF L2, both models were significant.
Model 1, Fð10; 30Þ ¼ 4.318, p < 0.001, R2 ¼ 0.590,
R2

adj ¼ 0.453, was significantly different from zero.
Model 2, Fð5; 25Þ ¼ 3.289, p ¼ 0.004, R2 ¼ 0.664,
R2

adj ¼ 0.462, was not significantly different from model
1 (ΔR2 ¼ .074, p ¼ 0.388), and so we report model 1
results (see Table VI).
APK-SR, APK-V, and time spent on the post-test were

significant, positive predictors of learning for NESU
students. The significant, negative predictor DPK-EF L2
means that students with less starting knowledge generally
learned more during the term.

D. NESU post hoc analysis

As a post hoc analysis, we wished to determine
why greater APK-A presented as a negative predictor of
EF L1 learning, as seen in Table V. We thought that per-
haps this effect was moderated by learner factors. We did
not have SAT scores for NESU students but did have
college major data. Students could be grouped by major
type: (i) Humanities or social sciences (HSS, n ¼ 24; 51%

TABLE IV. NESU mean scores and standard deviations (in
parentheses) for APK and DPK components. The average of
individual pretest scores, post-test scores, normalized change
scores are given for each measure. Pretest to post-test changes
were compared to zero using paired t-tests (two-sided);
*p < 0.05, **p < 0.01, ***p < 0.001.

Range
Pretest
score

Post-test
score N-change

APK math total 0–10 3.82 (1.72) 5.05 (1.84)*** 0.19
APK-A 0–6 2.56 (1.24) 3.07 (1.37)* 0.10
APK-V 0–4 1.26 (0.82) 1.98 (0.91)*** 0.22

APK-SR 0–8 2.77 (1.36) 3.07 (1.76) −0.08
DPK-EF L1 0–12 7.26 (2.31) 8.65 (2.23)** 0.32
DPK-AK 0–6 2.21 (1.17) 2.58 (1.24) 0.07
DPK-EF L2 0–9 4.02 (2.06) 4.60 (2.07) −0.04

TABLE V. NESU’s N-change EF L1 outcome with APK, DPK, time, and motivation scores as predictor variables.
The overall model explains R2 ¼ 0.48; R2

adj ¼ 0.31 [Fð10; 30Þ ¼ 2.794, p ¼ 0.014] of the variance in the N-
change score. B is the regression coefficient for each variable, CI is the confidence interval for B, β the standardized
regression coefficient, t the t statistic, and p the probability of a value as large or larger than t occurred by chance.
*p < 0.05, **p < 0.01, ***p < 0.001.

B 95% CI β t p

APK
APK-SR 0.075 [0.009, 0.141] 0.348 2.333 0.027*

APK-A −0.088 ½−0.172;−0.004� −0.344 −2.141 0.040*

APK-V 0.043 ½−0.068; 0.153� 0.123 0.782 0.440

DPK
DPK-EF L1 −0.051 ½−0.092;−0.011� −0.393 −2.576 0.015*

DPK-AK −0.059 [−0.131; 0.014] −0.242 −1.660 0.107
DPK-EF L2 0.047 [0.004, 0.089] 0.336 2.244 0.032*

Covariates
TV −0.052 ½−0.130; 0.027� −0.240 −1.351 0.187
CL 0.058 ½−0.031; 0.147� 0.243 1.339 0.191
Pretest time 0.007 ½−0.001; 0.016� 0.314 1.722 0.095
Post-test time 0.003 ½−0.002; 0.008� 0.204 1.115 0.274
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architecture, 17% public health, 32% other), and
(ii) Science or engineering (STEM, n ¼ 19; 63% biology
or chemistry, 21% computer science or engineering, 16%
other; none were Physics majors).
We found that for STEM majors, greater APK-A and

N-change A (i.e., more algebra learned during the term)
correlated positively with N-change EF L1. However,
the opposite was true for HSS majors, for whom higher
scores on both of these measures correlated negatively with
N-change EF L1, see Fig. 2.

This interaction of APK with college major suggests that
algebra knowledge played out differently for the two
groups of majors. In particular, HSS students seemed less
able to apply greater math APK, and even the algebra they
learned over the term, to learning physics than STEM
students. This could have been due to better use of math
support during the course or applied math instruction in
other coursework during the same term. This general
finding is worth further exploration to seek replication
and further understanding.

TABLE VI. NESU’s N-change EF L2 outcome with APK, DPK, time, and motivation scores as predictor
variables. The overall model explains R2 ¼ 0.59; R2

adj ¼ 0.45 [Fð10; 30Þ ¼ 4.318, p < 0.001] of the variance in
the N-change score. B is the regression coefficient for each variable, CI is the confidence interval for B, β the
standardized regression coefficient, t the t statistic, and p the probability of a value as large or larger than t occurred
by chance. *p < 0.05, **p < 0.01, ***p < 0.001.

B 95% CI β t p

APK
APK-SR 0.085 [0.005, 0.164] 0.288 2.172 0.038*

APK-A −0.097 ½−0.198; 0.004� −0.280 −1.958 0.060
APK-V 0.141 [0.007, 0.275] 0.302 2.154 0.039*

DPK
DPK-EF L1 −0.032 ½−0.081; 0.016� −0.184 −1.355 0.186
DPK-AK 0.082 ½−0.006; 0.169� 0.248 1.910 0.066
DPK-EF L2 −0.092 ½−0.143;−0.041� −0.487 −3.659 <0.001***

Covariates
TV −0.044 ½−0.139; 0.050� −0.151 −0.957 0.346
CL 0.016 ½−0.091; 0.123� 0.050 0.312 0.757
Pretest time 0.003 −0.008; 0.013 0.080 0.493 0.626
Post-test time 0.007 [0.000, 0.008] 0.336 2.069 0.047*

FIG. 2. (a) Interaction (not significant) of NESU students’ college major and their APK-A on the N-change EF L1 outcome (i.e., the
L1 physics knowledge gained during the term). STEM majors’ N-change EF L1 scores positively correlated with better APK-A,
whereas HSS (humanities and social sciences) majors’ scores negatively correlated with it. (b) This same interaction (not significant) is
present for STEM vs HSS majors when considering the relationship between greater N-change A (i.e., the amount of algebra learned
during the term) and N-change EF L1. R2 is the percentage of the variance in the outcome measure that is explained by the predictor
variable.
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IV. STUDY 2 METHOD

A. MWPU participants

Participants were undergraduate students in introduc-
tory physics courses at a large, private university in the
Midwestern United States who received a gift card for
completing the study. Students in two introductory courses,
Physics I for engineering students and Physics I for science
students, were included. These courses are calculus-based
and cover mechanics and thermodynamics. Participation
was open to all students enrolled in Spring 2020 and Fall
2020. Sixty-eight students completed the pretest (time:
M ¼ 68.91 min, SD ¼ 28.27 min) and 60 completed the
post-test (time: M ¼ 66.39 min, SD ¼ 20.36 min). Fifty-
seven participants completed both pretest and post-test.
These matched pairs were included in the analyses.
Minimum times were not a concern. The lowest times
were about half an hour. There were some very long post-
test times, however, as the browser window continued to
accrue time if left open. In cases where the recorded time
was longer than 2 h, we set the upper limit to be 2 h. These
cases were removed before the M and SD times were
computed, but, even after their removal, the actual times are
likely lower than the statistics reported.
After the course ended, we checked for attrition bias

by comparing the SAT scores of the matched pairs with
participants who only did the pretest. We did not find
significant differences between the groups on SAT math,
Fð1; 62Þ ¼ 3.158, p ¼ 0.080, or SAT verbal, Fð1; 62Þ ¼
2.713, p ¼ 0.105.

B. MWPU procedure

The pretest and post-test were administered online,
outside of classroom time, using Qualtrics [59] software.
Students had two weeks at the beginning and end of the
semester to complete each test. The course instructors were
not blind to the items used but did not alter teaching
materials, such as lecture slides, quizzes, or exams, from
previous semesters in light of the chosen items.

V. STUDY 2 RESULTS

A. MWPU data normality and correlations
of predictor variables

The predictor variables SAT math, SAT verbal, and
APK-SR were negatively skewed and kurtotic. These
variables were transformed using logarithmic transforma-
tions to meet the assumptions of normality. Tests to see if
the data met the assumption of collinearity indicated that
multicollinearity was not a concern, with all VIF < 2.
Correlations between each pair of predictor variables are
reported in Table VII. The highest pairwise correlation was
between APK-C and APK-SR, r ¼ 0.501. Thirty-three
pairs of predictor variables were significantly, positively
correlated.

B. MWPU learning gains in APK and DPK

We report pretest and post-test scores and N-change
scores for each measure in Table VIII. Students learned
the most, relative to what they could have gained, in the
areas of DPK-EF L3 (i.e., problems), APK-C, DPK-EF L2
(MBT), and APK-A, and the least in the areas of APK-GF
and APK-V.

C. MWPU hierarchical linear
regression analysis

1. Energy and force L2 learning

For N-change EF L2, neither model was significantly
different from zero. Model 1, Fð14;43Þ¼0.752, p¼0.712,
R2 ¼ 0.197, R2

adj ¼ 0.0, and model 2, Fð20; 37Þ ¼ 1.154,
p ¼ 0.343, R2 ¼ 0.384, R2

adj ¼ 0.051. These results sug-
gest that neither variability in APK or DPK nor learning,
as measured by N-change scores, significantly predicted
gains in EF L2 knowledge. These students were generally
able to improve their domain knowledge, as measured
by EF L2, by other factors such as class participation or
study efforts.

TABLE VII. MWPU bivariate correlations of predictor variables and covariates. Note: *p < 0.05, **p < 0.01.

APK-A APK-C APK-V APK-GF APK-SR
DPK-EF

L2 DPK-AK
DPK-EF

L3 CL TV SAT-M SAT-V

APK-A 1
APK-C 0.274* 1
APK-V 0.291* 0.356** 1
APK-GF 0.096 −0.090 −0.084 1
APK-SR 0.319** 0.501** 0.265* 0.142 1
DPK-EF L2 0.389** 0.348** 0.416** 0.137 0.210 1
DPK-AK 0.425** 0.324** 0.437** 0.086 0.272* 0.440** 1
DPK-EF L3 0.436** 0.420** 0.429** 0.016 0.373** 0.477** 0.496** 1
CL −0.075 0.148 0.100 0.035 0.122 0.047 0.057 0.185 1
TV 0.107 0.034 0.215 0.158 0.196 0.240* 0.167 0.254* 0.477** 1
SAT M 0.346** 0.409** 0.096 −0.225 0.356** 0.166 0.143 0.425** 0.275* 0.163 1
SAT V 0.156 0.229 0.406** −0.092 0.151 0.290* 0.268* 0.469** 0.211 0.203 0.359** 1
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2. Energy and force L3 learning

For N-change EF L3, both models were significant.
Model 1, Fð14; 43Þ ¼ 2.374, p ¼ 0.015, R2 ¼ 0.436,
R2

adj ¼ 0.252, was significantly different from zero.
Model 2, Fð21; 36Þ ¼ 3.295, p < 0.001, R2 ¼ 0.658,
R2

adj ¼ 0.458, was significantly different from model 1

(ΔR2 ¼ 0.222, p ¼ 0.008), and so we report model 2
results (see Table IX).
APK-A, N-change A, APK-GF, DPK-EF L2, and

N-change EF L2 were significant, positive predictors of
EF L3 learning for MWPU students. The significant,
negative predictor DPK-EF L3 means that students with

TABLE VIII. MWPU mean scores and standard deviations (in parentheses) for APK and DPK components. The
average of individual pretest scores, post-test scores, normalized change scores are given for each measure. Pretest to
post-test changes were compared to zero using paired t-tests (two-sided); *p < 0.005, **p < 0.01, ***p < 0.001.

Range Pretest score Post-test score N-change

APK math total 0–18 9.84 (3.16) 11.40 (2.41)*** 0.16
APK-A 0–5 3.03 (1.31) 3.58 (1.00)** 0.21
APK-V 0–5 2.94 (1.65) 3.22 (1.20) 0.11
APK-C 0–5 3.18 (1.29) 3.79 (1.03)*** 0.31
APK-GF 0–3 0.69 (0.74) 0.81 (0.79) −0.07

APK-SR 0–8 6.03 (2.03) 6.15 (1.85) 0.18

DPK-EF L2 0–14 7.30 (2.78) 9.18 (2.73)*** 0.26
DPK-AK 0–6 3.79 (1.53) 4.19 (1.61) 0.18
DPK-EF L3 0–7 4.03 (1.47) 4.97 (1.14)*** 0.31

TABLE IX. MWPU’s N-change EF L3 outcome with APK, DPK, PA, time, and motivation scores as predictor
variables. The overall model explains R2 ¼ 0.66; R2

adj ¼ 0.46 [Fð21; 36Þ ¼ 3.295, p < 0.001] of the variance in
the N-change score. B is the regression coefficient for each variable, CI is the confidence interval for B, β the
standardized regression coefficient, t the t statistic, and p the probability of a value as large or larger than t occurred
by chance. *p < 0.05, **p < 0.01, ***p < 0.001.

B 95% CI β t p

APK
APK-SR −0.151 ½−0.517; 0.215� −0.120 −0.836 0.409
N-Ch SR 0.104 ½−0.106; 0.314� 0.142 1.006 0.321
APK-A 0.118 [0.025, 0.211] 0.442 2.577 0.014*

N-Ch A 0.248 [0.035, 0.461] 0.294 2.366 0.024*

APK-V 0.015 ½−0.052; 0.082� 0.069 0.455 0.651
N-Ch V 0.197 ½−0.002; 0.395� 0.252 2.006 0.052
APK-C 0.000 ½−0.092; 0.093� 0.002 0.011 0.991
N-Ch C 0.080 ½−0.152; 0.312� 0.109 0.700 0.488
APK-GF 0.139 [0.009, 0.268] 0.290 2.174 0.036*
N-Ch GF 0.050 ½−0.120; 0.221� 0.080 0.596 0.555

DPK
DPK-EF L2 0.052 [0.008, 0.096] 0.412 2.387 0.022*

N-Ch EF L2 0.310 [0.043, 0.578] 0.281 2.353 0.024*

DPK-AK −0.032 ½−0.118; 0.054� −0.134 −0.747 0.460
N-Ch AK −0.048 ½−0.291; 0.122� −0.127 −0.828 0.413
DPK-EF L3 −0.012 ½−0.020;−0:005� −0.507 −3.223 0.003**

PA
SAT M −0.016 ½−0.363; 0.332� −0.013 −0.091 0.928
SAT V 0.054 ½−0.256; 0.363� 0.044 0.351 0.728

Covariates
TV −0.011 ½−0.106; 0.084� −0.032 −0.240 0.812
CL −0.002 ½−0.113; 0.108� −0.005 −0.039 0.969
Pretest time 0.001 ½−0.002; 0.004� 0.083 0.625 0.536
Post-test time −0.003 ½−0.007; 0.000� −0.293 −2.139 0.039*
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less starting knowledge generally learned more during the
term. The significant, negative predictor of post-test time is
a bit more challenging to interpret. Because the participants
could keep the browser window open indefinitely, which
resulted in some very long post-test times, this finding may
suggest that participants who completed the post-test more
expeditiously were more successful, perhaps due to being
more attentive to the task.

VI. DIRECT COMPARISON OF NESU
AND MWPU SAMPLES

In addition to analyzing the two groups’ datasets
separately, it is possible to compare learning as a function
of PK in the two samples directly using a subset of the full
measures that were taken by both, as shown by the
asterisked items in Tables I and II.

A. Comparing amount and predictors of learning

In Table X, we report pretest, post-test, and N-change
scores for each institution on the shared items. MWPU

students learned a greater percentage than NESU students
of what they could have learned, based on N-change scores.
Paired t tests (two-sided) were run to detect any significant
changes from pretest to post-test scores. Only MWPU
students’ MBT scores ½tð57Þ ¼ 2.175; p ¼ .034� were
significantly better at the post-test than at pretest.

B. Multiple linear regression
and interaction analyses

Next, we performed multiple linear regression on the
outcome measure N-change EF L2, i.e., MBT items taken
by both groups, with interaction terms as the predictor
variables. The interaction terms were created by multiplying
each PK measure with the institution, coded 0 (NESU) or 1
(MWPU), to detect whether PK (i.e., APK-SR, DPK-EF L2,
andDPK-AK) ormotivation scores had significantly different
effects on learning depending on the institution. All PK
and motivation measures were mean centered to aid in
interpretation.
The interaction model was significant and explained

R2 ¼ 0.35, R2
adj ¼ 0.27, Fð11; 93Þ ¼ 4.541, p < 0.001,

TABLE X. MWPU and NESU mean scores and standard deviations (in parentheses) for APK, DPK, and
motivation components. The average of individual pretest scores, posttest scores, normalized change scores are
given for each measure. Pretest to post-test changes were compared to zero using paired t tests (two-sided);
*p < 0.05, **p < 0.01, ***p < 0.001.

Range Pretest score Post-test score N-change

APK-SR NESU 0–8 2.77 (1.36) 3.07 (1.76) −0.08
MWPU 0–8 6.03 (2.03) 6.15 (1.85) 0.18

DPK-EF L2 NESU 0–6 1.50 (0.97) 1.91 (1.35) −0.03
MWPU 0–6 2.79 (1.35) 3.31 (1.43)* 0.11

DPK-AK NESU 0–6 2.21 (1.17) 2.58 (1.24) 0.07
MWPU 0–6 3.79 (1.53) 4.19 (1.61) 0.18

Motivation TV NESU 0–7 4.95 (1.31) · · · · · ·
MWPU 0–7 5.62 (1.08) · · · · · ·

Motivation CL NESU 0–7 5.36 (1.19) · · · · · ·
MWPU 0–7 5.54 (0.84) · · · · · ·

TABLE XI. Interaction effects of Institution (NESU ¼ 0; MWPU ¼ 1) with APK, DPK, and motivation scores on
N-change EF L2. The overall model explains R2 ¼ 0.35; R2

adj ¼ 0.27; Fð11; 93Þ ¼ 4.541, p < 0.001, of the
variance in the N-change score. B is the regression coefficient for each variable, CI is the confidence interval for B, β
the standardized regression coefficient, t the t statistic, and p the probability of a value as large or larger than t
occurred by chance. *p < 0.05, **p < 0.01, ***p < 0.001.

B 95% CI β t p

APK
Institution × APK SR −0.122 ½−0.221;−0.022� −0.383 −2.421 0.017*

DPK
Institution × DPK-EF L2 0.181 [0.043, 0.319] 0.439 2.606 0.011*

Institution × DPK AK −0.054 ½−0.175; 0.066� −0.150 −0.898 0.372

Motivation
Institution × CL 0.020 ½−0.147; 0.186� 0.028 0.232 0.817
Institution × TV 0.112 ½−0.037; 0.262� 0.197 1.496 0.138
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of the variance in the N-change score, with two significant
interaction variables: institution× APK-SR and institution×
DPK-EF L2 (see Table XI).
Graphing the two significant interaction terms aids in

their interpretation, see Fig. 3. The first significant inter-
action between DPK-EF L2 and institution on N-change
DPK EF L2 scores reflects that, while all learners generally
learned less when they started with more domain knowl-
edge, this negative relationship was significantly stronger
for NESU students because many started with lower DPK
and therefore were able to make larger gains.
The second significant interaction between APK-SR and

institution on N-change DPK EF L2 scores reflects that the
linear relationship between APK-SR and learning was
positive for NESU students and negative for MWPU
students. We know from the analyses of the full NESU
and MWPU datasets that greater APK-SR was a highly
significant predictor of learning for NESU students but not
for MWPU students, and this finding is also reflected in the
direct comparison.
Mean centering both groups’ scores shows the majority

of NESU students’ APK-SR scores fell below the mean,
highlighting a relative deficit in a key skill used to solve
physics problems. The few MWPU students whose APK-
SR scores fell below the mean still managed to score well
on N-change EF L2, a result that highlights the pitfall of
using a single variable to predict learning vs comprehensive
and discreet measurement of all PK types that may affect
learning.

VII. DISCUSSION

A. Research questions

This study investigated two research questions. The first
research question asked: Does APK predict learning, over
and above the effects of DPK? The evidence suggests it
does. In both samples, after variance in the outcome due to
DPK was accounted for, APK was strongly predictive of
learning. This was the case with NESU students on the L1
outcome (i.e., items from the NGPSD; significant predic-
tors: APK-SR, DPK-EF L2) and L2 outcome (i.e., items
from the MBT; significant predictors: APK-SR, APK-V),
as well as with MWPU students on the L3 outcome (i.e.,
problems; significant predictors: APK-A, DPK-EF L2,
APK-GF, N-Change A; N-Change EF L2). This finding
suggests that gaps in reasoning and math can be
a source of learning reduction, just as gaps in physics
knowledge can be. In contrast to APK and DPK, neither
prior achievement nor motivation explained significant
variance in the outcome measures.
The second research question asked: Are the impactful

PK gaps the same across the two samples? The evidence
suggests they are not. In these two distinct contexts, an
algebra-based course taken by a mix of STEM and non-
STEM majors vs a calculus-based course taken by almost
exclusively STEM majors, a very different mix of APK
predictors emerged. Whereas variance in the NESU group’s
learning was explained by APK scientific reasoning and
APK math, variance in the MWPU group’s learning was

FIG. 3. (a) Significant interaction of institution and DPK-EF L2 on the N-change EF L2 outcome. Both NESU and MWPU students’
DPK-EF L2 scores negatively correlated with N-change EF L2, such that students who started with higher scores tended to gain less new
knowledge. However, NESU had more students who were below the mean in starting DPK and whose gains were above the mean
compared with MWPU students who clustered above the mean in DPK and therefore had less room for growth. (b) A significant
interaction of institution and APK-SR on the N-change EF L2 outcome. NESU students’ scores were generally better as a function of
more APK-SR, whereas MWPU students’ scores were not clearly related to APK-SR. A few outlier scores for MWPU students who
scored low on APK scientific reasoning but high on N-change energy and force L2 account for the negative relationship in that group
and suggest APK-SR was not a factor in MWPU students’ domain learning. R2 is the percentage of the variance in the outcome measure
that is explained by the predictor variable. All measures were mean centered.
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explained by various types of APK math but not APK
scientific reasoning. By contrast, DPK, measured by
students’ scores on the MBT, consistently predicted learn-
ing in both samples and across difficulty levels of the
outcome measure. Specifically, DPK-EF L2 predicted
gains on DPK-EF L1 for the NESU sample and gains
on DPK-EF L3 for the MWPU sample.
The differences in the significant predictors of each

group’s learning can be interpreted through two lenses:
Characteristics of each sample’s PK and the knowledge
demands of the particular outcome measures. For the first
lens, characteristics of cohort PK, one of the most striking
differences between the samples was the low intercorrela-
tion of the NESU group’s PK measures vs the high
intercorrelation of the MWPU group’s PK measures. For
the NESU group, 28.6% of all PK measures were signifi-
cantly correlated with a median correlation value of 24.1
and a range of 21.0–35.1, see Table III. For the MWPU
group, 50.8% of all PK measures were significantly
correlated with a median correlation value of 40.3 and a
range of 26.5–50.1, see Table VII.

Extensive research into knowledge differences between
novices and experts has shown that experts possess not
only more knowledge but also knowledge that is more
interrelated [19]. For example, a study comparing math
teachers with higher and lower levels of mathematical
expertise found that the teachers more expert in mathemat-
ics had better scores on scales for both mathematics and
teaching, despite similar teaching preparation between the
two groups. The teachers more expert in math also had
higher intercorrelations between their math and teaching
knowledge than those less expert in math, reflecting that
their math and teaching knowledge was differently struc-
tured and showed stronger integration [60]. Similar evi-
dence of a progression toward greater expertise can be
detected in the higher number and generally stronger
knowledge intercorrelations between APK, DPK, and PA
in the MWPU group, indicating their knowledge structures
have begun to take on this quality of interconnectedness.
For example, MWPU students’ DPK-EF L3 scores were
significantly correlated with nine other measures (listed
highest to lowest): DPK-AK, DPK-EF L2, SAT verbal,
APK-A, APK-C, SAT math, APK-V, APK-SR, and TV
(see Table VII). Indeed, the highest pairwise correlation for
MWPU students was between APK-C and APK-SR,
r ¼ 0.501, whereas the highest pairwise correlation for
NESU students was between the two motivation measures:
CL and TV, r ¼ 0.471.

In addition to being more intercorrelated, expert knowl-
edge is more locally coherent and differentiated, such that
each category of knowledge is rich in features and
applications [15,19]. For example, knowing a lot about
many specific classes of dinosaurs aids in discriminating
between them when given a problem such as classifying a
new dinosaur. Similarly, better knowledge of algebra,

vectors, and calculus is useful when determining which
procedures to apply to solve a physics problem. This may
also explain why specific, differentiated math measures
(e.g., vectors and graphed functions) explained variance in
physics learning in the MWPU group when the more
general PA measures (e.g., SAT math and verbal) did not.
Moreover, this finding is consistent with Nakakoji and
Wilson’s [3] result that, for less advanced students, PA had
a direct effect on course grade but for more advanced
students, PA had only an indirect effect that was mediated
by prior math grades.
The NESU group’s PK, on the other hand, was charac-

terized by fewer intercorrelations with lower correlation
coefficient values. APK-SR was significantly correlated
with only DPK-EF L1 and DPK-EF L2 in the NESU group,
whereas, in the MWPU group, APK-SR was correlated
with almost every other PK measure and not predictive of
EF learning. By extension, despite generally low scores at
pretest and post-test on APK-SR in the NESU group, this
measure was the strongest predictor of domain learning,
predicting gains on both outcome measures (i.e., EF L1 and
EF L2). This finding is consistent with Coletta and Phillip’s
[23] result that, for less advanced students, but not for more
advanced students, APK-SR was a significant predictor of
learning.
Considering students’ majors in the NESU group

further pointed to a unique property of APK—transfer of
knowledge—that was not formally included in the scope of
this study. Transfer is the ability to apply what you have
learned in one context to a similar context. For APK to have
its best effect on learning in a new domain, students need
to be able to apply it across contexts, e.g., math skills are
applied not only in math learning but also in physics,
biology, and statistics learning.
We saw that NESU STEM students were better able to

apply their APK algebra and their gains in algebra during
the term than humanities and social science students, as
seen in the positive relationship of both APK-A and N-
change A to changes in domain knowledge for STEM
students. The first positive relationship—greater APK
algebra correlating with greater N-change energy and
force—suggests that STEM students were able to apply
what they already knew at the start of the term to physics
learning. The second positive relationship—greater algebra
learning over the term correlating with greater N-change
energy and force—suggests that STEM students were able
to apply concurrent algebra learning to physics learning
during the term. The STEM students, who likely have
encountered math skills in multiple prior contexts and may
have been taking other STEM courses, were better able to
transfer those skills to further their physics learning,
whereas the non-STEM students were not. This finding
underscores the importance of providing multiple and
varied contexts to practice math skills in order to support
transfer to physics.
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The second lens for interpreting differences in predic-
tors of learning in the two groups involves considering
the demands of each particular outcome measure.
Specifically, the alignment of the APK measures to the
required tasks on the outcome measures. By design, each
“level” of the DPK measures included progressively more
applied problems requiring math skill. Therefore, it is not
surprising that knowledge gains on the L1 measure, items
on the NGPSD taken by the NESU group, were not
predicted by APK math but only by APK-SR; knowledge
gains on the L2 measure, items on the MBT taken by both
groups, were predicted by APK math for the NESU group
but not the MWPU group; and knowledge gains on the L3
measure, which included the most difficult problems,
were predicted by APK math for the MWPU group.
When the outcome measure does not require math, or
math that is challenging for a given group, we would not
expect math to show up as a significant predictor of
learning on that measure, as happened here.

B. Significance and practical implications

Wewrote in the introduction that evidence for the impact
of PK on learning has been inconsistent. If APK were
routinely included in addition to DPK in the type of PK
measures given, PK would certainly be a more consistent
predictor of learning. Without sufficient and differentiated
measures of PK, the effect of PK on learning may be missed
or, due to intercorrelations in knowledge, one type of
measured PK may appear to have a significant impact on
learning, but it is simply related to another, unmeasured
type of PK that has the true impact on learning [35].
Including measures of APK and DPK together in this study
exemplifies an approach to including all relevant types of
PK in a multivariate analysis. With distinct subtypes of
APK and DPK measured and entered into the analyses, we
found APK was strongly predictive of learning in both
study groups.
Another goal of including multiple, instruction-relevant

APK and DPK measures could be to help identify pre-
dictors of learning and other educational outcomes using
predictive or learning analytics [61]. These methods com-
bine many variables into a single analysis and apply
modern data mining and modeling techniques to identify
predictor variables and make quantitative predictions about
learners’ outcomes (e.g., whether they will graduate on
time or pass a given course) [62]. In this approach, datasets
tend to be “wide” (i.e., including easy-to-collect data
about many students) but not necessarily “deep” (i.e.,
not including longitudinal and/or detailed data about each
student). That said, researchers using this approach have
found that adding measures of DPK can improve predictive
models compared with the use of demographic data alone
[63]. With increasing evidence of the role of APK in
predicting learning, we advocate for including both APK
and DPK measures in such models.

What are the practical implications of this work? We
believe it is important and worthwhile for educators to look
for various types of PK gaps and provide support for the
particular PK gaps that are likely affecting learning in their
courses. The influence of PK (and its variability across
students) may not be obvious because, as long as some
students are able to keep pace with the instruction, it can be
hard to detect that missing PK is diminishing other
students’ ability to keep up. Moreover, with the bulk of
the instructional focus on domain knowledge, gaps in APK
easily fall outside the scope of instructors’ awareness and,
hence, instruction. And yet, APK gaps present a consid-
erable opportunity for remediation of missing knowledge
and skills when seeking to improve physics learning
outcomes.
Without conducting a full-blown study in their own

courses, how can professors hone in on the likely PK (and
especially APK) elements to address? The results of this
study, and especially the patterns across the two samples,
highlight a key message. The most important PK measures
are the ones that (a) map to the knowledge characteristics of
one’s students (i.e., where they have some, but not rock-
solid, PK) and (b) align with the knowledge demands of
one’s course (e.g., the kind or level of math that students
must regularly apply to learn the target physics material).
These two lenses can guide educators to the most important
types of PK to measure for their learners. The measure-
ment approach used in this study demonstrates that shorter
measures from a wider variety of PK types can be given in a
reasonable amount of time (one study period or less).
Collecting data specific to one’s learners will lead to the
most accurate characterization of the gap.

C. Strengths and limitations

This study builds on past research by systematizing and
improving the measurement of APK vs DPK in a way that
specifies and differentiates multiple forms of PK in order
to analyze their correlational structure and unique con-
tributions to domain learning. In future research on the
effects of PK on learning, we recommend that researchers
continue to use multiple measures of PK that are discrete,
specific, and carefully aligned to the outcome measures.
Building on this approach, we recommend that future
research conduct factor analyses and item response theory
analyses for the PK subtype measures to further study
their validity and reliability and to inform any refine-
ments. Note that our finding of differing numbers and
degrees of intercorrelations between knowledge subtype
measures in high- and low-PK learners, supported by
research into differences in how novices and experts
structure their knowledge [15,19,64], suggests both
low- and high-PK learners should continue to be studied
when performing dimension reduction. For example,
knowledge subtypes will likely load on different factors
in low- vs high-PK learners, and items on individual
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measures will likely have different discrimination and
difficulty profiles when tested with these two groups of
learners.
Relatedly, it is important that the measures are piloted

and tuned appropriately such that they are sensitive enough
to detect variation in PK in a given sample of students. The
pilot data collected for this study showed that all items on
CI measures may not be equally effective for detecting
variations in knowledge for all learner groups, particularly
those with greater PK. Piloting measures and carefully
selecting items with a better ability to discriminate knowl-
edge will help ensure that if variation in PK correlates with
learning outcome measures, then these relationships will be
detected. In addition, past research suggests that a subset of
the full test items on the MBT has sufficient difficulty and
discrimination to return a good measure of student skill at a
highly selective university and has identified items that do
not appropriately discriminate in high-PK learners [64]. A
future direction would be to conduct more such studies with
often-used CI measures to enhance validity claims.
A significant limitation of these studies was the small

sample size of each group. Future studies should include
bigger, broader samples and consider methods to achieve
high participation and retention rates. In addition, it is
important to consider the use of differing measures across
our two samples as both a strength and a limitation of this
study. Generally, we consider the approach of using targeted
measures that can reasonably detect variability in different
groups’ PK to be a strength. If we had not adjusted the
measures across the two groups, we would not be acknowl-
edging differences in their PK and would not have been able
to show the generalizability of the role played by APK
in learning across groups with diverse PK profiles. The
limitation of this approach is that it makes direct comparison
between the groups more difficult. A goal of future research
on CIs and APK measures should include identifying items
that either (a) appropriately discriminate knowledge in both
high- and low-PK learners or (b) are relatively matched in
their discrimination and difficulty levels across low-PK and
high-PK groups to aid in comparison.

VIII. CONCLUSION

In this study, we measured multiple, distinct types of
PK, from within and outside the domain of instruction, to
determine whether they explained unique variance in
novices’ learning in introductory physics courses taken
by two distinct learner groups. Using correlation and
regression analyses, we regressed three, increasingly diffi-
cult outcome measures of physics learning on the PK
predictor variables. Within-domain PK predicted learning

in a similar manner across both types of courses, with items
from the MBT predicting learning in both learner groups
and on outcome measures of varying difficulty. Outside-
domain PK, on the other hand, predicted learning according
to somewhat different patterns related to (a) characteristics
of the group’s prior knowledge and (b) the difficulty of the
outcome measures.
When considering characteristics of the group’s prior

knowledge, MWPU students’ PK measures showed a
greater number and degree of intercorrelations, suggesting
more intercorrelated and differentiated prior knowledge, as
well as a greater variety in the types of PK measures that
were predictive of their learning, primarily DPK and APK
math. The NESU students had a fewer number and lesser
degree of intercorrelations in their PK measures, and for
this group, APK scientific reasoning was a consistently
strong predictor across outcome measures. When consid-
ering the difficulty of the outcome measures, APK math
showed up as a strong predictor on the more problem-heavy
measure (i.e., L3) whereas APK scientific reasoning was a
strong predictor on the more conceptual measure (i.e., L1).
These results indicate that all novice learners have mean-

ingful variations in PK that can affect learning, regardless
of whether they are more or less advanced domain novices.
This finding underscores the importance of measuring more
specific, rather thanmoregeneral, PKconstructs, particularly
as learners’ knowledge becomes more interconnected. The
ultimate goal of identifying variations inPK types that impact
learning within a peer group is to identify actionable areas
where additional instructional support can reduce the prepa-
ration gap and improve learner outcomes.
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