
Informatics in Education, 2023, Vol. 22, No. 2, 209–232
© 2023 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2023.09

209

On the Use of Feedback in Learning Computer
Programming by Novices:
A Systematic Literature Mapping

Hemilis Joyse BARBOSA ROCHA1,
Patrícia CABRAL DE AZEVEDO RESTELLI TEDESCO1,
Evandro DE BARROS COSTA2

1Informatics Center, Federal University of Pernambuco, Brazil
2Computing Institute, Federal University of Alagoas, Brazil
e-mail: hjbr@cin.ufpe.br, pcart@cin.ufpe.br, evandro@ic.ufal.br

Received: September 2021

Abstract. In programming problem solving activities, sometimes, students need feedback to prog-
ress in the course, being positively affected by the received feedback. This paper presents an over-
view of the state of the art and practice of the feedback approaches on introductory programming.
To this end, we have carried out a systematic literature mapping to understand and discuss the
main approaches for providing and evaluating feedback used in the learning of novice program-
mers in the problem-solving activity. Thus, according to a formal protocol, an automatic search
was performed for papers from 2016 to 2021. As a result, 39 studies were selected for the final
analysis. As a result, we propose three different categorizations: the main approaches to providing
feedback, the main methods used in the evaluation and the main aspects and effects of the evalu-
ated feedback.

Keywords: feedback, computer programming, novices.

1. Introduction

The Problem solving skill is one of the eight key competences for sustainability in the
21st century defined by UNESCO (2017). This skill has been educationally explored in
the most diverse areas of knowledge, such as mathematics and computer programming.
In the latter, Medeiros et al. (2018), Kunkle and Allen (2016) and Koulouri et al. (2014)
consider that problem solving is an inherent skill in the computer programming learn-
ing process. In particular, aligned with these authors, Mathew et al. (2019) highlights
the relevance of the problem solving skill for introductory programming (IP) courses
for beginners.

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa210

Studies on computer education reveal that learning to program, therefore requiring
stu dents’ problem solving skills, is a difficult task, with high failure rates (Kunkle and
Allen, 2016; Koulouri et al., 2014). This situation of academic failure of students in
relation to learning programming has led to the development of research aimed at al-
leviating this type of problem or identifying its causes. In this sense, Veerasamy et al.
(2019) conducted a study and concluded that students with the profile of problem solvers
presented better grades in the programming disciplines. There are also some studies that
propose solu tions to support programming learning with computational problem solving
(Chao, 2016; Loksa et al., 2016). Despite this, in the problem solving process, students
sometimes need help to progress through the (Caspersen and Bennedsen, 2007) course.
Thus, this help can happen through feedback, where the instructor has the opportunity
to guide the students in order to improve their performance (Langer, 2011; Brusilovsky
and Weber, 1996).

Hattie and Timperley (2007), Shute (2008) and Nicol and Macfarlane-Dick (2006)
emphasize that the provision of quality feedback is crucial to the level of student suc-
cess. In the computer programming domain, effective feedback is also considered an es-
sential element in the student learning process(Corbett and Anderson, 2001; Gusukuma
et al., 2018; Marwan et al., 2019; Becker et al., 2018). While the authors agree on the
importance of good feedback, they also report that it requires a large investment of time
by teachers Nguyen et al. (2014). Aiming to reduce the instructor’s effort and to improve
feedback quality, many researchers have proposed computational tools that help (Perera
et al., 2021) programmers’ teaching and learning.

On the other hand, although feedback plays a central role in student development,
according to Hattie and Timperley (2007), poor feedback can cause problems in student
learning and even lead to dropout. Therefore, to classify feedback as good or bad, an
evaluation is necessary. (Smith et al., 2017; Stephens-Martinez and Fox, 2018; Caval-
canti et al., 2020).

Considering that novice programmers are very much affected by the feedback accord-
ing to (Marwan et al., 2020), we want to know how feedback has been provided to this
audience. To this purpose, we carried out a systematic literature mapping (SLM), seek-
ing answers to the following research questions:

RQ01: What are the main approaches used to generate feedback during learning
prob lem solving in the computer programming domain for beginners?

RQ02: How has the feedback provided in the learning problem solving activity in
the computer programming domain for beginners been evaluated?

Thus, to address these two research questions, we present an overview of the current
state of the art of research carried out in the period from 2016 to 2021. More specifi-
cally, we characterize the approaches and forms of evaluating the feedback provided to
secondary and technical students, as well as to undergraduate students. Thus, the results
obtained are discussed, pointing out, above all, how the feedback has been provided,
how it has been evaluated. Furthermore, where there are more gaps and open questions,
therefore guiding potential relevant research.

This article is organized as follows. In section 2, we present the background of con-
cepts related to the research topic. In section 3, we describe the systematic method ad-

On the Use of Feedback in Learning Computer Programming by Novices... 211

opted and in section 4, we detail the definition and execution of the systematic literature
mapping. In section 5, we present and analyze the data of the results found. In section 6,
we present the discussions of the results found. Final considerations and future work are
described in Section 7.

2. Background

This section presents some aspects of feedback, focusing on programming learning.

2.1. Overview

Glassey (2019) says that the feedback process is a cycle that includes providing feed-
back, receiving it and implementing it in the task. For Cano (2013) feedback is the pro-
cess by which students obtain information about their work, evaluating the similarities
and differences between the appropriate standards for any work, and the qualities of the
work itself, in order to generate an improved work.

The important role of feedback in guiding the learning process and supporting the
improvement of progress in student performance is widely recognized in the (Belcadhi,
2016) literature. In this sense, feedback can be used by the teacher as a resource to
identify students’ needs and thus adapt their methods and contents (Orrell, 2006). The
use of this resource can help to mitigate situations where, many times, low students’
performance can be associated with poor understanding of the requirements of the tasks
proposed to them (Rust et al., 2003).

Through feedback, the teacher has the opportunity to guide the students in order to
im prove their performance, self-efficacy and self-regulation. Friedman (2015) was the
first to conceptualize self-efficacy and defined it as one’s beliefs in their ability to orga-
nize and execute courses of action required to produce certain achievements. The work
in Zim merman (2013) characterizes self-regulation as the students’ own control and reg-
ulation of their thoughts, cognition, affection, motivation, behavior and environment, in
favor of academic goals that are feedback by means of the student’s own learning expe-
riences. Thus, for the student, feedback can help identify areas of improvement in their
knowledge or skills, and reflect on their learning strategies (Parikh et al., 2001). Hence,
we can un derstand feedback as a learning thermometer for the students and through it it
is possible to identify their strengths and weaknesses.

2.2. Quality Aspects in Feedback

Boud and Falchikov (2007) emphasizes that bad feedback can be detrimental to stu-
dents’ self-efficacy and motivation and, therefore, creating distrust in the feedback
process and in the teacher. This finding, according to these authors, has motivated the
development of research in various perspectives of feedback reporting the benefits and
impact on learning.

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa212

According to Carless et al. (2011) a study carried out in Australia and the United
King dom found that students are often dissatisfied with the feedback provided. More
specifi cally, they found that the accuracy, timeliness and consistency of the feedback
information were lacking. Jessop et al. (2014) reports that there are wide variations
in feedback prac tices, as well as inconsistencies in the quality and quantity of feed-
back. On the other hand, providing effective feedback to students is considered a key
resource in the learning pro cess. Effective feedback is understood as appropriate and
timely feedback (Mory, 2004). Being opportune, when it is provided it suits the needs
of the situation (Knight and Yorke, 2003), and appropriate if it is sufficient (Holmes and
Smith, 2003), that is, the information given in the feedback message is sufficient for the
student or a more detailed and complete feedback is needed.

Nicol and Macfarlane-Dick (2006) carried out a study where they defined seven prin-
ciples of good feedback practices. For these authors, they are considered good feedback
practices, when the feedback:

(1) Helps to clarify what good performance is.
(2) Facilitates self-assessment.
(3) Provides high-quality information to students about their learning.
(4) Encourages dialogue about learning.
(5) Encourages positive motivational beliefs and self-esteem.
(6) Offers ways to bridge gaps between the current state and the learning objective.
(7) Helps teachers shape teaching.
Principles of good feedback practices can be found widely in the literature. Thus,

re searchers have been developing work, some focusing on understanding the student’s
per ception and how they should react to receiving feedback.

2.2.1. Focus on the Student

Sadler (1989) has developed a theory of formative assessment where, in order to take
bet ter advantage of the feedback provided, the student needs to have a goal, compare
current performance with the goal, and take actions to bridge the gap between the cur-
rent state and the learning goal. In this sense, Mutch (2003) and Weaver (2006) try to
identify how stu dents should receive and act when getting feedback, analyzing, for
example, its readability. In that respect, Poulos and Mahony (2008) carried out a study
to identify the perceptions, impact and credibility of the feedback provided from the
student’s perspective.

Some authors suggest that students should acquire a set of learning strategies that
pro vide them with a foundation for taking responsibility and personal control over their
learn ing process (Schunk and Zimmerman, 1998; Zimmerman, 2013). Thus, applying
the idea of self-regulation introduced by Schunk and Zimmerman (1998), who state that
for a good feedback to be achieved, the instructor must strengthen the student’s self-
regulation capac ity Nicol and Macfarlane-Dick (2006).

Butler and Winne (1995) developed a model of self-regulation of learning. It ex-
plores the student’s ability to generate internal feedback at all stages of the learning
process.

On the Use of Feedback in Learning Computer Programming by Novices... 213

2.3. Feedback on Learning Programming

The first experience of learning programming for many students is often frustrating.
Sheard et al. (2009) are some of the authors who observed the volume of works that
point to the difficulties of introductory programming as a subject considered difficult
to learn and teach. Lahtinen et al. (2005) state that the biggest problem experienced by
beginners in programming does not seem to be the understanding of the basic concepts
of program ming logic, but the combination and proper use of these concepts in the con-
struction of a given program. That is, “putting the program pieces together” (Spohrer
and Soloway, 1989).

In the perspective of tackling the problems mentioned above, the literature em-
phasizes the importance of feedback, especially to support students in the activity of
solving pro gramming problems. Hattie and Timperley (2007) identified four levels
of feedback: task level, process level, self-regulation level and self-level (Ott et al.,
2016) use these levels to compose a feedback model for novice programmers. In this
model, they describe feedback for programming at the task, process, and self-regula-
tion levels.

Aiming to improve the quality of feedback, there are some proposals for computa-
tional tools to assist in the teaching and learning of (Perera et al., 2021) programming.
Some tools with feedback for the solution submitted by the student (Kumar, 2006) and
others that provide tips for the student to find the solution (Al-Imamy et al., 2006).

3. Related Work

When analyzing the literature, we notice that there are several works with review or
map ping studies in the teaching and learning of computer programming domain, con-
sidering different aspects. These studies analyze topics such as: aspects and evidence on
introduc tory programming (Luxton-Reilly et al., 2018); misconceptions, student mis-
conceptions in introductory programming (Qian and Lehman, 2017); elements of pro-
gramming lan guages and educational platforms (Perera et al., 2021); and previous skills,
basic knowl edge of (Medeiros et al., 2018) students. However, the works by Keuning
et al. (2016) and Keuning et al. (2018), present research specifically related to feedback
in the program ming domain, and thus they were selected as the most strongly related to
this systematic mapping.

Keuning et al. (2016) published the results obtained, using the snowballing tech-
nique, intended to discover, in the teaching tools that provided feedback, its type, the
techniques used to generate it, its adaptability and how these tools are evaluated. Lat-
er, including a database search, through the review with publications until 2015, they
complemented the research results by publishing in Keuning et al. (2018). Overall,
we consider that the studies discussed above make a relevant contribution to the area.
However, such studies do not focus on a specific target audience for programming
students.

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa214

In this study, we focused on novice programmers as our target audience and the mo-
tivation for this choice was found in the work of Marwan et al. (2020). In this work, the
author states that novice programmers are very affected by the feedback provided. Thus,
in this article, we present a systematic mapping seeking to characterize the provision of
feedback for beginning programmers in problem solving.

4. Definition and Execution of the Systematic Literature Mapping

The SLM was conducted in accordance with the guidelines proposed by Kitchenham
and Charters (2007). Thus, we will present the implementation of the SLM in two sub-
sections: definition of the review protocol and the search process.

4.1. Definition of the Review Protocol

Considering that the definition of the protocol has a significant impact on the quality
of the SLM, it is necessary to validate the (Kitchenham and Charters, 2007) protocol.
This validation can be performed through a pilot test, whose objective is to verify the
feasibility of carrying out the review, allowing the identification of necessary adjust-
ments.

The protocol definition was carried out in three steps, as shown in Fig. 1:
Pilot protocol definition: i) we formulated the protocol for the pilot test.
Pilot protocol ex ecution: ii) we applied the protocol and retrieved 40 studies for
the control group.
Definition of the final protocol: iii) we analyzed the studies from the control
group and made adjustments to the words and connectives of the string search,
added exclusion criteria, refined the inclusion criteria and enriched the research
questions.

The final version of the SLM protocol with all its elements: research questions,
exclu sion criteria, inclusion criteria and search string is presented below.

Fig. 1. Steps in the review protocol.

On the Use of Feedback in Learning Computer Programming by Novices... 215

4.1.1. Research Questions

A commonly used approach to formulating research questions is to use the PICO criteria.
Using PICO, the research questions are structured in four aspects: population, interven-
tion, comparison and Kitchenham and Charters (2007) results. Table 1 shows the PICO
attributes defined for the mapping performed.

To identify approaches to problem solving activity in teaching and learning computer
programming for beginners, two research questions were considered. They are presented
together with their motivations in Table 2.

4.1.2. Inclusion and Exclusion Criteria

After defining the research questions, in order to select the studies, the inclusion and
ex clusion criteria were elaborated. Thus, a study must be excluded if it meets any of the
exclusion criteria presented in Table 3.

In addition, for a study to be included in the SLM, it has to satisfy the inclusion cri-
teria (IC) listed in Table 4.

Based on the Kitchenham and Charters (2007) guidelines, we developed two quality
criteria: (1) clarity and consistency in reporting on the links between data, interpretation,
and conclusions; and (2) clarity in describing the approach to feedback.

Table 1
PICO

Population Current studies on the provision of feedback in problem solving activity in learning
programming for be ginners.

Intervention Assessment aspects and approaches to providing feedback in the problem solving activity.
Comparison Not applicable.
Outcomes Methodologies, computational systems and methodological tools for providing feedback in

problem solv ing activities.

Table 2
Questions

Questions Motivation

RQ01: What are the main approaches used
to generate feedback during learn-
ing problem solving in the com puter
programming domain for be ginners?

As an answer to this question, we seek to catalog the studies
that present some methodology or computa tional system for
providing feedback in the problem solving activity, in the
domain of learning computer programming for beginners.

RQ02: How has the feedback provided in the
learning problem solving activ ity in
the computer programming domain for
beginners been evalu ated?

By answering this question, we sought to character ize which
methodological instruments are being used and the aspects
of feedback are being considered in the evaluations of the
feedback provided in the problem solving activity, in the
domain of teaching and learn ing computer programming for
beginners.

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa216

4.1.3. Search String

After carrying out the process shown in Fig. 1, we have prepared the search String pre-
sented in Table 5.

4.2. Search, Selection and Classification of Studies

After defining and validating the protocol defined in the previous section, we started the
application of the protocol starting with the search for studies and followed with the se-
lection and classification of studies.

Table 3
Exclusion criteria

Exclusion criteria

CE01: The studies don’t discuss the provision of feedback to solve problems in teaching and learning
computer programming for novices

CE02: The paper is not written in English
CE03: The paper is not available for download
CE04: The file is a technical report, lecture notes, slide, poster, position paper, secondary study, editorial,

tutorial or short paper
CE05: The paper is a copy or an older version of another article already considered

Table 4
Inclusion criteria

Inclusion criteria

CI01: The study deals with providing feedback for solving problems in teach ing and learning computer
programming for novices

CI02: The study discusses the teaching of programming aimed at secondary, technical or higher education
CI03: The study is available in English in a full paper category
CI04: The article was published from 2016 to 2021

Table 5
String

String

feedback AND (student OR beginner OR novice) AND (learning OR teaching) AND pro gramming

On the Use of Feedback in Learning Computer Programming by Novices... 217

4.3. Search Process

To carry out the study search process, we adopted the following databases for the SLM:
ACM Digital Library (www.dl.acm.org), IEEE Xplore (www.ieee.org) and Science
Direct (www.sciencedirect.com). In Table 6, we present the search String together
with the filters, applied in the configuration of each engine, used in each source. These
bases were chosen because they are considered the main ones for the area.

4.3.1. Selection and Classification

After recovering the studies, we performed the selection and classification of the studies.
Thus, the primary studies were selected and classified according to the exclusion criteria
in two stages.

In the first stage, the pre-selection of studies was conducted in two moments. At
first, the review of the article characteristics was carried out by two reviewers. Thus, the
title, abstract and keywords of the studies retrieved from each source and each selected
study according to the exclusion criteria were analyzed. In the second moment, during
meetings, the reviewers discussed possible disagreements about the selection or not of
a study. We tried to eliminate as many irrelevant studies as possible, taking care that no
relevant studies were discarded. As a result, a total of 169 studies were selected.

In the second stage, the full texts of the pre-selected primary studies from the first
stage were obtained. The full text of each selected primary study was read by the review-
ers, applying the inclusion and quality criteria. And finally, the primary studies included
in the final selection correspond to the relevant articles that answered the research ques-
tions addressed in this SLM. Thus, 39 relevant studies were identified.

Since in most studies that address feedback for teaching computer programming, the
target audience and the type of programming activity are not very clear, we decided to
create a String that would encompass more articles. That is, there are studies discussed
in this mapping that, despite the target audience being novice programmers and provid-

Table 6
Source

Source Query Filter Number
of studies

ACM
Digital
Library

(“feedback” AND (“student” OR
“beginner” OR “novice”) AND (“learning”
OR “teaching”) AND “programming”)

Article Type: Research Ar ticle Search
Within: Fulltext Publication Date: 2015
to 2021

3,820

IEEE
Xplore

feedback AND (student OR begin ner OR
novice) AND (learning OR teaching) AND
programming

Search Within: Full text Publication Date:
2015 to 2021

 282

Science
Direct

(“feedback” AND (“student” OR
“beginner” OR “novice”) AND (“learning”
OR “teaching”) AND “programming”)

Article Type: Research Ar ticle
Publication title: Comput ers E Education
Publication Date: 2015 to 2021

 657

Total 4,759

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa218

ing feedback in the problem solving process, they were not being captured with other
config urations of our Search String. Therefore, we decided that the initial 5000 works
would be analyzed to avoid any important study being left out and, during the analysis,
we realized that there was a lot of duplication in the retrieved studies. In addition, the
application of inclusion and exclusion criteria CE01 and CI01 was responsible for se-
lecting 95% of the works.

5. Data Analysis

Through the elaboration of graphics, tables and discussions, we will present in this sec-
tion, the information extracted from the 39 selected articles. First, in Section 5.1, we
describe the survey we seek to get an overview of all recovered surveys. Then, in Section
5.2, we analyze the issues in Section 4.1.1. In Table 7 we list all selected works.

Table 7
Selected papers

ID References

AL21 (Alwabel, 2021)
AH18 (Ahmed et al., 2018)
AH19 (Ahmed et al., 2019)
AH20 (Ahmed et al., 2020)
BE18 (Benotti et al., 2018)
BH18 (Bhatia et al., 2018)
CH17 (Chow et al., 2017)
CO16 (Combéfis and Schils, 2016)
FE19 (Feldman et al., 2019)
DA19 (Day et al., 2019) (Day et al., 2019)
DE21 (Denny et al., 2021) (Denny et al., 2021)
ED20 (Edmison and Edwards, 2020)
ED17 (Edwards and Murali, 2017)
EN19 (Endres et al., 2019)
FA18 (Fabic et al., 2018)
GA16 (Gao et al., 2016)
HA19 (Hajja et al., 2019)
HA18 (Haldeman et al., 2018)
HR19 (Hameer and Pientka, 2019)
HO19 (Höppner, 2019)
IN21 (Indriasari et al., 2021)
JE20 (Jemmali et al., 2020)
JI20 (Jiang et al., 2020)
KA18 (Kadekar et al., 2018)
KY16 (Kyrilov and Noelle, 2016)
LA17 (Latih et al., 2017)
LO16 (Lobb and Harlow, 2016)

Continued on next page

On the Use of Feedback in Learning Computer Programming by Novices... 219

Table 7 – continued from previous page

ID References

MA20 (Marwan et al., 2020)
ME16 (Mendoza et al., 2016)
RE20 (Renzella and Cain, 2020)
SM17 (Smith et al., 2017)
SM19 (Smith et al., 2019)
ST16 (Staubitz et al., 2016)
TR18 (Treviño and Cavazos, 2018)
WA18 (Wang et al., 2018)
WA20 (Wang et al., 2020)
YA20 (Yan et al., 2020)
LI19 (Liu et al., 2019)
GU18 (Gusukuma et al., 2018)

5.1. General Analysis

The selected works are geographically distributed through 16 countries: Taiwan, Saudi
Arabia, Ireland, Sweden, UK, New Zealand, Mexico, Malaysia, India, USA, Canada,
Bel gium, Australia, Argentina, Germany and Singapore. Thus, we can observe that the
USA has a total of 26 studies, 52%, concentrating the vast majority of the selected re-
search initiatives.

In Section 4.1.2, among the inclusion criteria, we elaborated one that specifies the
lev els of education of novice programmers, we are interested in. For this reason, we show
in Fig. 2 the percentage of selected studies for each level of education. We can observe
that there is a predominance of 84% of studies aimed at novice undergraduate program-
mers, 7% for high school, 7% for technical education and a small percentage of 2% of
studies that were developed for any the level of education of the novice programmer.

Fig. 2. Distribution of surveys by level of education

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa220

5.2. Analysis Question

To answer the research questions, we extracted relevant information from the encoun-
tered articles as specified in Tables 8, 9 and 10. The articles were read and the data ex-
tracted by the authors of this paper.

5.2.1. RQ01: What Are the Main Approaches Used to Generate Feedback During
Learning Problem Solving in the Computer Programming Domain for Beginners?

In the search for answers to this question, we performed an analysis of 39 articles and
iden tified some explicit or implicit approach to generating feedback in 29 studies. To
identify the approaches in the studies, we created a spreadsheet where the following
information was extracted for each study: year, title, authors, identification of the ap-
proach and de scription of the approach. As a result of the process, we extracted six types
of analyzed works and we explain each one of them below:

Feedback with test cases (WTS) ● : in this category, feedback is generated based
on test case. Thus, the feedback message can contain one or more of the following
information: table showing the tests that were applied in the student’s solution,
input suggestions for students to test their code, or quality of test cases.
Feedback with counterexample (WAE) ● : some authors follow in their studies
that pro viding feedback using counterexamples can also be beneficial to the stu-
dent. Thus, the feedback in this category is characterized by the association of a
counterexample to each error made by the student.
Feedback with corrections for solution (CFS) ● : in this category, feedback is
generated in the form of corrections either for the student’s entire solution or
part of it.
Feedback with example of similar solution (ESS) ● : in this approach, the gen-
erated feedback contains a suggestion of a correct code example related to the
student error characteristics.
Feedback guide to the solution (GTS) ● : for generating feedback, the solution
that the student is building is considered, through tips, guiding them towards the
correct solu tion.
Feedback with error and hits identification (EHI) ● : the feedback message con-
tains identifications of possible errors or successes of the student,with the identi-
fication of the lines of code with errors.

In Table 8 we present each work associated with the respective approaches.
In Fig. 3 we display the percentage of articles classified in each category. In this

figure, we can see that 43 % of the studies work on feedback with identification of
errors and successes, followed by 22% of feedback with corrections for the solution,
11% of feedback with test cases and feedback guide for the solution, feedback with
an example of similar solution and feedback with counterexamples, all with the same
percentage of 8%.

It was also possible to observe that studies sometimes present more than one ap-
proach to feedback. Of the 16 works involving the EHI approach, 1 also provides ESS,

On the Use of Feedback in Learning Computer Programming by Novices... 221

Table 8
Information extracted from analysis question 1

Approaches References

Feedback with test cases LO16, CH17, SM17 and EN19
Feedback with counterexample GA16 and LI19
Feedback with corrections for solution DA19, AH18, HR19, JI20, RE20, WA20, HA19 and AH19
Feedback with example of similar solution WA20, AH19 and JI20
Feedback guide to the solution SM19, FE19 and HA18
Feedback with error and hits identification AL21, BE18, CO16, DA19, ED17, EN19, FE19, MA20, ME16,

RE20, FA18, MA20, FA18, ST16, BH18, WA18, HO19 and JE20

Fig. 3. Percentage of works for each category of approach

Fig. 4. Temporal distribution of categories of approaches.

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa222

which in turn, of the 3 studies with a feedback approach with ESS, 1 also implements
the CFS approach.

Analyzing the graph in Fig. 4, we can see that 2019 is the year with the largest num-
ber of published studies covering all the categories of approaches discussed above. On
the other hand, in 2021 there is only one work with one approach.

5.2.2. RQ02: How Has the Feedback Provided in the Learning Problem Solving
Activity in the Computer Programming Domain for Beginners Been Evaluated?

To answer RQ02, we invested in a deeper analysis of the studies, systematizing the
results in an electronic spreadsheet. Thus, we identified 15 works, out of a total of 39
selected in the systematic mapping, and with that, we will point out the main aspects of
evaluation of the feedback provided to novice programmers. To that end, we carried out
a two-step process: identification of evaluation methods, evaluated aspects and effects
and grouping of evaluated methods, aspects and effects. For the phase of identification of
the evaluation methods, evaluated aspects and effects, we created a spreadsheet where,
for each study, the following information was extracted: year, title, authors, method
identification, method description, aspect identifier, aspect description, effect identifier,
effect description. In the next step, in the method, aspects and effects grouping phase,
we concatenate with the same identifier all the methods, aspects or effects that presented
the same descriptions. As a result of the process, we extracted four evaluation methods,
nine aspects and four effects evaluated in the analyzed works.

Below we categorize the main instruments used in the selected studies to assess the
aspects present in Table 10:

Experiment data analysis (AD): ● This method was applied to assess the effects
of feed back on a group of students, through the analysis of data produced by
conducting a controlled experiment to analyze the aspects and effects mentioned
in Table 10.
Interview (IW): ● with this method, the feedback provided is evaluated in an in-
terview with the students to find out the students’ opinion about the aspects and
effects men tioned in the Table 10.
Open questionnaire (OQ): ● another method used to assess the feedback provided
is the application of an open questionnaire to find out the students’ opinion about
the aspects and effects mentioned in Table 10.

Table 9
Information extracted from research question

Methods References

Experiment data analysis KY16, KA18, ED20, AH20, MA20 and TR18
Interview MA20
Open questionnaire DA19, RE20 and IN21
Questionnaire using Likert scale ED17, LA17, TR18, EN19, YA20 and DE21

On the Use of Feedback in Learning Computer Programming by Novices... 223

Questionnaire using Likert scale (LS): ● the application of this method consist-
sofusing a Likert scale in a questionnaire after providing feedback to analyze the
aspects and effects mentioned in the Table 10.

In the table 9 we present the works allocated to each of the categories of evaluation
methods described above.

To better visualize how the works that showed feedback evaluation for novice pro-
grammers were distributed over the last six years, we have elaborated Fig. 5. There,
we can observe that most of the works, a total of 6, carry out the evaluation of the
feedback provided. Most were published in 2020 and and 1 was published in 2016.
In addition, we also found that most of the studies evaluated the feedback using the
experimental method and data analysis and only one study evaluated it using an in-
terview.

We present below the aspects, effects and the question of investigation of the feed-
back evaluated, through the methods discussed above, in the selected studies.

Identify the error: ● Did the feedback help the student find the error?
Fix the error: ● Did the feedback help the student correct the error?
Improve the solution: ● Did the feedback help the student to improve the existing
solu tion?
Faster completion of the solution: ● Did the feedback help the student complete
the solution faster?
Staying on course: ● Did the feedback help the student stay on course?
Involvement with the course: ● Did the feedback help the student to be more com-
mitted to the course?
Improve performance in learning programming: ● Did the feedback help the
student to improve learning performance in the programming subject?
Positive effect on grades: ● Did the feedback help the student improve their
grades?
Know the cause of the error: ● Did the feedback help the student complete the
solution faster?
Feedback usefulness: ● Did the student find the feedback helpful?
Feedback speed: ● How quickly was feedback provided?

Fig. 5. Temporal distribution of assessment instruments.

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa224

Completeness of feedback: ● How complete does the student consider the feed-
back?
Quality of feedback: ● What is the quality of the feedback?

We present in Table 10 the association of each selected work, for this question, to the
category of aspects and effects of the evaluated feedback.

We have distributed the works, according to the aspects and feedback effects, in the
six years specified for this systematic mapping and presented in Fig. 6. By observing
the graph, we notice that the category Faster completion of the solution (FCS) has the
largest number of associated works, being published in 2016, 2018, 2020 and 2021. The
categories Improve the solution (ITS), Faster completion of the solution (FCS)), Staying
on course (SOC), Involvement with the course (ITC), Improve performance in learning
programming (PLP), Feedback speed (FES) and Completeness of feedback (COF) only
have works published in 2020.

In our last analysis of the selected works on this question, we relate the categories of
the methods to the aspects and effects and present the graph in Fig. 7. With this resource,

Table 10
Method extracted: RQ02

Information extracted References

Feedback Aspects Identify the error (ITE)
Fix the error (FTE)
Improve the solution (ITS)
Faster completion of the solution (FCS)
Staying on course (SOC)
Involvement with the course (ITC)
Improve performance in learning programming (PLP)
Positive effect on grades (PEG)
Know the cause of the error (KCE)

KY16, KA18 and EN19
KY16, KA18, YA20 and DE21
ED20 and AH20
ED20
MA20
MA20
MA20
TR18
DE21

Feedback Effects Feedback usefulness (FEU)
Feedback speed (FES)
Completeness of feedback (COF)
Quality of feedback (QOF)

DA19, MA20 e LA17
RE20
RE20
ED17, IN21 and EN19

Fig. 6. Time distribution of evaluation aspects.

On the Use of Feedback in Learning Computer Programming by Novices... 225

we can make an interpretation that has two dimensions: the categories of aspects and
effects evaluated in relation to the categories of evaluation methods and the categories
of evaluation methods in relation to the categories of aspects and effects evaluated. In
addition, it is noteworthy that the evaluations reported in the works generally consider
more than one aspect or effect to be evaluated.

When we analyze the graph from the perspective of the first interpretation dimen-
sion, we can see that:

The categories Identify the error (ITE), Improve the solution (ITS) and Fix the (i)
error (FTE) aspects were evaluated using the same categories of methods.
The categories Faster completion of the solution (FCS) and Staying on course (ii)
(SOC) were evaluated only with the Experiment data analysis method.
The categories Improve performance in learning programming (PLP), Feedback (iii)
speed (FES) and Completeness of feedback (COF) were evaluated by only the
Open questionnaire method.
The Feedback usefulness (FEU) category has the greatest variety of evaluation (iv)
methods.

If we interpret the graph in the sense of the methods in relation to the aspects and ef-
fects evaluated, we can carry out the following analyzes: (i) The Questionnaire method
using a Likert scale (LS) was used to assess the variety of aspects and effects and it is
present in most studies; and (ii) the Interview method (IW) was applied in the smallest
variety of aspects and studies.

6. Discussions

As presented in the previous section, the mapping process resulted in the selection of
39 studies. With the extraction of data from the studies, we developed Fig. 2, where we
identified a lack of research aimed at providing feedback to students attending secondary
and technical courses. For the vast majority of studies have undergraduate students as
their target audience, since there are secondary studies whose focus is on these Ott et al.
(2016) students.

Fig. 7. Relationship assessment instrument versus assessed aspects and effects.

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa226

Analyzing the first research question, we realized that the feedback approach with
iden tification of hits and misses is the most present. There was little concern about good
feed back practices developed by Nicol and Macfarlane-Dick (2006), as most messages
are binary, that is, only informing whether students got it wrong or right. However, in
the work of Marwan et al. (2020), the authors are concerned with self-regulation, since
the tool has an objective detector. Here, the student code is continuously checked in real
time to determine what goal the students are working on and whether they have achieved
it correctly or not. In addition, it provides motivational messages in case the student fails
to reach any goals in the last few minutes of work.

The results obtained with the extraction of data for the second question, point to the
evaluation methods, aspects and evaluated effects. Regarding the methods, we grouped
the works into 4 methods: Experiment data analysis, Interview, Open questionnaire
and Questionnaire using Likert scale. We noticed that the most used methods are Ex-
periment data analysis and Questionnaire using Likert scale. In addition, we found that
researchers are more concerned with evaluating whether the feedback provided helps
the student in the aspects of error identification, error correction and improvement of
the solution. Re garding the effects of feedback, the most evaluated were the usefulness
and quality of the feedback.

6.1. Open Questions

Some questions for inclusion in the research script about providing feedback in the prob-
lem solving process in teaching and learning computer programming emerged from this
mapping.

During the analysis of the selected works, we noticed that feedback is not always
auto matically provided by the system. Therefore, we believe that it is worth an inves-
tigation to understand what are the main sources of feedback provided and how feed-
back for novice programmers has been generated in the systems. Another interesting
research question is to understand how the approaches discussed here are presented to
the student. You can find out, for example, whether the feedback is presented visually
or just text.

The last question whose answer could be extracted from the selected works refers to
the solution’s diagnostic technique. Thus, we understand that the quality of feedback is
also associated with the level of analysis of the student’s solution. In this way, it is pos-
sible to discover and categorize the main analysis techniques of the solution provided
by the student.

On the other hand, for Nguyen et al. (2014) helping individual students with their
prob lems requires a large investment of instructor time. Therefore, several works se-
lected in this mapping have solutions for automated, but not personalized, feedback.
The personal ized feedback approach is the main gap identified in these works. Thus, a
possible solution to implement the personalized feedback approach would be through an
intelligent tutoring system Pillay (2003). According to Barnes and Stamper (2008) based
on historical student data, more advanced automated assessment systems can diagnose
student programs and customize feedback for students.

On the Use of Feedback in Learning Computer Programming by Novices... 227

6.2. Study Limitations

Like previously published secondary studies, this mapping has the following limita-
tions:

Preparation of the search string: ● During the definition of the pilot protocol, it
was noticed that some authors do not use the words “novices” or “beginner”,
although the study deals with programming for beginners. Therefore, we have
also inserted the word “student” in the conjunction of the String.
Publication bias: ● Due to the large number of articles analyzed in the pre-selec-
tion stage, important articles may have gone unnoticed in the analysis of titles,
abstracts and keywords. To mitigate this limitation, the three authors of this
mapping participated in the pre-selection stage of the studies. In addition, the
search string was carefully constructed using even a pilot protocol as discussed
in Section 4.1.
Study data selection and extraction: ● Threats related to the data selection and
extrac tion stage have been mitigated by providing a detailed definition of inclu-
sion, exclusion and quality criteria. We defined and documented a protocol for
study selection and all authors performed the selection together, discussing the
selection until consensus was reached.

7. Final Considerations

In this research, we present the results of a SLM on approaches and forms of feedback
assessment for teaching and learning programming for novice programmers. The search
was carried out with the goal of selecting studies published internationally in the last 6
years. This search resulted in the pre-selection of 169 articles, among which 39 were
included for data extraction.

We performed the extraction of data from the studies using two strategies: overview
and view of research questions. For an overview, we categorized studies by educational
level and made a geographical distribution of selected studies. As a response to RQ1, we
identified six approaches used in providing feedback to novice programmers. As a re-
sponse to RQ2, we characterized four assessment methods for feedback and 13 assessed
aspects and effects.

In future research, which is already underway, we intend to carry out a systematic
re view addressing the complementary issues raised in Section 6. To that end, the authors
intend to create a systematic review dedicated to the investigation of sources, form of
pre sentation and moments of providing feedback for novice programmers. Another work
that is also in progress is a systematic review to investigate how much the feedback
provided to novice programmers is in line with the idea of computational thinking Wing
(2006).

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa228

References

Ahmed, U.Z., Kumar, P., Karkare, A., Kar, P., Gulwani, S. (2018). Compilation error repair: for the student
programs, from the student programs. In: Proceedings of the 40th International Conference on Software
Engineering: Software Engineering Education and Training, pp. 78–87.

Ahmed, U.Z., Sindhgatta, R., Srivastava, N., Karkare, A. (2019). Targeted example generation for compilation
errors. In: 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.
327–338. IEEE.

Ahmed, U.Z., Srivastava, N., Sindhgatta, R., Karkare, A. (2020). Characterizing the pedagogical benefits
of adaptive feedback for compilation errors by novice programmers. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Software Engineering Education and Training,
pp. 139–150.

Al-Imamy, S., Alizadeh, J., Nour, M.A. (2006). On the development of a programming teaching tool: The
effect of teaching by templates on the learning process. Journal of Information Technology Education:
Research, 5(1), 271–283.

Alwabel, A. (2021). CoEdit: A novel error correction mechanism in compilers using spelling correction algo-
rithms. Journal of King Saud University-Computer and Information Sciences.

Barnes, T., Stamper, J. (2008). Toward automatic hint generation for logic proof tutoring using historical stu-
dent data. In: International Conference on Intelligent Tutoring Systems, pp. 373–382. Springer.

Becker, B.A., Goslin, K., Glanville, G. (2018). The effects of enhanced compiler error messages on a syntax
error debugging test. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Educa-
tion, pp. 640–645.

Belcadhi, L.C. (2016). Personalized feedback for self assessment in lifelong learning environments based on
semantic web. Computers in Human Behavior, 55, 562–570.

Benotti, L., Aloi, F., Bulgarelli, F., Gomez, M.J. (2018). The effect of a Web-based coding tool with automatic
feedback on students’ performance and perceptions. In: Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education, pp. 2–7.

Bhatia, S., Kohli, P., Singh, R. (2018). Neuro-symbolic program corrector for introductory programming as-
signments. In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 60–
70. IEEE.

Boud, D., Falchikov, N. (2007). Rethinking Assessment in Higher Education: Learning for the Longer term.
Rout-ledge.

Brusilovsky, P., Weber, G. (1996). Collaborative example selection in an intelligent example-based program-
ming environment.

Butler, D.L., Winne, P.H. (1995). Feedback and self-regulated learning: A theoretical synthesis. Review of
Edu cational Research, 65(3), 245–281.

Carless, D., Salter, D., Yang, M., Lam, J. (2011). Developing sustainable feedback practices. Studies in Higher
Education, 36(4), 395–407.

Caspersen, M.E., Bennedsen, J. (2007). Instructional design of a programming course: a learning theoret-
ic ap proach. In: Proceedings of the Third International Workshop on Computing Education Research,
pp. 111–122.

Cavalcanti, A.P., Diego, A., Mello, R.F., Mangaroska, K., Nascimento, A., Freitas, F., Gašević, D. (2020). How
good is my feedback? a content analysis of written feedback. In: Proceedings of the Tenth International
Con ference on Learning Analytics & Knowledge, pp. 428–437.

Chao, P.-Y. (2016). Exploring students’ computational practice, design and performance of problem-solving
through a visual programming environment. Computers & Education, 95, 202–215.

Chow, S., Yacef, K., Koprinska, I., Curran, J. (2017). Automated data-driven hints for computer programming
students. In: Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personaliza-
tion, pp. 5–10.

Combéfis, S., Schils, A. (2016). Automatic programming error class identification with code plagiarism-based
clustering. In: Proceedings of the 2nd International Code Hunt Workshop on Educational Software Engi-
neering, pp. 1–6.

Corbett, A.T., Anderson, J.R. (2001). Locus of feedback control in computer-based tutoring: Impact on learn-
ing rate, achievement and attitudes. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 245–252.

On the Use of Feedback in Learning Computer Programming by Novices... 229

Day, M., Penumala, M.R., Gonzalez-Sanchez, J. (2019). Annete: An intelligent tutoring companion embed ded
into the eclipse IDE. In: 2019 IEEE First International Conference on Cognitive Machine Intelligence
(CogMI), pp. 71–80. IEEE.

Denny, P., Prather, J., Becker, B.A., Mooney, C., Homer, J., Albrecht, Z.C., Powell, G.B. (2021). On designing
programming error messages for novices: Readability and its constituent factors. In: Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems, pp. 1–15.

Edmison, B., Edwards, S.H. (2020). Turn up the heat!: Using heat maps to visualize suspicious code to help
students successfully complete programming problems faster. In: 2020 IEEE/ACM 42nd Interna tional
Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET), pp.
34–44. IEEE.

Edwards, S.H., Murali, K.P. (2017). CodeWorkout: short programming exercises with built-in data collection.
In: Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer Science Educa-
tion, pp. 188–193.

Endres, M., Sakkas, G., Cosman, B., Jhala, R., Weimer, W. (2019). InFix: automatically repairing novice
pro gram inputs. In: 2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 399–410. IEEE.

Fabic, G.V.F., Mitrovic, A., Neshatian, K. (2018). Adaptive problem selection in a mobile Python tutor. In:
Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization, pp. 269–
274.

Feldman, M.Q., Wang, Y., Byrd, W.E., Guimbretière, F., Andersen, E. (2019). Towards answering “Am I on
the right track?” automatically using program synthesis. In: Proceedings of the 2019 ACM SIGPLAN Sym-
posium on SPLASH-E, pp. 13–24.

Friedman, H.S. (2015). Encyclopedia of mental health.
Gao, J., Pang, B., Lumetta, S.S. (2016). Automated feedback framework for introductory programming cours-

es. In: Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education, pp. 53–58.

Glassey, R. (2019). Developing feedback analytics: Discovering feedback patterns in an introductory course.
In: Proceedings of the ACM Conference on Global Computing Education, pp. 37–43.

Gusukuma, L., Bart, A.C., Kafura, D., Ernst, J. (2018). Misconception-driven feedback: Results from an
experi mental study. In: Proceedings of the 2018 ACM Conference on International Computing Education
Research, pp. 160–168.

Hajja, A., Hunt, A.J., McCauley, R. (2019). PolyPy: A Web-Platform for Generating Quasi-Random Python
Code and Gaining Insights on Student Learning. In: 2019 IEEE Frontiers in Education Conference (FIE),
pp. 1–8. IEEE.

Haldeman, G., Tjang, A., Babeş-Vroman, M., Bartos, S., Shah, J., Yucht, D., Nguyen, T.D. (2018). Providing
meaningful feedback for autograding of programming assignments. In: Proceedings of the 49th ACM Tech-
nical Symposium on Computer Science Education, pp. 278–283.

Hameer, A., Pientka, B. (2019). Teaching the art of functional programming using automated grading (experi-
ence report). Proceedings of the ACM on Programming Languages, 3(ICFP), 1–15.

Hattie, J., Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112.
Holmes, L.E., Smith, L.J. (2003). Student evaluations of faculty grading methods. Journal of Education for

Business, 78(6), 318–323.
Höppner, F. (2019). Measuring instruction comprehension by mining memory traces for early formative feed-

back in Java courses. In: Proceedings of the 2019 ACM Conference on Innovation and Technology in Com-
puter Science Education, pp. 105–111.

Indriasari, T.D., Luxton-Reilly, A., Denny, P. (2021). Investigating Accuracy and Perceived Value of Feedback
in Peer Code Review Using Gamification. In: Proceedings of the 26th ACM Conference on Innovation and
Technology in Computer Science Education V. 1, pp. 199–205.

Jemmali, C., Kleinman, E., Bunian, S., Almeda, M.V., Rowe, E., Seif El-Nasr, M. (2020). MAADS: Mixed-
Methods Approach for the Analysis of Debugging Sequences of Beginner Programmers. In: Proceedings
of the 51st ACM Technical Symposium on Computer Science Education, pp. 86–92.

Jessop, T., El Hakim, Y., Gibbs, G. (2014). The whole is greater than the sum of its parts: a large-scale study
of students’ learning in response to different programme assessment patterns. Assessment & Evaluation in
Higher Education, 39(1), 73–88.

Jiang, L., Rewcastle, R., Denny, P., Tempero, E. (2020). CompareCFG: Providing Visual Feedback on Code
Quality Using Control Flow Graphs. In: Proceedings of the 2020 ACM Conference on Innovation and
Tech nology in Computer Science Education, pp. 493–499.

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa230

Kadekar, H.B., Sohoni, S., Craig, S.D. (2018). Effects of error messages on students’ ability to understand and
fix programming errors. In: 2018 IEEE Frontiers in Education Conference (FIE), pp. 1–8. IEEE.

Keuning, H., Jeuring, J., Heeren, B. (2016). Towards a systematic review of automated feedback generation
for programming exercises. In: Proceedings of the 2016 ACM Conference on Innovation and Technology
in Computer Science Education, pp. 41–46.

Keuning, H., Jeuring, J., Heeren, B. (2018). A systematic literature review of automated feedback generation
for programming exercises. ACM Transactions on Computing Education (TOCE), 19(1), 1–43.

Kitchenham, B., Charters, S. (2007). Guidelines for performing systematic literature reviews in software engi-
neering.

Knight, P., Yorke, M. (2003). Assessment, learning and employability.
Koulouri, T., Lauria, S., Macredie, R.D. (2014). Teaching introductory programming: A quantitative evalua-

tion of different approaches. ACM Transactions on Computing Education (TOCE), 14(4), 1–28.
Kumar, A.N. (2006). Explanation of step-by-step execution as feedback for problems on program analysis, and

its generation in model-based problem-solving tutors. Technology, Instruction, Cognition and Learning
(TICL) Journal, 4(1), 65–107.

Kunkle, W.M., Allen, R.B. (2016). The impact of different teaching approaches and languages on student
learn ing of introductory programming concepts. ACM Transactions on Computing Education (TOCE),
16(1), 1–26.

Kyrilov, A., Noelle, D.C. (2016). Do students need detailed feedback on programming exercises and can auto-
mated assessment systems provide it? Journal of Computing Sciences in Colleges, 31(4), 115–121.

Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M. (2005). A study of the difficulties of novice programmers. ACM
SIGCSE Bulletin, 37(3), 14–18.

Langer, P. (2011). The use of feedback in education: a complex instructional strategy. Psychological Reports,
109(3), 775–784.

Latih, R., Bakar, M.A., Jailani, N., Ali, N.M., Salleh, S.M., Zin, A.M. (2017). PC 2 to support instant feed back
and good programming practice. In: 2017 6th International Conference on Electrical Engineering and
Informatics (ICEEI), pp. 1–5. IEEE.

Liu, X., Wang, S., Wang, P., Wu, D. (2019). Automatic grading of programming assignments: an approach
based on formal semantics. In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET), pp. 126–137. IEEE.

Lobb, R., Harlow, J. (2016). Coderunner: A tool for assessing computer programming skills. ACM Inroads,
7(1), 47–51.

Loksa, D., Ko, A.J., Jernigan, W., Oleson, A., Mendez, C.J., Burnett, M.M. (2016). Programming, problem
solving, and self-awareness: Effects of explicit guidance. In: Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, pp. 1449–1461.

Luxton-Reilly, A., Albluwi, I., Becker, B.A., Giannakos, M., Kumar, A.N., Ott, L., Paterson, J., Scott, M.J.,
Sheard, J., Szabo, C. (2018). Introductory programming: a systematic literature review. In: Proceedings
Com panion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science
Education, pp. 55–106.

Marwan, S., Jay Williams, J., Price, T. (2019). An evaluation of the impact of automated programming hints
on performance and learning. In: Proceedings of the 2019 ACM Conference on International Computing
Education Research, pp. 61–70.

Marwan, S., Gao, G., Fisk, S., Price, T.W., Barnes, T. (2020). Adaptive immediate feedback can improve
novice programming engagement and intention to persist in computer science. In: Proceedings of the 2020
ACM Conference on International Computing Education Research, pp. 194–203.

Mathew, R., Malik, S.I., Tawafak, R.M. (2019). Teaching Problem Solving Skills using an Educational Game
in a Computer Programming Course. Informatics in Education, 18(2), 359–373.

Medeiros, R.P., Ramalho, G.L., Falcão, T.P. (2018). A systematic literature review on teaching and learning
introductory programming in higher education. IEEE Transactions on Education, 62(2), 77–90.

Mendoza, B., Reyes-Alamo, J., Wu, H., Carranza, A., Zavala, L. (2016). iPractice: a self-assessment tool for
students learning computer programming in an urban campus. Journal of Computing Sciences in Colleges,
31(3), 93–100.

Mory, E.H. (2004). Feedback research revisited.
Mutch, A. (2003). Exploring the practice of feedback to students. Active Learning in Higher Education, 4(1),

24–38.
Nguyen, A., Piech, C., Huang, J., Guibas, L. (2014). Codewebs: scalable homework search for massive open

online programming courses. In: Proceedings of the 23rd International Conference on World Wide web,
pp. 491–502.

On the Use of Feedback in Learning Computer Programming by Novices... 231

Nicol, D.J., Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model and sev-
en principles of good feedback practice. Studies in Higher Education, 31(2), 199–218.

Orrell, J. (2006). Feedback on learning achievement: rhetoric and reality. Teaching in Higher Education, 11(4),
441–456.

Ott, C., Robins, A., Shephard, K. (2016). Translating principles of effective feedback for students into the CS1
context. ACM Transactions on Computing Education (TOCE), 16(1), 1–27.

Parikh, A., McReelis, K., Hodges, B. (2001). Student feedback in problem based learning: a survey of 103 final
year students across five Ontario medical schools. Medical Education, 35(7), 632–636.

Perera, P., Tennakoon, G., Ahangama, S., Panditharathna, R., Chathuranga, B. (2021). A Systematic Review of
Introductory Programming Languages for Novice Learners. IEEE Access.

Pillay, N. (2003). Developing intelligent programming tutors for novice programmers. ACM SIGCSE Bulletin,
35(2), 78–82.

Poulos, A., Mahony, M.J. (2008). Effectiveness of feedback: The students’ perspective. Assessment & Evalu-
ation in Higher Education, 33(2), 143–154.

Qian, Y., Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: A
literature review. ACM Transactions on Computing Education (TOCE), 18(1), 1–24.

Renzella, J., Cain, A. (2020). Enriching programming student feedback with audio comments. In: 2020 IEEE/
ACM 42nd International Conference on Software Engineering: Software Engineering Education and
Training (ICSE-SEET), pp. 173–183. IEEE.

Rust, C., Price, M., O’DONOVAN, B. (2003). Improving students’ learning by developing their understanding
of assessment criteria and processes. Assessment & Evaluation in Higher Education, 28(2), 147–164.

Sadler, D.R. (1989). Formative assessment and the design of instructional systems. Instructional Science,
18(2), 119–144.

Schunk, D.H., Zimmerman, B.J. (1998). Self-regulated Learning: From Teaching to Self-reflective Practice.
Guil ford Press, New York.

Sheard, J., Simon, S., Hamilton, M., Lönnberg, J. (2009). Analysis of research into the teaching and learning
of programming. In: Proceedings of the fifth International Workshop on Computing Education Research
Work shop, pp. 93–104.

Shute, V.J. (2008). Focus on formative feedback. Review of educational research, 78(1), 153–189.
Smith, R., Tang, T., Warren, J., Rixner, S. (2017). An automated system for interactively learning software

testing. In: Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer Science
Education, pp. 98–103.

Smith, R., Tang, T., Warren, J., Rixner, S. (2019). Auto-generating visual exercises for learning program se-
mantics. In: Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science
Education, pp. 360–366.

Spohrer, J.C., Soloway, E. (1989). Simulating student programmers. In: IJCAI (Vol. 89), pp. 543–549. Cite-
seer.

Staubitz, T., Klement, H., Teusner, R., Renz, J., Meinel, C. (2016). CodeOcean-A versatile platform for practi-
cal programming excercises in online environments. In: 2016 IEEE Global Engineering Education Confer-
ence (EDUCON), pp. 314–323. IEEE.

Stephens-Martinez, K., Fox, A. (2018). Giving hints is complicated: understanding the challenges of an auto-
mated hint system based on frequent wrong answers. In: Proceedings of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education, pp. 45–50.

Treviño, Y.M., Cavazos, M.R.L. (2018). Effects of immediate feedback using ICT in a CS1 course that imple-
ments Mastery Learning. In: 2018 IEEE Frontiers in Education Conference (FIE), pp. 1–5. IEEE.

UNESCO (2017). Education for sustainable development goals: Learning objectives.
Veerasamy, A.K., D’Souza, D., Lindén, R., Laakso, M.-J. (2019). Relationship between perceived problem-

solving skills and academic performance of novice learners in introductory programming courses. Journal
of Computer Assisted Learning, 35(2), 246–255.

Wang, K., Singh, R., Su, Z. (2018). Search, align, and repair: data-driven feedback generation for introduc-
tory programming exercises. In: Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 481–495.

Wang, W., Rao, Y., Zhi, R., Marwan, S., Gao, G., Price, T.W. (2020). Step tutor: Supporting students through
step-by-step example-based feedback. In: Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education, pp. 391–397.

Weaver, M.R. (2006). Do students value feedback? Student perceptions of tutors’ written responses. Assess-
ment & Evaluation in Higher Education, 31(3), 379–394.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

H.J. Barbosa Rocha, P. Cabral de Azevedo Restelli Tedesco, E. de Barros Costa232

Yan, Y.-X., Wu, J.-P., Nguyen, B.-A., Chen, H.-M. (2020). The impact of iterative assessment system on pro-
gramming learning behavior. In: Proceedings of the 2020 9th International Conference on Educational and
Information Technology, pp. 89–94.

Zimmerman, B.J. (2013). From cognitive modeling to self-regulation: A social cognitive career path. Educa-
tional Psychologist, 48(3), 135–147.

H.J. Barbosa Rocha is a teacher of Informatics at Federal Institute of Alagoas, in
a rural school in the northeast of Brazil. She received a B.S. degree in Information
System from the Faculty of Alagoas (FAL), Brazil, in 2009, an M.Sc. degree Knowl-
edge Computational Modeling in from the Federal University of Alagoas, Brazil, in
2012. Currently, she is a PhD student at Federal University of Pernambuco, Brazil,
working on adaptive and personalized feedback for the programming domain. Her
research interests include Intelligent Tutoring Systems, Student Modeling and Adap-
tive Feedback, as well as Knowledge Representation and Reasoning, Personalized
Recommender Systems.

P. Cabral de Azevedo Restelli Tedesco is an Associate Professor in Computer Sci-
ence at the Centro de Informática of the Federal University of Pernambuco – UFPE.
She is has got her undergraduate degree from UFPE in 1994, ther MSc from the same
university in 1997 and her PhD from the Computer Based Learning Unit-University of
Leeds, where she has worked under the supervision of Prof. John Self. She has experi-
ence in the Computer Science Field, with a focus on Artificial Intelligence applied to
Education, having published more than a 100 papers and supervised many graduate
students in the field.

E. de Barrros Costa is Professor at Federal University of Alagoas, Brazil. He re-
ceived a B.S. degree in Computer Science from Federal University of Paraiba (UFPB),
Brazil in 1988, an M.Sc. and a Ph.D degree in Electrical Engineering from UFPB in
1989 and 1997. His research interests include Intelligent Tutoring Systems, knowl-
edge repre sentation and reasoning, personalized recommendation systems, machine
learning and multiagent systems.

