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Abstract
The construction of prediction models reflecting players’ learning performance in serious games currently faces
various challenges for learning analytics. In this study, we design, implement, and field test a learning analytics
system for a serious game, advancing the field by explicitly showing which in-game features correspond to dif-
ferences in learner performance. We then deploy and test a system that provides instructors with clear signals
regarding student learning and progress in the game, which instructors could depend upon for interventions. Within
the study, we examined, coded, and filtered a substantial gameplay corpus, determining expertise in the game.
Mission HydroSci (MHS) is a serious game that teaches middle-school students water science. Using our logging
system, designed and implemented along with game design and development, we captured around 60 in-game
features from the gameplay of 373 students who completed Unit 3 of MHS in its first field test. We tested eight
hypotheses during the field test and presented this paper’s results to participating teachers. Our findings reveal
several features with statistical significance that will be critical for creating a validated prediction model. We discuss
how this work will help future research establish a framework for designing analytics systems for serious games and
advancing gaming design and analytics theory.

Notes for Practice

• Our study constructs a foundation for future development of learning prediction models and takes a small
step forward in the domain of learning analytics in serious games. Although previous studies with pre-
and post-tests have shown the potential for serious games to improve learning, comprehensive analytics
is still inadequate. This motivates our development of a granular, learning-focused logging and analytic
system, designed alongside the game, to create hypothesis-driven analysis. This study shows that features
generated from our logging system distinguish the learning performance of expert and novice students.

• Our results illustrate that students with different expertise levels behave differently in specific ways, including
size of the game area explored, task completion speed, in-game event sharing, and other key tasks.

• Instructors can conduct appropriate interventions based on the analytic results, which provide meaningful
indicators of student progress.

• Designers can refine their game designs based on findings from the logging system to improve the
gameplay flow and optimize learning experiences for students of different expertise levels.
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1. Introduction
Serious games can help players improve motor and cognitive skills in a specific knowledge domain. The use of serious games
for learning includes entertainment-oriented video games, which engage students in ways that complement the subject matter
curriculum. If a game proves engaging and relevant to a curriculum, it may be able to increase student interest in a subject,
which increases learning (K. Renninger, 2010; K. Renninger et al., 2011; K. A. Renninger, 2012). Given the potential of serious
games to close learning gaps in STEM disciplines for students across various cultural and economic categories, connecting
student assessments to gameplay is essential for understanding how and to what extent particular games aid learning. The first
step toward in-game assessment is identifying activity patterns strongly correlated with in-game success based on curricular
features designed into a specific game. Such features may also reveal hints that help researchers know under what circumstances
student players will most likely abandon a serious game or fail in its execution.

Identifying appropriate in-game features to predict serious game success, particularly learning the material through the
serious game, remains a persistent challenge (Fulmore, 2015; Clarke-Midura et al., 2015; Liu et al., 2016). Comparisons of
pre-test and post-test student performance in other studies confirm that serious games can improve learning (Fridenson-Hayo
et al., 2017; Chaves et al., 2015; Chittaro & Buttussi, 2015). The more closely a game connects to the curriculum it is designed
for, the more likely it is that learning gains will be in evidence (Barzilai & Blau, 2014). However, what is missing from prior
studies are analytical systems designed to make student learning gains visible to teachers through integration with the serious
game, enabling learning-focused intervention.

There are two primary shortcomings in the connection between gaming analytics and teacher understanding of learning in
prior studies. First, most analyzed logs are not designed alongside the game and do not provide explicit evidence of learning
in gameplay. Instead, prior studies use a kind of technological side effect of the existence of logs. In analytics driven by
technological side effects, the analytics produced are structurally disconnected from the learning-connected features of a game
and, therefore, insufficient for prediction. Second, current logging systems capture high-level information, ignoring different
game quests’ properties and restricting prediction capabilities. Logging data not tuned to capture critical learning events is
narrower and shallower than the data collection we designed into MHS. More commonly available incidental logs rely on
machine learning and data mining to discern any value, often with disappointing results. In addition, narrow logs have a low
likelihood of generating features or predictors that accurately reflect similarities in players’ gameplay and distinguish between
players who learned and those who did not.

One previous article presents an innovative way to measure students’ learning behaviours under a game-based-learning
virtual environment (Cutumisu et al., 2015). Their in-game learning assessment uses a learning theory framework called SRL
(self-regulated learning). They designed and developed a simple game to test their hypothesis, asking students to create posters
that satisfy customers’ requirements and follow the design theories. In-game characters provided feedback to participants about
their finished posters. Participants then chose to move on to the next design task or go back to revise the current poster. The
paper showed that logging data, such as frequency of reading constructive feedback, time spent reading constructive feedback,
and the resulting total edits, correlates with academic post-test scores and excellent in-game performance, measured by the
number of posts with favourable evaluations. The authors concluded that these results fit within the SRL theory applied through
the analysis of game-embedded assessments. However, this study used a simple game that did not require user navigation
through a virtual space, requiring the performance of only one type of task.

To close the gap in gaming analytics effectiveness and applicability in more complex game environments, we designed a
logging system for Mission HydroSci (MHS) alongside the game itself. Such intentional, learning-focused design is urgently
required, alongside rigorous research of its implementation. Ambitious design goals like integration of analytics and gameplay
face four intertwined challenges: (1) identifying and distinguishing between different levels of engagement with the game;
(2) determining which game components make the most significant contributions to learning; (3) building gaming analytics
that distinguishes between game skill and subject matter knowledge achievements (Caballero-Hernández et al., 2017); and
(4) constructing gaming analytics for more complex, curriculum-centred serious games. These gaps emerge from software
development routines surrounding the creation of game logs that are distinct from the development of analytics, resulting in an
imperfect connection between what is logged by the game and the analytics that is most likely to be valid.

We applied a theory of transformational play (Barab et al., 2010) throughout the game design and development process
for MHS and explicitly connected game log design decisions with game design choices and their intended learning outcomes.
In this way, we operationalized the complexity of measuring player success through defined “gates” that serve as signals of
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subject matter learning in MHS. Furthermore, MHS analytics identifies player interaction patterns that are antecedent to explicit
learning achievements, increasing the potential of MHS to (a) provide player advice that nudges them toward success, (b)
enhance clear indicators of gaming achievements, and (c) serve as potential implicit indicators of the types of productive failure
(Kapur, 2008) that lead to learning.

We describe related, prior work in gaming analytics and present an overview of MHS and its core gaming analytics features
in the rest of this paper. Next, we describe the present study and the eight hypotheses we test, using gaming analytics and player
learning outcomes from 373 players in the first empirical evaluation of MHS’s analytics system. Our findings show that our
design can identify explicit learning achievements through game log analysis, classify antecedent behaviours associated with
those achievements, identify implicit game behavioural patterns associated with gameplay expertise, and distinguish these from
behavioural patterns associated with learning. We close by discussing the gaming analytics landscape and outlining our next
steps.

2. Literature Review
Models linking patterns of player engagement in serious games to learning and performance outside the game context are
missing in research on contemporary games for learning. Closing this gap will require sufficiently detailed logs of the choices
made by players during a serious game and the subsequent use of these logs to construct computational models. Predicting
player learning outcomes and distinguishing them from gaming achievements is a goal for the field that builds on a substantial
series of work. This paper will discuss vital features that potentially become significant components of an interpretable validated
prediction model. Detailed computational model construction procedures are part of our ongoing research and beyond the
scope of this paper.

2.1 Gaming Analytics Validity Questions
Gaming analytics utility requires evaluations showing that what a teacher sees is valid. Validity indicators express confidence
through probability measures about the relationship between these measures and a learning result. The operationalization of
learning effectiveness indicators is critical for parents, teachers, and individuals who expect subject matter knowledge to result
from serious gameplay (All et al., 2015). For example, research that builds video games with embedded, formative assessment
designs seems likely to help evaluate whether or not persisting in video games transfers to persistence in other learning contexts
(Ventura & Shute, 2013).

2.2 Semantics and Grammars of Behaviour
It is not the discrete click of a button that yields clues to the relationship between learning and gameplay but the assembly of
interaction sequences of gameplay. We refer to these recurrent, predictive sequences as “event grammars” (Hauge et al., 2014).
Identifying behavioural patterns with valid, valuable connections to gameplay skill and subject matter learning requires log data
with at least a conceptual connection to the learning objectives (logical or physical connections are even better) and algorithms
capable of identifying similarities within sequenced data. The log data and the algorithms that process it and summarize it
ought to form a specific enough vocabulary and set of “event grammars” to withstand qualitative review (Serrano-Laguna
et al., 2017). Fundamental analysis tools are too general to draw connections to the semantics behind log file vocabularies
if event sequences are not “chunked” into these grammars, which serve as a secondary “end of the wire” processed signal.
Ultimately, an analytic grammar of gaming will enable the development of real-time analytics for adaptive gaming, as well as
personalized support (Hauge et al., 2014). Developing such a grammar will also enable the interoperability of gaming analytics
across different games, genres, and platforms. These adaptations and generalizations are essential for a solid uptake of gaming
analytics in authentic educational and training settings.

2.3 Analytics and Gaming Co-design Evolution
Gaming analytics systems can provide helpful feedback to developers of serious games, which will help them to evolve the
game design in ways that maximize both learning and engagement (Buckingham Shum & Deakin Crick, 2016). In the history
of gaming analytics, however, there remains a significant gap between high-level learning constructs and how those constructs,
or facsimiles of them, are operationalized in learner activity log files. More visionary and aspirational analyses of the potential
of gaming analytics ask future work to include pop-up alerts and warnings to be shown to the teacher during a game session in
the class, more advanced and user-friendly visualizations, and multi-game studies of serious games aimed at classifying both
the logged data and the feedback provided in dashboards (Fernández, 2016).

Designing the analytics system in parallel with the game itself also helps to solve common issues in serious games, such as
the lack of a social bridge between the game realization stage (design, development, pedagogical support, testing, etc.) and the
game dissemination stage (general adoption, coaching, marketing, etc.) or the game use stage (use of serious game support,
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reading and interpreting serious game support) (Alvarez et al., 2017). Furthermore, with abundant data and analytics connected
to learning goals, stakeholders in serious game projects can ensure communication between different stakeholders or counsels
to help identify key problems during project development, testing, and dissemination.

To fully realize the potential of serious games, researchers will need to innovate and devise new training performance
metrics and methods to (1) better measure human performance with serious games (tracing of in-game actions, inference of
cognitive process, categorization of psychological profiles); (2) improve metrics and methods for the measurement of skills and
cognitive abilities; (3) identify likely expert performance through pattern recognition and focus on distilling trainable aspects;
(4) score and distill in-game user-generated data to produce actionable insights; and (5) transform analytics into prescriptive,
actionable insights for the improvement of human performance (Loh et al., 2015).

2.4 Ensuring the Utility of Gaming Analytics Tools
Gaming analytics can move quickly from helpful cognitive aids for teachers and students to cognitive overload (van Leeuwen,
2015). Van Leeuwen’s study (2015) contrasts the results of using learning analytics to support students and teachers simultane-
ously with cases where only the teacher can access learning analytics. Overload is more likely when students have access to
the analytics. This condition quickly leads to teachers dashing around the room responding to content, game, and analytics
questions triggered in many cases by the analytics. Further studies in real classrooms should examine whether teachers can
use learning analytics in these situations by using the logged history of the collaboration to adapt to the students’ requests for
support.

Identifying students struggling in the game is likely to be the highest value for teachers, and significantly so if the alerts for
students are correlated with learning outcomes derived from research and presented using probabilistic language (Martin et al.,
2016). In addition, discerning patterns will require analytic indicators that separate deliberate student movement through a
game from accidental or unskilled movement (Kang et al., 2017).

In prior literature, three main approaches to creating indicators apply algorithms to log data. The first approach supports
design and development of serious games by mapping actual player progress with intended flow construction and curriculum
implementation. Where the information logged is not aligned with the learning intentions of the game design, or the logs
indicate that learning is not significant in the current game design, the game and its logging infrastructure co-evolve. The
second approach is to design and build an easy-to-follow visualization dashboard for instructors, giving them better insight into
student performance and opportunities to provide guidance. Finally, the third approach is to construct and validate a model to
predict players’ future behaviour or performance and then classify it into different categories for later pattern discovery.

Whether the analytics can provide helpful game design support or an appropriate dashboard for instructors to pinpoint the
moments when students struggle is a function of the quality of presentation and the validity of the analytics model. Therefore,
the top priorities for gaming analytics research are identifying the likely benefits and challenges for building comprehensive
player performance and behaviour indicators and developing useful prediction models.

2.5 Limits of Learning Performance Measurement to Date
To date, measuring learning in serious game research does not clarify how extensive video game experience (often involving
fast-paced action games) is related to performance improvements on tests of cognitive ability or subject matter knowledge
(Towne et al., 2016). In their discussion of individual performance assessments through analytics in the “Space Fortress” game,
Towne and colleagues (2016) extracted behavioural data from the game logs but were unable to collect specific process data such
as verbal reports or logs contextualized by the game’s structure. They were also not able to identify the mechanisms mediating
superior performance. They argue that future studies should identify and measure the strategies of individual participants so it is
possible to measure their effects on performance. It is also essential to develop new methods for discerning the role of strategy
in individual performance. (Do players tend toward specific strategies based on personality or prior gaming experience? Do
specific strategies fare better in some serious games?) Finally, they show advantages for future studies incorporating previous
gaming experience, computer experience, familiarity with specific games, and motivation to triangulate learning outcome
measures embodied in a learning analytics system.

3. Research Context
In the serious game we study, the system captures players’ in-game behaviours, including explicit signals of learning progress.
We plan to construct machine learning models with our log data to predict player performance to make probabilistic predictions
of player success. MHS is a serious game whose main goal is to teach middle-school students about water systems. It has an
integral and consistent storyline that elaborately shepherds the player through the water science curriculum. The player’s role in
the game is to examine a new planet’s environment, especially water conditions, and solve water-related problems to establish
the planet as a habitable human outpost. There are six units in the game. Unit 1 teaches players how to navigate the game and
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Figure 1. MHS Game*

*An overview of the terrain in Unit 4 is shown on the left. This is an aerial view the student/player can bring up to get a sense of where they are in the game
during play. On the right is a window from Unit 4, which allows the student/player to see how water flows through groundwater systems.

familiarizes them with the argumentation system. Unit 2 builds player knowledge about the planet’s topography and watershed
characteristics. Unit 3 introduces more specific knowledge about the properties of water flow. Unit 4 leads players through a
game that helps them understand groundwater systems. Unit 5 adds the atmospheric water movement cycle to the students’
repertoire of knowledge. Finally, Unit 6 incorporates prediction games focused on spreading dissolved materials through a
watershed, explaining water movement from the surface to the groundwater system and the movement between surface and
atmospheric systems. Figure 1 shows screenshots from parts of MHS as an example.

Instead of purely involving game elements from a single game genre, MHS embraces game characteristics from various
game types, including problem-solving and puzzle games, role-playing games, and adventure games. This design requires a
sophisticated, learning goal–connected logging system to capture the explicit behavioural features that correlate with subject
matter learning, and our analytics procedure applies to the evaluation of learning and gaming performance. By quantitatively
proving the significant influence on learning and gaming performance of specific game features, researchers can diversify the
serious game genre, which solves the deceptively tricky issue of defining the characteristics of a game (Boyle et al., 2016).

3.1 Logging System Design
We designed the logging system in conjunction with the game itself, which means that we are logging events that are specifically
designed and related to players’ active learning in the game. Our approach differs significantly from past approaches to gaming
analytics, which largely rely on the logs made available by default from a technology platform (S. P. Goggins, Gallagher, et al.,
2010; S. P. Goggins, Galyen, et al., 2010; S. Goggins et al., 2016). Our co-design approach to analytics builds on Carvalho
and colleagues (2015), whose Activity Theory-based Model of Serious Games (ATMSG) describes how game designers can
achieve higher learning outcomes through exhaustive trace data from multiple layers. The explicit connections between the
pedagogical and game design of MHS and the logged events enable us to explore a set of hypotheses about player patterns of
engagement more deeply than in prior work. The detailed logs in the data section and the complete technological architecture
are available on GitHub1.

Our research process incorporates game design, logging system design, prototyping, testing, and iteration of both subsystems
over time. It follows a hermeneutic circle of evolution, as depicted in Figure 2.

4. Methods
4.1 Hypotheses
Our methods iteratively connect learning outcomes with actionable information discerned from logs co-designed with the game.
This study evaluates eight specific hypotheses related to gameplay analytics in MHS. Each of these hypotheses connects to
how we expect our logging system to help us make sense of and tease out learning outcomes within the game, though focused
on identifying distinctions between experts and novices, as outlined in Loh and colleagues (2015). The potential log features
emerge from our gameplay observations and the variables that seemed to correspond to higher degrees of success during a

1https://github.com/mission-hydro-sci
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Figure 2. Illustration of the Hermeneutic Development Cycle for MHS Associated with the Game and Logging System

series of informal, preliminary field studies and unit tests. Our hypotheses focus on applying the principles associated with
grammar of behaviour in the specific designed context of MHS.

• H1: The spatially calculated volume of the game exploration space differs between expert and novice students.

• H2: The speed of task completion differs between expert and novice students.

• H3: The number of different, specific event types (movement event, dialogue event, state update event, mission update
event, trigger event, and others) performed by expert and novice students is different.

• H4: The frequencies of use of various in-game tools and the corresponding average duration of using these tools differ
between expert and novice students.

• H5: The frequencies of interaction (throw, deliver) with key items (crate, sensor) of the game between expert and novice
students are different.

• H6: In argumentation, the frequency of hovering for text guidance and the speed of reading each choice differ between
expert and novice students.

• H7: Argument claim construction performance differs between expert and novice students.

• H8: Argument claim construction performance from the previous unit influences performance in a subsequent (current)
unit.

The next subsection will introduce our data collection procedure, the original data set, and how we cleaned it. Also, we will
illustrate how we distinguish expert and novice students, what features we generate to test the hypotheses mentioned above, and
how we generate them from the original data set.

4.2 Data Collection and Processing
We analyzed gameplay logs from students coming from seven different local middle schools. They played MHS in a classroom
with their teacher during the spring and early summer of 2018. The logging system has general features captured from all units
and unit-specific features related to learning for each unit. This study is focused on Unit 3, because it is the first unit with
significant logging complexity; essentially, it is presented following a training unit (Unit 1) and an orientation unit (Unit 2) and
therefore contains some of the first complex learning arcs in MHS. Since the logging system records both player movement and
passage through learning milestones in the game, our analysis includes approximately 1.2 million player action records from
373 students in our study after deleting incomplete player records. The composition of the logs, shown in Figure 3, grounds our
presentation of research findings and demonstrates a strictly followed data provenance. These are the row-level raw records of
player interaction.

In the final quest of Unit 3, students plant five seeds in pods set alongside the riverbanks. A congratulations dialogue box
will appear if students plant a seed in the correct pod. Otherwise, a reminder dialogue box will show up telling students they
made a mistake and revealing hints about correct pod locations. Based on our on-site gameplay observations and discussions
with designers, we consider students who planted the last two seeds in correct pods as experts. To become experts, students
must complete all primary quests before the final one, understand all the concepts of this unit’s curriculum, and choose the
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Figure 3. List of 10 Log Records from the 1.2 Million Records Analyzed*

*Each row includes an ItemID for connecting to detailed information (e.g., dialogue names along with related content, item names that players interacted with,
task completion status), an InstallID that identifies each computer, a unique playerID across all MHS installations, timestamp, operating system, sessionID,
teacherID, event type, event unit of measure, and MHS build version. In addition, the three-dimensional space the player occupies includes camera rotation,
which is where a player character is looking from that position, and is stored in the X, Y, and Z labelled fields at the end of the rows. The final column includes
a scene name, which references a specific part of the unit design and can filter data and ascertain expected player behaviours within a session.

correct river branch for depositing pods. Accomplishing this requires dialogue with non-player characters (NPCs), and the
player outcomes from the first three planting pods (before the fourth pod, students need to go back and forth between different
riversides/banks to determine which side the pollutant materials flow along), which is why we use “successfully planting the
last two seeds in correct pods” as a proxy for identifying “experts.” Of the 373 students in our study, 24 planted the last two
seeds in the correct locations, and 349 planted at least one seed in the wrong location in the last two trials. Based on the
above-mentioned expert standard, we generated a categorical variable named “U3Performance” to distinguish between experts
and novices.

4.2.1 Discretization
After some exploration analysis, we found that most features extracted from the logging system to test the eight hypotheses
mentioned earlier contain high variation or numeric outliers, creating significant noise that imparts unstable factors to the testing
results. To avoid statistical anomalies arising from non-standard probability distributions in both performance groups, we
decided to discretize features containing massive outliers based on the variable distribution and then apply them as ingredients
of the hypothesis testing procedure. Considering only 24 members involved in the expert group, we thought removing outliers
directly from the dataset meant excluding potentially useful information from the expert group and decreasing the statistical
power of hypothetical tests because of unbalanced group sizes.

During the discretization procedure, we first calculated minimum, first quartile, median, and third quartile values for each
task’s completion time to generate the speed feature. Secondly, we created four feature levels based on these summary statistics.
These summary statistics place each player in a performance quartile, with the fastest players in quartile 1 and the slowest
players in quartile 4 for each task.

4.2.2 The Size of the Explored Game Area
We reference players’ in-game navigating trajectories to measure the space explored by each player. We hypothesize that expert
students are more efficient with game navigation, finding the locations to complete a quest with a clear goal instead of walking
back and forth in similar circles or aimlessly exploring places far away from correct walking tracks. Inspired by the in-game
position data-processing method (Loh et al., 2016), we used a variable called “exploreAreaPercentage” to test this hypothesis.
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(a) (b)

Figure 4. Map Exploration Size*

*Figure (a) shows the distribution of map exploration size in the original format. Figure (b) shows the map exploration size after discretization.

Like books, digital video, and other media, game as an emerging information carrier provides knowledge with immediate
practice opportunities in a virtual environment and diversified ways of interacting where players learn things at their own pace.
The game world contains detailed granularity of massive stories and abundant integrated curriculum knowledge as a basic
game element. By exploring it, players can become familiar with game navigation and mechanics and better understand the
knowledge blended with it. In addition, measuring players’ game environment and exploring status offers researchers more
opportunities to learn about players’ gaming and learning procedures.

Our logging system provides deep, wide, and learning-connected behavioural data. This data includes, for example,
measurement of the size of the explored game area in three dimensions, x, y, and z, along with information about the player
character’s directional gaze, called the spatial axis. Inspired by Loh and colleagues’ work (2015), we split the whole game map
into 10 by 10 by 10 grids. Each grid has a unique tag. Each tag contains a group of four numbers. The first number represents
the row number, the second is the column number, the third is the height, and the fourth is the number of times a player steps
into this grid. For example, (1, 1, 1, 1) means the player steps into the grid in row 1, column 1, and height 1 for the first time.
We used ET to represent the total number of unique tags in log data from field test 1 of Unit 3. Ei represents the unique tag
player i has after finishing Unit 3. We utilize Ei/ET to represent the size of the game environment player i has explored. Figure
4 shows the distributions related to variables representing the size of the explored game area.

4.2.3 Speed of Completing Tasks
This feature captures information to test the second hypothesis. This hypothesis focuses on how quickly players move through
the game. We hypothesize that expert students will complete quests faster than others. Duration of task or quest completion
was a powerful predictor or classifier in multiple academic articles (Loh & Sheng, 2014; Loh & Li, 2015; Loh et al., 2015;
Palmquist & Crowley, 2007).

To generate an appropriate feature to test this hypothesis, we constructed a data set describing how long each player took to
complete a specific task. Each column represents a specific task, and each row represents a player. Figure 5 visualizes the
distributions of duration of task completion in minutes (a) and in discretized level format (b).

4.2.4 The Percentage Shares of Different Events
The third hypothesis tests differences in the types of events triggered by players in the game and evaluates them as a percentage
of total events. The inspiration for this measurement comes from field observation reports during MHS field test 1. One of the
reports shows that expert students tended to have smaller numbers of reminder dialogue boxes (e.g., remind students of the
correct direction to go), which would reduce their total percentage of dialogue boxes compared to their entire pool of events.
Event types such as movement and dialogue boxes differ significantly in hypothesis tests. We hypothesized that a subset of
event types would vary widely between experts and novices.

As we mentioned in the data collection section, the MHS log data set has an event-type column to describe players’ in-game
actions with a specific timestamp. There are 10 categories of event types: triggering events, movement events, complete mission
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(a) (b)

Figure 5. Duration of Task Completion*

*Figure (a) shows the distributions of log-transformed duration of task completion. Figure (b) shows the distributions of task completion duration after
discretization.

events, statement update events, dialogue events, arf (an artificial intelligence with an avatar image that helps players in specific
game points) related events, hotkey pressing events, jump events, argument-related events, and toggle board–related events.
We used Pt/St , Pmo/St , Pms/St , Ps/St , Pd/St , Pa/St , Pk/St , Pj/St , Par/St , Pto/St to represent the percentage shares of different
events for later hypothesis testing. What each symbol represents is listed in Table 1.

Table 1. A Detailed Explanation of Different Percentage Shares of Events
Symbol Represent content
St Adding all tracing data records of a specific player
Pt Sum of the number of events that happened when players interacted with in-game items
Pmo Sum of the number of events that happened when players walked or ran in the game

environment
Pms Sum of the number of events that happened when players accepted or completed a task

or a quest
Ps Sum of the number of events that happened when players entered a new game scene
Pd Sum of the number of events that happened when players triggered out, clicked selection

nodes, or closed a dialogue
Pa Sum of the number of events that happened when players opened or closed the arf help

menu, or selected choice buttons in the arf help menu
Pk Sum of the number of events that happened when players pressed a hotkey button on

the keyboard
Pj Sum of the number of events that happened when players jumped into the game

environment
Par Sum of the number of events that happened when players opened the argument claimer

system, dragged on or off an argument node, hovered on or off a node, succeeded in
argument, failed in argument, or closed the argument claimer system

Pto Sum of the number of events that happened when players utilized a skateboard to move
in the game environment
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(a) (b)

Figure 6. Event Type Shares*

*Figure (a) shows the distributions of event type shares in percentage format. Figure (b) shows the distributions of event type shares after discretization.

The feature names we have used to conduct hypothesis tests are “triggerNumber,” “movementNumber,” “missionCom-
pleteNumber,” “StateUpdateNumber,” “dialogueNumber,” “arfRelatedNumber,” “hotKeyNumber,” “toggleNumber,” “jump-
Number,” and “argNumber.” Figure 6 shows the distributions of each event type before and after discretization.

4.2.5 Tool Use Status
The fourth hypothesis highlights the specific, available tools used by players. During the field test, we observed that expert
students can better understand tool functions and can smoothly apply tools in appropriate situations. However, expert students
also tend to complete side and main quests, which further skews their tool use in our hypothesis because of differences in tools
required on side quests.

Seven types of in-game tools provide players with information and knowledge, helping them realize self-paced learning.
These seven tools include a background information menu including character, storyline, and game context information; a chat
log; crash diagnostics to explain ship damage status and repair strategies; a help menu; a game map; a quest menu to show
game progress; and a menu displaying information about the player’s current task.

Two features are generated from the tool-using status: the tool’s frequency and the tool-using speed. We calculated how
many times a player opened it and the average speed during their usage of each tool. The frequency tool calculates all open
records for a specific type of tool. MHS calculates tool use speed in the same way as task completion speed. Finally, we have
12 features to measure players’ in-game tool use: “BackingInfoMenuNode,” “ChatLogNode,” “CrashDiagnosticsMenuNode,”
“HelpMenuNode,” “MapMenuNode,” “Quest-MenuNode,” “BackInfoSpeed,” “ChatLogSpeed,” “CrashDiagnosticsMenuSpeed,”
“helpMenuSpeed,” “mapMenuSpeed,” and “questMenuSpeed.” The distributions for each variable in this section in original or
discretized format are in Figure 7.

4.2.6 The Frequency of Triggering Key In-Game Objects
We test the fifth hypothesis using variables that indicate the success of delivering crates and tossing sensors into the correct
river. As the expert versus novice section mentioned, we have four key quests to evaluate players’ curriculum learning
performance. Among them, the quests “crate delivery” and “tossing sensors to find pollution” require players to interact with
in-game items. The logging system captures related measures and performance using four features: (1) “crateCorrectFreq,”
(2) “crateWrongFreq,” (3) “tossCleanFreq,” and (4) “tossPollutedFreq.” The “crateCorrectFreq” feature is the frequency with
which a player delivers crates into the correct river. The “crateWrongFreq” feature is the frequency with which a player delivers
crates into the wrong river. The “tossCleanFreq” feature is the frequency with which a player tosses a sensor into the river with
a polluted outcome. Finally, the “tossPollutedFreq” feature indicates the frequency with which a player tosses a sensor into the
river with a clean outcome.
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(a) (b) (c)

Figure 7. Frequency, Duration, and Speed Distributions for Different In-Game Tools*

*Figure (a) shows the distributions of the frequencies of using different in-game tools. Figure (b) shows the distributions of the average duration of using
different in-game tools in minute format. Figure (c) shows the speed distributions of different in-game tools in discretized level format.

(a) (b) (c) (d)

Figure 8. Sensor-Tossing and Crate-Delivery Frequency Distributions*

*Figure (a) shows the distributions of sensor-tossing frequency with clean outcomes. Figure (b) shows the distributions of sensor-tossing frequency with
polluted outcomes. Figure (c) shows the frequency distributions of correct crate delivery. Figure (d) shows the frequency distributions of wrong crate delivery.

By calculating these features, we can get information about how many crates players deliver to the correct river and
how many to the wrong one, and also get information about what path they follow to the tosses. These features may have a
high potential to be a powerful classifier to identify expert players. Figure 8 shows the distributions of key item interaction
frequencies.

4.2.7 Hovering Frequency and Corresponding Reading Speed per Choice Node within Argument System
Constructing a sound scientific argument is one of the key quests in Unit 3. During this quest, students must read nodes’ pop-up
text information to choose the correct combination of different argument components, including evidence, claim, and reason.
In hypothesis 6, from our observation, expert and novice students behave differently, especially when they hover on choice
nodes and read the pop-up contents. In our preliminary studies, we observed that students with an unusually high frequency of
hovering on choice nodes or reading a node’s content quite slowly are less likely to be experts. Therefore, we operationalized
the following variables: the hovering frequency for each choice node, the summation of each node’s hovering frequency, and
the summation of the reading times for each choice node. The nodes containing pop-up text include “U3.Claim,” “Site.A,”
“Site.B,” “Resaoning.5,” “Reasoning.2,” “Reasoning.3,” “Reasoning.4,” “Reasoning.6,” “Reasoning.7,” and “Reasoning.1.” The
reading times are then discretized as reading speed rate, calculated in the same way as task completion speed. Figure 9 displays
distributions of the variables included in testing hypothesis 6.
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(a) (b)

(c) (d)

Figure 9. Variable Distributions for Testing Hypothesis 6*

*Figure (a) shows the distributions of the summation of nodes’ hovering frequency. Figure (b) shows the distributions of each node’s hovering frequency.
Figure (c) shows the reading time for each argument node. Figure (d) shows each argument node’s discretized reading time or reading speed rate.

4.2.8 Argument Performance
In hypothesis 7, we suppose that experts are more immediately and reliably successful at constructing an argument than novices
in the current unit. In hypothesis 8, we assume expert students can more efficiently learn patterns and mechanics regarding
argument construction from the previous unit’s experience and apply the knowledge in the current unit than novice students.
Because Unit 1 is a tutorial unit, which does not include a completed argument construction task, we only consider Unit 2 as
the previous unit. To test the hypothesis, we operationalized “argumentLevel,” which creates a synthetic measure of students’
argumentation performance based on a calculation of their success and failure frequencies, as well as an indicator of whether or
not they do ultimately construct a valid scientific argument. Features we used to evaluate students’ argumentation performance
include the number of times they submitted correct answers and the frequency of wrong answer submissions.

“ArgumentLevel” has four different levels. We describe each level’s exact calculation method in Table 2. Using the
same feature generation method, we evaluate students’ argument construction performance in MHS Unit 2 with the name
“U2argumentLevel.” Figure 10 visualizes proportion shares of each argument performance level under different units, faceted
by expertise groups.
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Figure 10. The Percentage Stacked Bar Plot Displaying Students’ Argument Performance in Unit 2 and Unit 3

Table 2. A Detailed Explanation of Four Levels of Argument Performance
Level Description
Quitter Players in this level opened the argument claim system but had no successful

submissions and more than 0 failure submissions.
Novice Players in this level had at least one successful submission. They had more

than three (median level) failure trials. (Students may just want to try what
combination is correct instead of understanding the content first.)

ExpertwithTrial Players in this level had at least one successful submission and less than or
equal to three failure trials.

Expert Players in this level had no failure submissions but had successful submissions.

5. Results
Our results validate six hypotheses out of eight with statistical significance, and the remaining two show promising, less
statistically significant results. We explain our evaluation of our hypotheses and the salient statistical tests next, followed by a
table of assertions about how to interpret our analysis of each hypothesis and a brief explanation of key statistical analysis
choices.

5.1 Analysis and Statistical Tests
After processing the data and generating corresponding features, the next step is to select the appropriate statistical tests for our
hypotheses. As is typical among field-gathered behavioural data, few variables follow a normal distribution. Also, considering
that the dependent variable contains two independent groups, and the task is to construct hypothetical tests on ordinal or numeric
features, we selected the non-parametric statistical test, the Mann-Whitney U test, also called the Wilcoxon rank-sum test, to
examine our hypotheses. Specifically, the Mann-Whitney U test is selected because it is a non-parametric test that does not need
a normal distribution assumption, it has a high tolerance for outliers, and it can deal with small sample sizes. The test’s null
hypothesis is that both populations’ distribution functions are equal. The alternative hypothesis is that the distribution functions
are not equal. Informally, we are testing to see if mean ranks, approximately equal to the median value, differ between groups.
The Mann-Whitney U test is applied to all our numeric or ordinal features, such as features related to frequencies or counts.

For categorical features, such as features used in hypotheses 7 and 8, we conducted Fisher’s exact test, which is applied
when we want to test the null hypothesis that there is no association between the two included categorical features within a
contingency table. This test performs well when dealing with small, unbalanced sample sizes, matching our data characteristics,
making it more appropriate in our case than the other popular method, the Chi-square test, which requires comparatively large
and balanced sample sizes.

However, there is a debate or uncertainty on how to define the data type after discretization. For example, we can treat
discretized variables as ordinal or numeric. If we assume that each student belongs to a certain level after discretization, then
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the levels are equally distributed. Alternatively, categorical variables work if we assume that each student belongs to a certain
group and the differences between groups cannot be quantitatively measured. To handle this uncertainty, we used two methods
to conduct the test for each discretized feature. One is the Mann-Whitney U test, if we assume that the discretized feature is
numeric, and the other is Fisher’s exact test, if we assume that it is categorical. We can validate and add statistical power to our
conclusions by using both tests on discretized features.

5.2 Hypothesis Testing Outcomes
We show the results of the statistical tests in Table 3.

Table 3. Statistical Tests of Hypotheses with Significance and Descriptions.

Hypothesis Significant variables Test results
Mann-Whitney U Fisher’s exact

H1: Size of game area exploration exploreAreaDiscretize 8281* 9.178*

H2: Task completion speed

X0.Convince.Bill.the.pollutant.is.nearby 1682.0** 12.473*
X0.Identify.pollutant 1032.5*** 33.251***
X25.Find.the.Supertree 2102.5* 9.209.
X27.Deliver.Crates 2074.5* 7.397.

H3: Event type percentage shares argNumber 1978* 6.129

H4: Tool-using status Help.Manu.Node.Freq 0*** NA
Crash.Diagnostics.Menu.Node.Speed 31.5* 8.282*

H5: Key item interactions TossPolluted 1850** NA
crateThrowSuccess 2263.5* NA

H6: Argument node hovering status
Arg.Node.Sum.Freq 1987.5* NA
Reasoning.1.Freq 1880.5* NA
Reasoning.2.Speed 1153.5* 8.922*

H7: U3 argument performance NA NA NA
H8: U2 argument performance U2ArgPerformance NA 33.983*

The first column, “Hypothesis,” lists what hypothesis we are testing. The second column, “Significant variables,” lists
features that are tested out as statistically significant (p-value less than 0.05) by either one of the two testing methods. If no
significant feature exists, NA is entered in the corresponding cell. The third column, “Test results,” contains two sub-columns,
“Mann-Whitney U” and “Fisher’s exact.” NA is entered in the cell under either of the following two conditions: (1) there
are no significant features tested out by both methods under a certain hypothesis; (2) only one test method is applied to the
corresponding significant feature because it is either a numeric feature or a categorical feature but not a discretized feature. The
marks “.”, “*”, “**”, and “***” following the testing result value represent the significance degree reflected by p-value. “.”
indicates that the p-value is less than 0.1 but larger than or equal to 0.05; “*” indicates that the p-value is less than 0.05 but
larger than or equal to 0.01; “**” indicates that the p-value is less than 0.01 but larger than or equal to 0.001; “***” indicates
that the p-value is less than 0.001.

5.2.1 H1: The Volume of Spatially Calculated Game Exploration Space Is Different between Expert Students and Novice
Students

Under this hypothesis, we identified that expert students explored significantly fewer game areas than novice students. Combined
with our on-site observations, we speculated that this phenomenon might be because expert students are more efficient than
novice students in the following ways:

1. getting familiar with the game environment and mechanics,

2. figuring out the correct path to complete tasks by identifying useful information during gaming procedures, and

3. focusing on completing quests and ignoring distractions.

5.2.2 H2: The Speed of Task Completion Differs between Expert and Novice Students
For hypothesis 2, we found that (1) expert students are significantly slower than novice students at completing the tasks
“Convince.Bill.the.pollutant.is.nearby,” “Identify.pollutant,” and “Find.the.Supertree.” (2) Expert students are significantly
faster than novice students at completing the task “Deliver.Crates.” We can also observe that expert students complete the task
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“Trace.the.pollutant” more quickly than novice students, which does not have statistical significance but reveals a potential
pattern in distinguishing between experts and novices.

5.2.3 H3: The Number of Different, Specific Event Types (Movement Event, Dialogue Event, State Update Event, Mission
Update Event, Trigger Event, and Others) Performed by Expert and Novice Students Is Different

In this section, we figured out that expert students’ argument event type shares are significantly higher than those of novice
students. Although having no statistical significance, the following findings contain promising patterns to distinguish students’
performances: (1) Expert students have fewer event shares than novice students on triggering dialogues, using in-game tools,
and interacting with in-game items. (2) Expert students have more shares than novice students on events of navigating within
the game environment.

5.2.4 H4: The Frequencies of Using Various In-Game Tools and the Corresponding Average Duration of Using Those
Tools Differ between Expert and Novice Students

Under this hypothesis, the results show that expert students did not use the “help” tool. Instead, they read the information
within the tools of backing information and quest reviews faster than their novice peers. Regarding speed of tool use, expert
students read information presented by the “Crash.Diagnostics” tool at a significantly slower rate than novice students. This
tool provides background stories and information about the game world and hints on how to solve side-task puzzles with extra
credits. Furthermore, we also identify potential patterns, although without statistical significance, that expert students more
frequently use the chat log, map, and quest review tools than novice students.

5.2.5 H5: The Frequencies of Interaction (Deliver, Toss) with Key Items (Crate, Sensor) of the Game between Expert
Students and Novice Students Are Different

By examining features within this hypothesis, we found that expert students delivered significantly more crates to the correct
river than novice students. They also tossed significantly more sensors to test whether the soluble materials polluted the river
area than their novice peers.

5.2.6 H6: In Argumentation, the Frequency of Hovering for Text Guidance and the Speed of Reading Each Choice Differ
between Expert and Novice Students

In Unit 3’s argument system, students are asked to select the appropriate reasoning to connect the existing claim and evidence.
By investigating hypothesis 6, we identified that expert students had significantly higher total hovering counts on all choice
nodes than novice students. Specifically, they hovered on the node “reasoning.1” significantly less but spent significantly
more time reading the “reasoning.2” node than their novice peers. We also observed that expert students received useful
information from the existing nodes “Site.A,” “Site.B,” and “U3.Claim” faster than novice students, which may indicate that
they understood the problem more efficiently than novice students. Meanwhile, expert students are more quick than novice
students to determine which reasoning nodes, such as “Reasoning.1” and “Reasoning.5,” are the least appropriate for solving
this problem and focus on investigating promising answers, reflected by spending more time on reading nodes “Reasoning.2,”
“Reasoning.3,” “Reasoning.4,” “Reasoning.6,” and “Reasoning.7” than novice students.

5.2.7 H7: Argument Claim Construction Performance Differs between Expert and Novice Students
Although the test proves no significant results, we can observe from Figure 10 that all expert students submit at least one
successful argument. In contrast, 21.2% of novice students did not submit a successful argument, which may indicate that
students can gain knowledge if the game helps them complete the following tasks by submitting a successful argument.

5.2.8 H8: Argument Claims Construction Performance from the Previous Unit Influences Performance in a Subsequent
(Current) Unit

We identified a significant association between students’ performance in Unit 3 and their Unit 2 argument performance. Figure
10 reveals that the association is negative, in which 7.1% of expert students made no successful submission while all novice
students made at least one successful submission within Unit 2’s argument system. As well, compared to 35.3% of novice
students who made successful argument submissions within three failures, only 23.1% of expert students constructed successful
arguments within the same number of failed trials.

5.2.9 Summary of Results
In general, we identified that some features describing (1) the size of the explored game world, (2) task completion speeds, (3)
game event shares, (4) tool use status, (5) key item interaction frequencies, (6) node hovering status within argument system,
and (7) argument performance from the previous unit are significantly different between expert students and novice students
with more than or equal to 95% confidence. Nevertheless, we also note that although argument performance from the current
unit has no statistically significant difference between expert and novice students, Figure 10 reveals a trend that expert students
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performed better than novice students on current argument construction. Hypothesis 1 shows that expert students focused on
exploring areas relating to the paths to complete tasks instead of wandering around aimlessly or being easily distracted by
environments, as some novice students did. For hypothesis 2, expert students spent much more time than their novice peers
on tasks that provided new information or subject matter knowledge to learn carefully, but they completed tasks requiring
applying knowledge significantly more quickly than novice students, which may reveal that expert students identify useful new
information and learn knowledge more efficiently than novice students within the game environment. Our test of hypothesis
3 illustrates that experts’ argument and movement event shares were significantly higher than those of novices, indicating
that experts spent most of their time promoting game progress and constructing arguments, which might be caused by higher
information load in argument-related tasks than in other tasks. In contrast, their help-seeking event shares, such as triggering
dialogues to adjust players’ failed actions or choices, referring to in-game tools, or interacting with items to familiarize
themselves with the game environment or mechanics, are lower than those of their novice peers. By investigating hypothesis
4, we noticed that experts knew how to use tools effectively and efficiently in appropriate situations to assist themselves in
completing tasks. They also understood information embedded within tools more quickly than novices, who may need to keep
referring back to the “Help” menu to understand each tool’s specific function. Within hypothesis 5, we figured out that expert
students delivered significantly more crates to the correct river than novice students, which suggests that expert students are
stronger in transferring knowledge within the game than their novice peers.

Furthermore, experts tossed more sensors into the river and found the polluted sources quicker than novices, indicating that
they quickly mastered the sensor’s function and applied it on approaching the destination, another sign of better knowledge
learning and transferring skills. Hypothesis 6 reveals that expert students filtered out wrong answers and compared potentially
right answers much faster than novices, who were more obtuse when figuring out the key problem to solve and which
information warranted attention for building a solution. Although hypothesis 7 has no statistical difference, we identified a
trend that expert students performed better than novice students. However, experts make mistakes and may perform poorly at
the initial stages, but they can learn from failures, which is, to some extent, validated by hypothesis 8.

5.3 Extended Thoughts
Our hypotheses tests specifically prove that we can extract a set of variables that quantitatively correspond to in-game learning
and gaming performance from the complex game world of MHS. Our findings suggest a clear and robust path for identifying
in-game performance differences. We also identified users struggling as novices, in contrast with experts, which will prove
useful in the future study of serious games and gaming analytics. Since our analysis specifically operationalizes log file
variables we designed into the game to make learning visible, our analysis of those variables and statistical testing of their
values together strengthen the worth of our findings.

We summarize a few specific observations based on the outcomes:

1. Expert students explored the MHS world to a lesser extent than novice students.

2. Expert students completed tasks where they needed to identify new information or acquire knowledge more slowly than
novice students. However, expert students finished tasks requiring knowledge application much more quickly than their
novice peers.

3. Expert students spent more time on harder tasks or tasks needing more information processing, a pattern novice students
may not follow.

4. Expert students applied tools more effectively and efficiently than novice students, which can be reflected by assistant
tool usage status or the interaction status of some task-specific items, like pollutant sensors.

5. Expert students made some wrong decisions during gameplay, which may in some cases inspire the design of MHS. For
example, most expert students selected the wrong river on their first one or two attempts in the key quest of delivering
crates to an NPC.

However, after reading the reminder dialogues, which inform students why their choice is wrong, expert students adapted
immediately, while novices frequently made similar errors on their next attempt. We also noticed that expert students made
more wrong decisions on planting seeds in pods near the riverbanks in the first three trials than novice students. The average
count of mistakes made by experts is 2.45, while the same number for novices is 1.56, which has statistical significance with
95% confidence, tested by the Mann-Whitney U method. Furthermore, in the spirit of productive failure, we observed that
students who were less successful in the argumentation task in Unit 2 were more likely to succeed in their argumentation in Unit
3. Our work quantitatively proves the importance of incorporating an effective negativity mechanism in game design, which is a
supplement to the research of Gauthier and Jenkinson (2018), who applied qualitative methods to evaluate learning performance
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gains from failure experiences in both serious games and a simulation environment. Finally, we observed that experts triggered
fewer reminder dialogues but absorbed the embedded information within the dialogues better than novice students, making them
make the same mistakes more than once much less than novice students. Considering the information-processing differences
between expert and novice students, we speculate that designing different reminder dialogues depending on players’ gaming
performances (e.g., failure times) may help novices learn better in MHS.

When completing the argumentation quest, expert students also reflected some unique properties: (1) Most of them
constructed a correct argument without making a large number of wrong submissions (a kind of “brute force” approach to
finding the right answer). (2) Expert students also filtered out wrong choices (nodes) and ensured the final answer by carefully
reading the potentially correct nodes’ content, as shown by their reading time of nodes’ pop-up text. Finally, (3) expert students
generally did not select a common misconception as a part of the final answer, which contrasts with novice students.

6. Discussion
6.1 Implications for Logging System Design in Serious Games
In this study, we propose eight hypotheses based on prior work reviews and on-the-spot observation records (Laffey et al., n.d.)
and obtain a summary of the outcome that features included in these hypotheses are vital to distinguish expert students and
novice students with statistical significance. Our results provide a foundation for building prediction models that consistently
and validly measure learning performance.

For developers who design and integrate logging systems for serious games, we recommend co-designing the game and logs
to ensure a connection between learning goals and the gameplay. Even with a planned integration, we continuously integrated
the thinking for the game and the analytics system. The design and implementation procedure we used is not a linear pipeline
since the outcome of log system testing may trigger redesigns of the game and vice versa. For example, the logging system
sometimes helps designers identify gameplay issues and adapt the game’s design.

For the data analyst, the standard of students’ in-game behaviour and interaction feature generation and organization is still
emergent (Serrano-Laguna et al., 2017). Designing and generating measurement metrics is a function of each game’s unique
properties. However, our hypothesis-driven analytics outcome shows some general measurement features that could apply more
widely for monitoring serious games and providing learning-centred analytics:

1. game world exploration sizes, calculated by trajectory data (moving positions along with time);

2. task completion speeds;

3. in-game tool usage status;

4. the triggering frequencies and reading status of text-enriched boxes, nodes, or dialogues, functioning to remind or deliver
important information;

5. the interaction status with key items (boxes, switches, sensors, etc.), which are crucial to complete quests;

6. the percentage shares of the different event or action types.

It is also important to note that game use and logging characteristics differ in small ways from classroom to classroom.
Therefore, we will develop learning performance prediction models to evaluate the prediction power of features mentioned
above and their interaction effects with different classroom arrangements.

6.2 Key Contributions to Instructors and Designers Based on Analytic Results
Our findings show that our approach to designing the game alongside the logging system enables us to (a) identify explicit
learning achievements through game log analysis, (b) classify antecedent behaviours associated with these achievements, and
(c) identify implicit game behavioural patterns associated with gameplay expertise and distinguish them from behavioural
patterns associated with learning, especially in terms of information-processing ability.

Students play serious games like MHS in regular classrooms or as supervised extracurricular activities. We are also
developing the game for remote students and home-schooled students. One of the main goals of this article is to help instructors
identify struggling students. Recognizing significant features to distinguish students’ expertise within the game validated by
hypothetical tests suggests promising, concrete analytical strategies for advancing gaming and learning analytics. Based on the
outcome summary of our hypothesis-driven analytics, we think, for example, that instructors will be able to intervene based on
signals focused on
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1. identifying students who explored an unexpectedly wide range of the game world,

2. rate of quest or task completion below or above specific thresholds,

3. spending a small share of time on comparatively complex tasks or quests,

4. reading argument nodes aimlessly or wasting much time on wrong choices,

5. frequent argumentation errors without successful submission,

6. interaction of objects in the game as part of the learning goals,

7. dialogue-triggering frequency and corresponding reading speed, and

8. frequency of tool usage and corresponding speed.

Of course, how instructors choose to intervene in gameplay is a function of their course arrangement and curriculum pace.
Using MHS and the design guidance from our lab, instructors can also check students’ in-game behaviours and interactions on
our tracing-data visualization website, revealing students’ statements on the aforementioned in-game features.

We have five initial pieces of advice for designers on serious game design. First, since gaming time is restricted in the
classroom, designers may need to set up a boundary for the game world, preventing aimless area exploration to some extent. To
better guide students, especially those with novice expertise levels, designers could improve the graphic sophistication of or add
more details to the game environment around the navigation paths to complete key tasks, which, to some extent, lure students
into the correct trajectory. Second, inspired by some novice students who feel confused by different in-game tools, even with
contextual help, we suggest that designers create mini-tasks as a separate “practice space” to help students better understand
each tool’s application scenarios. Third, it is crucial to implement timely feedback to provide actionable guidance for teachers
and students, for example, providing precise feedback when students submit the wrong answers during argument construction
so that they know what they might need to learn to modify their argument, or seeing where they made mistakes (e.g., selecting
the wrong evidence node or reasoning and claim) and better understanding the knowledge embedded in the quest. Fourth, when
students run ahead in the wrong direction or interact with task-related items incorrectly, these are queues where MHS players
need more background or contextual information. Designers can offer reminders (e.g., dialogues to let students know they
need to change their decisions or implicitly describe what the correct answer looks like or the right thing to do next). Doing
this can help decrease students’ frustration, improve game engagement, and increase learning analytics data sources in the
game context. Finally, we discovered from our results that students learned from negative outcomes, so we advise designers to
consider negative outcomes as potentially useful for learning.

Furthermore, unlike real-world experiments, experiments within the game environment have much fewer restrictions,
significantly higher tolerance for failures, and extremely low costs and risks, making them an ideal place to practise skills and
knowledge and test new ideas. To adequately apply these advantages to students’ learning, designers should leave enough space
and time to make mistakes, learn from failure feedback, practise knowledge under different circumstances, and test new ideas
to optimize their learning outcomes. For example, although the time for a course is fixed, designers could implement several
side-quests in multiple formats, with which students can practise and review as after-class assignments the same subject matter
knowledge introduced in the main quest.

6.3 Limitations and Future Possibilities
In summary, we have generated useful student-game interaction variables and identified appropriate performance measurement
features that could become ingredients to formulate a solid learning performance prediction model for our next step. However,
it is important to note that our work has limitations and to provide specific guidance for future work. First, although we
conducted hypothesis-driven analytics and received expected outcomes, substantial influence from each feature to distinguish
expert students from others needs further investigation. For example, the main goal of this study is to conduct an initial field
test on an unfinished version of MHS to see the playability in the classroom environment and the executability of the logging
system. We lack important external sources of pre-post assessments on students’ knowledge and skills, which casts doubt on
our conclusion, such as the association between knowledge gains and the final task’s performance, the influences of students’
pre-equipped skills and knowledge on their final success, and the effectiveness of the game to teach expected knowledge and
skills. These deficiencies motivated us to construct a validated and interpretable prediction model to investigate further how
the identified in-game features in this study influence students’ learning outcomes, with necessary external assessment results
under a more rigorous experimental design.
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Another limitation emerges from our use of event types as a category of distinguishing features. Our results show that
some players’ event-type percentage shares are important factors in identifying experts. However, we explored only part of the
information given by event types, involving a percentage share of single event types other than interaction effects from multiple
event types, ignoring event order and influence caused by transitions between different event types. In future work, we may
construct a computational model to evaluate interaction effects and use techniques from the field of sequential data analytics
to investigate what other critical information the event-type sequences can provide. Beyond the event types, we believe the
intersections between features used in different hypotheses within our study imply amplified research potential in terms of
the optimal gameplay flow related to serious games, sophisticated usability tests, and intelligent stealth assessment systems
embedded within the game.

The third limitation comes from treating students with the same characteristics, such as personalities, demographic
backgrounds, player types, and learning styles. Future data combinations describing the students’ unique traits with behavioural
log data will help us develop richer models and improve our model prediction ability. These improved models will also
help researchers explore relationships between students’ in-game behaviours and their characteristics to improve the learning
experiences of different students by incorporating personalized designs into the game (Shute & Ventura, 2013).

7. Conclusion
This article analyzed log data to generate statistically significant in-game features that show potential for developing learning
prediction models for future serious games. To evaluate how these features affect students’ performances (positive, negative, and
to what extent), we plan to construct an interpretable computational model combined with in-game log data and measurements
from external sources and then discuss relationships between features for more granular analysis.

Looking across all six MHS units in future work, we will face scaling challenges. The number of in-game interaction
features is huge because of the game’s multiple curriculum units, numerous quests, and complex in-game interactions between
players. Filtering features based on observation records or outside information to reduce data dimension poses some risk of
information loss and model instability. Instead, we think unsupervised and deep learning techniques will prove efficient and
effective, especially during pre-model construction procedures, on outlier smoothing and feature selection. Such techniques
can decrease high-dimensional metrics for distinguishing relevant signals from noise (Graves et al., 2016), discover hidden
variables, and identify important features that explain a specific pattern. Our experience designing logging to explicitly measure
learning provides higher than average assurance that our application of less supervised modelling will perform significantly
better than the commonplace application of the same algorithmically centred technologies on impoverished, narrow logfile data.
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Appendix
Detailed Description Related to Unit 3 Key Quests and Selection of Learning Performance Standard in This
Study
In this section, we will discuss how we distinguish expert students and novice students. As we described in the research context
section, Mission HydroSci (MHS) is a serious game designed and developed with comprehensive and sophisticated curriculum
integration in mind. Each key quest of MHS can be seen as an efficient marker of learning achievement. This judgment builds
on the previous journal article, which indicated that high overall performance in a game, which combines game mechanics
directly with learning objectives, reflected players’ knowledge of curriculum subject matter rather than chance. The authors
proved the statement by examining correlation indexes and regression outcomes based on post-test outcome as well as in-game
performance measurements (Kiili et al., 2018). Instead of identifying experts a priori, we identify our expert category of players
for MHS Unit 3 by breaking down the key quests in the unit and choosing “expertise criteria” that are durable and also emergent
in the field study. The next paragraph explains how we arrived at “successful seed planting” as a key differentiator of expertise
in this unit.

There are four key quests in this unit. Each quest teaches students one aspect of knowledge about water flow. The first quest
is to deliver crates of supplies to the river that can carry the crate to Sam’s base (Figure .11a and .11b). There are two rivers,
and students need to check the map tool to identify where Sam’s base is and which river passes nearest to the base. The second
quest is to toss sensors into the river to help identify the source of pollution (Figure .11c). Completing this quest demonstrates
that students know how soluble materials flow with a river. The third quest asks students to choose a correct combination of
nodes, categorized in groups of evidence, reason, and claim, to construct a scientific argument. During the procedure, students
can review up-to-now water flow knowledge and what a good argumentat looks like in the game (illustrated in Figure .11d).
This quest is where students demonstrate the ability to construct a scientific argument about water flow.

The fourth key quest is planting seeds in Sam’s garden (Figure .11e and .11f). Done correctly, garden pods are spread along
the river following a strange, huge tree, which is affected by a toxic water-soluble material. Students need to place the garden
pods where they will be influenced by the pollution. Seeds planted in correct pods will grow rapidly into huge plants similar to
the strange, huge tree. We make this quest our evaluation criterion for expertise because (1) it is where students summarize
their water knowledge by integrating knowledge of water flow direction and water-soluble materials; (2) a successful result for
this quest means players have completed previous key quests without abandoning the game; and (3) as the final key quest of
Unit 3, which is directly integrated with curriculum content, seed planting measures players’ overall game performance in Unit
3, which may reveal signs of players’ learning performance, since it has been proved to have high correlation with players’
learning performance (Kiili et al., 2018).
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(a) (b)

(c) (d)

(e) (f)

Figure .11. Example Screen Shots of Key Quests in Unit 3*

*Figures (a) and (b) focus on crate placement, and (c) focuses on pollution in the game. Figure (d) is a screen shot of our argumentation system where students
integrate evidence, claims, and reasoning to construct scientific arguments. Figures (e) and (f) focus on the seed-planting quest.
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