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Abstract: We report the validity of a test instrument that assesses the arithmetic 
ability of primary students by (a) describing the theoretical model of arithmetic 
ability assessment using Wilson’s (2004) four building blocks of constructing 
measures and (b) providing empirical evidence for the validation study. The 
instrument consists of 21 multiple-choice questions that hierarchically evaluate 
arithmetic intended learning outcomes (ILOs) on arithmetic ability, hierarchically, 
based on Bloom’s cognitive taxonomy for 138 primary three grade students. The 
theoretical model describes students’ arithmetic ability on three distinct levels: 
solid, developing, and basic. At each level, the model describes the characteristics 
of the tasks that the students can answer correctly. The analysis shows that the 
difficulty of the items followed the expected order in the theoretical construct map, 
where the difficulty of each designed item aligned with the cognitive level of the 
student, the item difficulty distribution aligned with the structure of the person 
construct map, and word problems required higher cognitive abilities than the 
calculation problems did. The findings, however, pointed out that more difficult 
items can be added to better differentiate students with different ability levels, and 
an item should be revised to enhance the reliability and validity of the research. We 
conclude that the conceptualizations of such formative assessments provide 
meaningful information for teachers to support learning and tailoring instruction. 

1. INTRODUCTION 
The central purpose of classroom assessment is to provide feedback to improve student learning 
and teachers’ pedagogies (Black & Wiliam, 2010; Dixson & Worrell, 2016; Shepard, 2006; 
Stiggins, 1994; Wiggins, 1998). However, grading continues to dominate pedagogical prac-
tices, even in the context of formative assessment, diluting its effectiveness. Consequently, cru-
cial questions concerning the essential features for collecting, formatting, and acting on evi-
dence of learning through formative assessment remain unanswered.  
The situation has not changed much today, as classroom formative assessment practices con-
tinue to be counterproductive and incoherently disconnected from each other and from high-
stake accountability assessments (Wilson, 2004; NRC, 2006; Gorin & Mislevy, 2013). Contrary 
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to expectations based on the central role of feedback in effective classroom practices (Hattie, 
2008; Duckor & Holmberg, 2017), teachers often do not review student responses to formative 
assessment questions or reflect upon the content measured, such as whether items are ambigu-
ously worded or a scoring criterion is unclear (Black & Wiliam, 1998; Guskey, 2003; Popham, 
2009, 2010).  
When student scores and grades are the primary focus of assessment and the full value of form-
ative feedback is not obtained, outcome quality is inevitably undercut, even though formative 
practices have repeatedly been shown to be the most effective means to improve student 
achievement (Black & Wiliam, 2003; Hattie, 2008). Instructionally-relevant feedback is essen-
tial to providing the leverage needed for advancing toward the desired learning outcome 
(Brookhart et al., 2010).  
The purpose of formative assessment is to help teachers identify difficulties obscuring students’ 
conceptual understanding, charting a path forward along a learning progression (Bell & Cowie, 
2001; Black et al., 2011; Cardinet, 1989). Formative practices encompass a broad range of 
qualitative and quantitative assessments of as and learning in the classroom, and are not limited 
to feedback from formally scored assessments (Baird, et al., 2017; Duckor & Holmberg, 2017; 
Fisher, 2013). However, without an essential feedback mechanism, formative practices of any 
kind will fail to produce the desired effect. Properly conceived, designed, and implemented, 
formative assessment is integrated with instruction, and should be a key tool for monitoring 
learning progressions and supporting the attainment of learning outcomes (Clark, 2012; Gorin 
& Mislevy, 2013; Popham, 2009, 2010). 
Wilson (2004) proposed constructing measurement instruments using four building blocks: 
construct map, item design, outcome space, and measurement model, to properly conceive, 
design, and implement formative practices in classrooms.  The blocks ascertained the validity 
of the formative assessment information produced from the test items. Building blocks are a 
reference that aid in the assessment design cycle. Each building block focuses on one of the 
four principles: developmental theory perspective (construct map), a match between instruction 
and assessment (item design), management by teachers (outcome space), and evidence of high 
quality (measurement model). When this cycle is reiterative, block coherence is improved 
because each block’s information can optimize other blocks. This model tests construct 
consistency for objective proof of knowledge, skills, and attitude measurements.   
The Rasch measurement model is applied for shortcomings that plagued the classical test theory 
that it is sample dependent and item dependent (Embretson & Reise, 2000; French, 2001; 
Hambleton et al., 1991; Hambleton & Jones, 1993; Hambleton & Swaminathan, 1985) that limit 
the generalizability of research findings (Wright & Master, 1982). Furthermore, Rasch 
measurement model is applied in the current study to ascertain validity of the test. A number of 
related studies have reported on scale validity based on content validity, as judged by experts 
in the relevant domain in science education (e.g. Adillah et al., 2022; Beck, 2020; Hidayati et 
al., 2019; Luque-Vara et al., 2020; Nasir et al., 2022; Wole et al., 2021). Content validity based 
solely on professional judgment is insufficient to establish validity (Messick, 1981; 1989). At 
the most, testing validity merely on content validity is insufficient (Lee & Fisher, 2005) because 
validity refers to “the degree to which empirical evidence and theoretical rationales support 
the adequacy and appropriateness of interpretations and actions based on test scores” 
(Messick, 1989, p. 13). As quoted by Fisher (1997), “The conventional focus on content validity 
has misled us about what is important in educational measurement”.  
Arithmetic skills that involve basic operations of addition, subtraction, multiplication, and 
division are the foundation for advanced mathematical concepts (Björklund, 2021; Hong Kong 
Education Bureau, 2000, 2018; Parviainen, 2019; Sievert et al., 2021; Vlassis et al., 2022) such 
as algebra and geometry (Vlassis et al., 2022). It helps students develop logical thinking and 
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problem-solving abilities (Björklund, 2021). Thus, arithmetic is an essential component of the 
primary mathematics curriculum (Engvall et al., 2020). Baroody and Dowker (2003), Dowker 
(2005), Geary (1993), Goldman and Hasselbring (1997), Hiebert and Lefevre (1986), and 
Kilpatrick et al. (2001) carried out research on how students attain arithmetic proficiency. 
However, they did not address the validity issue of the instrument used to measure students’ 
arithmetic abilities.  
In the present study, we aimed to provide evidence of the validity of a classroom assessment 
evaluating the arithmetic ability of primary students based on Wilson ’s (2004) four building 
blocks. We then provide empirical evidence for the validation of the hypothesized model based 
on Rasch’s (1960) measurement model.   
1.1. Theoretical Framework 
1.1.1. Construct mapping 
The first building block was a constructed map. This is a diagrammatic representation of the 
construct specifications. It operationalizes constructs in the successive stages of understanding 
or abilities. It shows how students’ understanding evolves, and how their responses to items 
might change or develop. The construct assessed in this research was arithmetic ability, defined 
as accurately solving addition, subtraction, multiplication, and division problems mentally. This 
includes choosing the correct arithmetic operation and calculating the solution (Millians, 2011). 
Students’ arithmetic ability can be represented using a person-construct map (Wilson, 2004). 
Theoretically, it is suggested that students’ arithmetic abilities are developed in stages where 
they start from the basic skills of solving addition and subtraction problems, and then move on 
to more complex operations of multiplication and division (Hong Kong Education Bureau, 
2018). According to the Cognitive Development Theory, students initially use concrete objects 
and counting strategies to solve arithmetic problems. As they progress through these stages, 
they develop more abstract and efficient strategies for solving problems. The construct map 
developed in this study was considered within these contexts. 
The person construct map assumes that arithmetic ability is a unidimensional latent variable 
that extends from low to high (Table 1). Students were categorized into three groups according 
to their levels of arithmetic ability. At the basic level, students with low ability can remember 
and understand algorithms (four operations) to solve simple operation problems. At a 
developing level, mid-range students can analyse information and apply the underlying 
algorithms to solve less challenging or less complex operational problems. At a solid level, 
high-ability students can evaluate the information given in words, work out the best operation 
to solve complex problems in words, and justify their solutions (Table 1). 
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Table 1. Person construct map of predicted arithmetic ability levels of primary school students. 

Level Respondents Description 
3 Solid ➢ Students can evaluate the information given in words and work out addition and 

subtraction operations to solve mixed operation problems. They can correctly 
identify a mixed operation to solve two-step problems when the answer is smaller 
than 1,000). (Mixed addition and subtraction operation construct)   

➢ Students can evaluate the information given in words and work out the best mul-
tiplication operation to solve complex problems and justify their solutions. They 
can accurately identify multiplication to solve and explain two-step problems by 
multiplying a one-digit number by a one-digit number. (Multiplication construct) 

➢ Students can evaluate the information given in words and work out the best divi-
sion operation to solve complex problems and justify their solutions. They can 
correctly identify division to solve one-step and two-step problems of the quotient 
of a one-digit number and explain the reasons. (Division construct) 

2 Developing ➢ Students can analyse the question and apply the best strategy to solve addition and 
subtraction. They can precisely calculate addition with carrying (carrying once and 
carrying twice) and subtraction with borrowing (borrowing once, borrowing twice 
and borrowing twice for ones, when the answer is smaller than 1,000). (Mixed 
addition and subtraction operation construct) 

➢ Students can analyse the information given in numbers and apply the necessary 
addition and subtraction to solve conceptually less challenging mixed operation 
problems. Individually, they can calculate mixed operation (addition and subtrac-
tion) with and without carrying and borrowing (when the answer is smaller than 
1,000). (Mixed addition and subtraction operation construct) 

➢ Students can analyse the information given in numbers and apply the best strategy 
to solve conceptually less challenging multiplication operation problems. They 
understand multiplication and can correctly solve problems by multiplying a one-
digit number by a one-digit number. (Multiplication construct)  

➢ Students can analyse the information given in numbers and apply the best strategy 
to solve conceptually less challenging division operation problems. They can cor-
rectly calculate division with a remainder and the quotient of a one-digit number. 
(Division construct) 

1 Basic ➢ Students can remember and understand addition and subtraction algorithms to 
solve simple operation problems. They can accurately calculate addition and sub-
traction with no carrying and borrowing (when the answer is smaller than 1,000). 
(Mixed addition and subtraction operation construct) 

➢ Students can memorise and understand the multiplication table and use what they 
recall to solve simple operation problems. Precisely, they can calculate the multi-
plication of a one-digit number by a one-digit number and use it to solve one-step 
problems without explanation in words. (Multiplication construct)  

➢ Students can memorise and understand division algorithms to solve simple opera-
tion problems. They can calculate division without a remainder and the quotient 
of a one-digit number. (Division construct) 

1.1.2. Item design 
The item design encapsulates the types of items used to provide evidence of students’ 
knowledge and understanding embodied in the theoretical construct map. It guides how the 
learning outcomes will be measured and aligns the curriculum and assessment using standard 
conditions. This enabled assessment of each level defined in the construct map (Table 1). A 
total of 21 multiple choice question (MCQ) items were designed based on the three cognitive 
knowledge levels (Basic, Developing, and Solid) from the person construct map (Table 2). 
MCQ tests can save time and reduce grading costs (Alderson, 1990; Liu et al., 2008), can test 
multiple knowledge domains within the same test (Çataloğlu & Robinett, 2002), enabling more 
objective grading to ensure the fairness of the test and facilitate item and test analysis, which 
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can improve teaching and students’ learning (Gurel et al., 2015).  Therefore, we used MCQs to 
measure students’ attainment of learning outcomes. 

Table 2. Item design. 
Level Respondents 

Level  
Items Operation Problem type Option type Bloom’s 

cognitive level 
3 Solid Q13, Q15 

Q4, Q9 
Q21 

Division 
Multiplication 
Mixed 

Word 
Word 
Word 

Algorithm 
Algorithm 
Algorithm 

Evaluate 
Evaluate 
Evaluate 

2 Developing Q5, Q10 
Q6, Q12 
Q2 
Q19 
Q7, Q11, Q16 
 Q3, Q17, Q20 

Division 
Multiplication 
Division 
Mixed 
Subtraction 
Addition 

Word 
Word 
Calculation 
Calculation 
Calculation 
Calculation 

Number 
Number 
Number 
Number 
Number 
Number 

Analyse 
Analyse 
Apply 
Apply 
Apply 
Apply 

1 Basic Q1 
Q14Q8 
Q18  

Division 
Subtraction 
Addition 
Multiplication 

Calculation 
Calculation 
Calculation 
Calculation 

Number 
Number 
Number 
Number 

Understand 
Understand 
Understand 
Remember 

1.1.3. Outcome space 
The outcome space encapsulates different student response levels for items correlated with the 
construct level. It guides the assessment of students’ responses to items relative to the construct 
map. Specifically, it can be used as a scoring guide to ensure that student answers align with 
the constructed map. Teachers assigned scores to an item designed for a particular knowledge 
level based on the construct map in the outcome space. When the item design is completed, 
teachers then decide which factors may affect the item response, and classify and score these 
factors to ensure meaningful student responses. In this study, MCQs were used to design items 
that were scored dichotomously (Incorrect = 0 and Correct = 1; Wilson, 2004). 
1.1.4. Measurement model 
The measurement model is the framework by which assessors equate student scores on items 
from specific construct levels and apply the scored responses to the constructs. The assumption 
is that student scores on individual items align with the knowledge construct map.  The resulting 
model is a measurement or interpretation model (Wilson, 2004). This helps teachers understand 
and evaluate student responses to the items. The Rasch measurement model was used in the 
current study. The model transforms the scores into the locations of items in the construct map. 
It is an objective measurement suitable for various random, hierarchical, and classified data 
analyses (Linacre, 2000). It was thus used in this study to relate data to assessment targets and 
construct maps. The output is a Wright map that displays student performance on elements of 
the construct map and enables comparisons between students. In addition, it places students and 
items on the same scale (with an arbitrary scale representing a student’s chances of a positive 
response at that position). This, in turn, documents the measurement system and assesses the 
construct validity (Wilson, 2004, p. 156-157). 

1.1.5. Validation study for the hypothesized model 
We sought to evaluate whether the theoretical person constructs a map of arithmetic ability 
following the four building blocks (Wilson, 2004) aligns with the statistical results of the Rasch 
measurement model. Specifically, we examined whether the following were true. 
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1. The difficulty of each designed item aligns with the cognitive ability of students in the 
following order: Level 1 ability is less than Level 2 ability, which is less than Level 3 ability 
(Table 1).  
2. Basic students can solve Level 1 items, developing students can solve Level 1 and 2 items, 
and solid students can solve items from all levels.  
3. Arithmetic calculation problems are more accessible to students’ ability levels than 
arithmetic word problems (at Level 3). 

2. METHOD 
2.1. Participants 
A sample of 138 Primary 3 students from a single-gender school in Macao participated in this 
study. The students were from four different classes taught by three teachers. One teacher taught 
two classes and the other two teachers taught one class each. The students had completed their 
Primary 2 mathematics course and had just entered Primary 3. 
2.2. Test Instrument 
One month before the school year, researchers (first and second authors) reviewed Primary 2 
and Primary 3 mathematics curricula, textbooks, and workbooks used by Macau schools. A test 
instrument was constructed in consultation with the head of the Elementary Mathematics 
Department.  
It consisted of 21 MCQs encompassing four operations to measure the arithmetic ability of 
elementary students. The elementary mathematics department head with 16 years of teaching 
experience and three mathematics teachers with teaching experience ranging from 1 to 3 years 
validated the test instrument. Four MCQs assessed addition, four assessed subtraction, six 
assessed division, five assessed multiplication, and two assessed mixed addition and subtraction 
(Table 2). In addition to the classification by operation, the 21 items were also categorized 
according to Bloom’s cognitive levels: remembering, understanding, applying, analysing, and 
evaluating (Table 2). Furthermore, the 21 items were divided into arithmetic calculation 
problems (requiring students to apply one or more operations) and arithmetic word problems. 
There were 12 calculation problems and nine-word problems (Table 2). 
Each item has four options, with three distractors and one correct option. The 21 items were 
grouped into two groups based on the option types. While 16 items required students to pick 
the correct numerical figure, five required students to select the correct algorithm (Table 2). All 
21 MCQs were ordered randomly during the test. Prior to data collection, item difficulty was 
validated by 16 preservice science and mathematics teachers. 
2.3. Data Collection Procedure 
The test was administered at the beginning of the school year. It covered the arithmetic that 
students should have already learned based on The Curriculum Framework for Formal 
Education of Local Education and The Macao Requirements of Basic Academic Attainments 
of Local Education System (BAA). In the first week of September 2019, the teachers informed 
the students of the assessment date and coverage of this assessment. The teachers distributed a 
test instrument containing 21 items and a scantron answer sheet on the assessment date. The 
students recorded their answers by shading the box of the chosen option for each MCQ with a 
pencil. The students completed the test for 20 minutes.  
The teachers collected scantron sheets at the end of the designated time. The sheets were 
provided to the first author, who used an optical mark reader to scan the answer sheets for data 
input. Each correct answer was recorded as 1, and each incorrect answer was recorded as 0. 
Thus, the maximum raw score was 21 and the minimum was 0. All student data (class number, 
item number, and student's answers) and test scores for each item were entered into a 
spreadsheet. 
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2.4. Calibration of Item Difficulties and Person Abilities 
The Rasch model uses logarithmic transformation to calibrate a person and items on the same 
single-dimensional ruler (Wright & Masters, 1982). Based on their respective positions on this 
single-dimensional continuum, comparisons can be made between person and person, item and 
item, and person and item, yielding objective and linear measures of person’s ability and item 
difficulty. Data were analyzed using Winsteps 4.4.5 and the dichotomous Rasch model (Rasch, 
1960) as each MCQ only had a correct or incorrect answer. 

𝑃𝑛𝑖1  =  
exp (𝜃𝑛 − 𝛿𝑖)

1 + exp (𝜃𝑛 − 𝛿𝑖)
 

The input of this logistic function is the difference between the person’s ability θ_n and item 
difficulty δ_i. The output is the probability that person n correctly answers item i, P_ni1. 
Therefore, item difficulty and person ability were measured on a standard interval scale. The 
items had a mean difficulty of 100.00, a minimum of 81.61 (item 8), and a maximum of 119.50 
(item 4). The students had a mean ability of 109.27, minimum of 89.99, and maximum of 
130.33. 

3. RESULTS 
3.1. Quality of the Data 
Data quality was evaluated by assessing data fit, reliability, and fairness using the Rasch Model 
of Winsteps (Lincare, 2012) prior to reporting the validation results. 
3.1.1. Fit diagnosis 
In the Rasch model, the expectation is that students with higher ability will have a higher 
probability of answering more difficult items correctly than students with lower ability who 
will have a higher probability of correctly answering easier items than difficult items (Wright 
& Stone, 1999, p. 48). Infit and Outfit evaluate how well the data fit the structure of this 
expectation. 
An item with Zstd greater than 2.00 distorts the model fit because it is a poor fit due to 
unexpected, unrelated irregularities (Linacre, 2012). Of the 21 items, only Q9, the third most 
challenging item, had an Infit Zstd >2.00 and an Outfit Zstd >2.00. All other item Infit and 
Outfit values lie between -1.75 and +1.40, signifying a good fit to the Rasch model.  
Items with MnSq from 0.50 to 1.50 are considered productive for measurement (Linacre, 2012). 
The item with the lowest Outfit MnSq was Q14 (0.65), and the item with the highest Outfit 
MnSq was Q1 (1.40). The item with the lowest Infit MnSq was Q20 (0.88) and the item with 
the highest Infit MnSq was Q9 (1.22). Therefore, all items were within the expected range of 
0.50 to 1.50 and they usefully fit the Rasch model (Linacre, 2012). In other words, all items 
were retained for the subsequent analysis.  
Q9 had the highest Infit Zstd and Outfit Zstd of the 21 items. This may imply that its wording 
is ambiguous, its options are misleading, or both. 
3.1.2. Reliability of data 
Item reliability and Pearson’s reliability were used to indicate reliability. From easy to difficult, 
item locations operationally define the latent variable (Wright & Stone, 1999, p. 151). Thus, 
the items should be appropriately located and separated along a line to assess relative item 
difficulties and item redundancy gaps.  
Item reliability shows how this sample of students separated the 21 items in the assessment. A 
value closes to 1.00 indicates a higher precision (Wright & Stone, 1999, p. 151). The item 
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reliability in this assessment was 0.96, indicating that the sample size was sufficient to support 
the instrument's construct validity (Lincare, 2012).  
The Pearson reliability is the same as traditional test reliability (Lincare, 2012). This shows 
how this set of 21 items separated the sample of 138 students. It ranges from 0.00 to 1.00; a 
value close to 1.00 indicates higher precision (Wright & Stone, 1999, p. 151). The Pearson’s 
reliability for this assessment was 0.60, indicating that the items were not sufficient to classify 
students into different ability levels. This means that the sample of students had similar ability 
levels or too few items (Lincare, 2012) to evaluate the latent variable. 
3.1.3. Fairness of data: Differential item functioning 
All items should behave similarly to students with the same abilities. If an item functions 
differently across different subgroups of students, the validity of this instrument may be 
questioned (Wilson, 2004). The sample students were randomly assigned to two subgroups and 
were expected to function the same across these subgroups. In other words, differential item 
functioning (DIF) should not occur (Bond & Fox, 2015, p. 281-282). 
If an item had a p-value greater than 0.05, DIF did not occur significantly across the two 
subgroups (Linacre, 2009). As the USCALE of this assessment was 8.52, one logit equals 8.52 
units (J.M. Linacre, personal communication, 22nd September 2020). Therefore, a DIF may 
exist if the DIF contrast is greater than 5.43. Q8 and Q13 had DIF contrasts of -15 and 6, 
respectively. However, because they are still within the 95% confidence interval (Figure 1), 
their DIF is not considered significant, which means that they behave similarly for different 
subgroups. The results indicated that the items were fair; therefore, item validity was upheld. 

Figure 1. DIF measures for the two subgroups under 95% confidence interval. 

 

3.2. Is Item Difficulty for Each Level Aligned with Student Ability in Order? 
The Wright map represents item difficulty versus person ability (Figure 2a). The student ability 
has a range of 90.00 logits to 130.33 logits. The item difficulty ranges from 81.61 logits to 
119.50 logits (Figure 2a). Items Q8, Q18, and Q14, which all students could answer, were more 
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than one standard deviation below the mean item difficulty. Item Q4 was the most difficult and 
lay almost two standard deviations above the mean item difficulty. Although it is the most 
difficult item, ten students (7.24% of the sample size) were able to solve it and all the other 
items. In other words, the 21 designed items were not sufficient to assess the upper limit of the 
arithmetic ability of the ten students. This indicates that items that are more difficult than Q4 
should be included in the instrument. In addition, there is a significant gap between Q4 and 
Q21. To better assess what students with an ability between 113 and 120 logits can do, more 
items of intermediate difficulty should be added to fill this gap. 
In alignment with Bloom’s taxonomy, the four easiest items (Q1, Q14, Q18, and Q8) mainly 
require students to remember and understand. In contrast, the most difficult items (Q4, Q21, 
Q9, Q13, and Q15) mainly required students to evaluate. Items with a medium difficulty level 
mainly require students to analyse and apply (Table 2 and Figure 2b). Observed item difficulty 
based on Rasch analysis and predicted item difficulty from the person construct map were 
compared (Table 3) to examine item difficulty alignment. The findings show that item difficulty 
hierarchy generally aligns with Bloom’s taxonomy. 

Table 3. Comparison of alignment between observed items based on Rasch analysis and predicted 
construct map based on item development. 

Level Observed item cognitive levels 
based on Rasch analysis 

Predicted construct map based on 
item development in person 

construct map 

Bloom’s 
cognitive level 

3 Solid Q4, Q9, Q13, Q15, Q21 Q4, Q9, Q13, Q15, Q21 Evaluate 
2 Developing Q2, Q3, Q5, Q6, Q7, Q10, Q11, 

Q12, Q16, Q17, Q19, Q20 
Q2, Q3, Q5, Q6, Q7, Q10, Q11, 

Q12, Q16, Q17, Q19, Q20 
Apply and 
Analyse 

1 Basic Q1, Q8, Q14, Q18 Q1, Q8, Q14, Q18 Remember and 
understand 

Note: Predicted cognitive items are from the person construct map (Table 2) and the observed items are based on Rasch analysis 
(Figure 2a). 

To lay out the findings more precisely, items were further grouped according to Bloom’s 
cognitive abilities (i.e., remember, understand, apply, analyse, and evaluate), as shown in 
Figure 2b. In general, the structure of items follows the expected order of the person construct 
map; that is, Level 1 (Basic) items are the easiest group of items among the three levels, Level 
2 (Developing) items are more difficult than Level 1 but are easier than Level 3, and Level 3 
(Solid) items are the most difficult among the three levels. A similar pattern is also observed in 
Figure 2c.  
All nine word problems (mean difficulty = 119.50) were in the top half of the scale, and the 
remaining 12 arithmetic calculation problems (mean difficulty = 104.07) were in the bottom 
half.  Apparently, word problems were more difficult than word problems.  
However, the two-word problems (Q5 and Q6) shared the same difficulty level as the arithmetic 
calculation problems (Figure 2c). Hence, further investigation is required for Q5 and Q6.   
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Figure 2a. Wright map distribution of students’ ability and item difficulty. 
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distribution, with the least challenging items at the bottom and the most challenging items at the top. M, on the left, indicates 
the mean student ability, S one standard deviation point, and T two standard deviation points of student ability, respectively. 
Similarly, on the right, M shows the mean item difficulty, S is one standard deviation point, and T is two standard deviation 
points of item difficulty.    
Note: 2. “X” = 1 student; Mean person ability = 109.27 (Standard deviation = 7.44); Mean item difficulty = 100 (Standard 
deviation = 10.00)  
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Figure 2b. Wright map – Cognitive ability. 
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Note: “Rem”=Remember; “Und”=Understand; “App”=Apply; “Ana”=Analyse, “Eva”=Evaluate.  



Int. J. Assess. Tools Educ., Vol. 10, No. 2, (2023) pp. 376–394 

 387 

Figure 2c. Wright map – Arithmetic calculation and word problem. 
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Note: “Cal” = arithmetic calculation problem (dark gray shading); “WP” = arithmetic word problem (light gray shading).   



Chan, Zhang & Oon

 

 388 

3.3. Are Respondent Categories (Basic, Developing, Solid) Aligned with the Person 
Construct Map? 
Guided by the item design (Table 2), students were separated into three levels: Level 1 (basic 
students), Level 2 (developing students), and Level 3 (solid students). The students were 
assumed to be able to solve Level 1 items. Developing students were assumed to be able to 
solve Level 1 and 2 items. Lastly, the Solid students were assumed to be able to solve Levels 
1, 2, and 3 items. 
As the items were designed according to what the primary three students had learned in the first 
two, and the assessment was conducted in the first month of this school year, most of the 
students could solve all Level 1 items. Hence, only one student was at Level 1 (Figure 2a). 
Therefore, even students with the lowest ability could solve Level 1 items, given that their 
ability is higher than the difficulty of Level 1 items. In other words, the appropriate difficulty 
level for Level 1 items was overestimated based on the person construct map (Table 1) and item 
design of the building blocks (Table 2).  
Developing students should be able to solve levels 2 and 1. There were 53 students (38.41% of 
the sample) in the developing student category, and the developing students were aligned with 
Level 2 items and above Level 1 items (Figure 2a).  
Solid students should be able to solve Level 3, 2, and 1 items. There were 84 students (60.87%) 
in the solid student category. We noted that some solid students' abilities were higher than the 
difficulty of all items (Figure 2a). This suggests that the Level 3 item difficulty was 
overestimated.  
This non-normal distribution of students for the Basic, Developing, and Solid levels (1, 53, and 
84 students, respectively) suggests that more difficult items should be added to better assess 
arithmetic ability. Overall, the distribution of students (Figure 2a) followed the structure of the 
predicted construct map based on item development. Students at the Basic level (corresponding 
to Level 1 in Table 1) could solve the least difficult problems with the lowest cognitive level in 
Table 2. Students at the Developing level (Level 2) solved more difficult problems. Finally, 
students at the solid level (Level 3) solved the most difficult problems with a higher Bloom’s 
cognitive level.  
3.4. Are Arithmetic Calculation Problems (Levels 1 and 2) More Accessible than 
Arithmetic Word Problems (Level 3)? 
Figure 2c shows the operational grouping of arithmetic word problems and calculations. Items 
Q5 (“64 books) were packed in boxes of 7. How many books are left?’) and Q6 (“There are 14 
students. None of the patients had coins. How many coins do they have altogether?”) combined 
arithmetic word problems with an arithmetic calculation problem operation (Figure 2c) because 
of the 2-step operation. Theoretically, they are expected to cluster with other problems. How-
ever, Rasch analysis of student responses placed them as difficult as arithmetic calculation items 
(Figure 2c).  
When we compared these two items with other word problems, we noted the following: the 
mean number of words in the Level 3 word problems was approximately 24 words. In contrast, 
the mean numbers of words in Q5 and Q6 were 16. Therefore, one explanation for their position 
in Figure 2c is that students find these questions easier to read, comprehend, and solve because 
of the lower word number and complexity than other Level 3, more complex items. Further-
more, the operation that students require for solving the arithmetic word problems is directly 
given in the question stems of Q5 and Q6 (e.g., they are asked to find out “How many …  
altogether” and “How many … are left”). In other words, students immediately signalled that 
Q5 and Q6 were addition and subtraction problems, and they only needed to determine the 
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correct numerical answer from the four numerical options (Table 2). As such, Q5 and Q6 re-
quire a lower level of language proficiency, one-step calculation, and lower thinking skills and 
may explain why they fall below other arithmetic word problems and into the Level 2 category. 
In contrast, all other Level 3 items demanded higher-order thinking. For example, when stu-
dents read these questions (e.g., “Does she need extra money?’ If yes, how much?”; “Mr Lee 
spent three times as much as Mr Chan”; “At least how many …”; “At most …”), they cannot 
simply compute the required answer; instead, these require a higher level of language ability, 
analysis and at least two operation steps to arrive at an answer. In other Level 3 arithmetic word 
problems, students were required to select the correct algorithm from the four algorithms (Table 
2). In other words, all other Level 3 word problems require higher-order thinking skills. 
However, aside from items Q5 and Q6, the distribution of the other items fits the structure of 
the predicted construct map based on item development (Figure 2c). Thus, basic-level students 
can solve Level 1 items, developing-level students can solve Level 1 and Level 2 items, and 
solid-level students can solve Level 1, Level 2, and Level 3 items. It is worth noting that Levels 
1 and 2 are primarily arithmetic calculation problems. At the same time, Level 3 items were 
solely arithmetic word problems. This implies that word problems can distinguish solid students 
from Developing and Basic students, which is consistent with the contention that Level 3 
questions require a higher cognitive level. In comparison, Level 1 and 2 questions were 
accessible to students with lower cognitive levels. 
However, to test the premise that word problems are more difficult and require a higher 
cognitive level than problems involving only calculation, Rasch’s Principal Components 
Analysis (PCA) of residuals was performed on all questions to test unexpectedness (Linacre, 
2012). PCA's standardized residual (loadings) was analysed after extracting the primary Rasch 
dimension. Higher factor loadings indicate substantial unexplained variance (Bond & Fox, 
2015). In other words, the residuals of these items are not the result of random noise. This 
analysis tests whether the common factor can explain variance (Linacre, 1998, p. 636).  
The items were clustered into two groups: the items that have a positive loading (from +0.01 to 
+ 0.57) make up cluster 1, and items with a negative loading (from -0.42 to -0.10) make up 
cluster 2. Thus, items represent two strands of the same latent variable. One strand comprises 
arithmetic calculation problems, and the other comprises arithmetic word problems. Items with 
higher positive loadings are primarily single-step calculation problems. By comparison, those 
with higher negative loadings were primarily word problems. Thus, these findings support the 
contention of two strands: arithmetic calculation ability and the ability to solve arithmetic word 
problems. 

4. DISCUSSION and CONCLUSION 

This work aims to validate a formative assessment based on Wilson’s (2004) four building 
blocks, which can be used to meaningfully measure students’ understanding. The current study 
illustrates a measure of primary student arithmetic ability. The data for the hypothesized model 
show evidence of reliability and validity based on the Rasch framework, with the exception of 
item Q9 (Mr Chan spent 3 dollars. Mr Lee spent 3 times as much as Mr Chan. Ms Fong spent 
3 times as much as Mr Lee. How much did Ms Fong spend?) where it reports an Infit Zstd of 
2.95 and an Outfit Zstd of 2.90. We noted that the structure of each sentence in Q9 was simple, 
but the relationship was complex. This suggests that students might comprehend individual 
sentences, but not the overall context. Thus, they must select the best algorithm instead of the 
correct numerical answer, demanding higher-order thinking, metacognition, and language 
proficiency versus the one-step mathematical operations needed for other items. We retained 
this information in the assessment analysis of the current study; however, further investigation 
is required for future research. It also points out the need to systematically analyze individual 
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test items that students may perceive differently than the teacher's original intention. Low 
person reliability indicates that there are insufficient items to evaluate the latent variable 
(Lincare, 2012). Hence, the research findings should be viewed within this limitation. Future 
research should consider adding more items to the test to enhance its reliability.  
The hypothesized model, however, shows sufficient evidence of validity, as follows: 
a) The difficulty distribution of the items follows the expected order for the construct map, 
where the difficulty for each designed item aligns with the student’s cognitive level in that 
order. 
b) The students’ performance distribution followed the structure of the person-construct map. 
Students at the Solid level could answer items that require students to evaluate, students at the 
developing level could answer items that require them to apply and analyse, and students at the 
basic level could answer items that require them to memorize and remember. The results indi-
cate that internal validity is upheld when the construct is in order, as expected (Wilson, 2004, 
p. 157–158). However, as only one student fell into the basic level, more challenging Level 1 
items may need to be added to the instrument to improve internal validity. Future research may 
need to redefine the three-level categorization of students. However, the performance of this 
cohort of students was unexpectedly higher than anticipated.  
c) Solving arithmetic calculation problems is the foundation of solving arithmetic word prob-
lems. However, the latter requires additional skills such as reading comprehension and analysis, 
pattern recognition, semantic relations, and problem-model strategies (Chiang & Chen, 2019; 
Cummins, 1991; Prakitipong & Nakamura, 2006; Riley et al., 1983; Simon, 1978; Weitheimer, 
1959). Pertinent literature supports this contention. Given the above discussions, we found that 
word problems can be categorized into simpler and more difficult items. Therefore, future re-
search is required to study the factors affecting the difficulty of word problems. 
The credibility and interpretation of the assessment information are not dependent only on the 
item content. To be instructionally useful, the items must define a meaningful hierarchy of in-
creasing difficulty in which easier items assess the conceptual understanding needed in the so-
lution of more difficult items (Alonzo & Steedle, 2009; Black et al., 2011; Fisher, 2013). In 
addition, item content must be aligned with local learning objectives if the goal of coherence is 
to be realized (Baird et al., 2017). The formative assessment in the current study provides this 
type of assessment information. Specifically, the conceptualizations of understanding about the 
topic following the four building blocks (Wilson, 2004) in the current study provide information 
on where a student stands relative to intended learning outcomes in a person construct map. 
Classroom assessment of this kind sets up information sources for teachers to formulate valua-
ble and timely feedback for students about ‘what might be useful to do next (Black & William, 
1998; Mislevy et al., 2003). This improves coherence in documenting learning, enhances class-
room feedback, and shifts focus away from grades to more authentically serve classroom as-
sessment purposes in facilitating learning at the individual level.  
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