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Abstract
The notion that mental arithmetic is associated with shifts of spatial attention along a spatially organised mental number 
representation has received empirical support from three lines of research. First, participants tend to overestimate results of addition 
and underestimate those of subtraction problems in both exact and approximate formats. This has been termed the operational 
momentum (OM) effect. Second, participants are faster in detecting right-sided targets presented in the course of addition problems 
and left-sided targets in subtraction problems (attentional bias). Third, participants are biased toward choosing right-sided response 
alternatives to indicate the results of addition problems and left-sided response alternatives for subtraction problems (Spatial 
Association Of Responses [SOAR] effect). These effects potentially have their origin in operation-specific shifts of attention along a 
spatially organised mental number representation: rightward for addition and leftward for subtraction. Using a lateralised target 
detection task during the calculation phase of non-symbolic additions and subtractions, the current study measured the attentional 
focus, the OM and SOAR effects. In two experiments, we replicated the OM and SOAR effects but did not observe operation-specific 
biases in the lateralised target-detection task. We describe two new characteristics of the OM effect: First, a time-resolved, block-wise 
analysis of both experiments revealed sequential dependency effects in that the OM effect builds up over the course of the 
experiment, driven by the increasing underestimation of subtraction over time. Second, the OM effect was enhanced after arithmetic 
operation repetition compared to trials where arithmetic operation switched from one trial to the next. These results call into 
question the operation-specific attentional biases as the sole generator of the observed effects and point to the involvement of 
additional, potentially decisional processes that operate across trials.
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Previous research has hinted at a functional association between the concepts of numbers and space (Knops, 2018). 
Several studies reported that attentional shifts to the left are elicited by small and shifts to the right are elicited by 
large number processing (attentional SNARC, Casarotti et al., 2007; Myachykov et al., 2016; Nicholls et al., 2008). A 
metaphor for how numbers are mentally represented that was proposed in that context is the mental number line (MNL): 
Numerical magnitude is supposedly represented in ascending order on an analogue number line with smaller numbers 
left from larger numbers.
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Extending spatial-numerical associations to the realm of mental arithmetic, McCrink et al. (2007) and Knops et 
al. (2009) demonstrated that the estimated outcome of addition problems was overestimated while the outcome of 
subtraction problems was underestimated. This finding was termed Operational Momentum (OM) effect and was 
observed in non-symbolic (Knops et al., 2009; McCrink et al., 2007) and symbolic (Knops et al., 2009; Pinhas & 
Fischer, 2008) numerical formats. One hypothesis to explain that effect assumes attentional shifts on the internal mental 
representation (MNL) from the first operand by the amount of the second operand into the direction of the result. 
According to this attentional shift hypothesis (Hubbard et al., 2005), the OM is caused by an overshoot (momentum) 
on that internal representation to the right during addition and left during subtraction processing, resulting in relative 
over- and underestimation.

Other accounts were put forward to explain the OM effect. According to the heuristics account, the OM is the 
result of the simple heuristic to accept a result as long as it is more than the initial operand during addition and less 
during subtraction (McCrink et al., 2007; McCrink & Wynn, 2009). McCrink et al. (2007) and Chen and Verguts (2012) 
proposed that the OM is caused by a faulty decompression of the presumably logarithmically compressed numerical 
representation (compression account): Calculation with these faulty magnitudes will produce the typical overestimation 
and underestimation pattern of the OM. Finally, the arithmetic heuristics and biases model (AHAB, Shaki et al., 2018) 
assumes that three competing biases and heuristics (more-or-less heuristic, sign-space association, anchoring bias) are 
the cause of the OM effect. These biases contribute to arithmetic processing and depending on their relative weight 
produce the differential performance patterns. In summary, several theories exist that do not necessarily rely on spatial 
components to explain the OM effect.

Further evidence for the involvement of spatial representations during mental arithmetic comes from the Space-Op
eration Association of Responses (SOAR effect; Knops et al., 2009). When presented with an array of response options 
that are located equidistant from a central fixation point, participants preferentially selected (upper) right-hand options 
for addition problems, but more (upper) left-hand options for subtraction problems. Attentional deflections to the left 
during subtraction and right during addition have been reported by independent groups since then (e.g. Glaser & Knops, 
2020; Liu et al., 2017; Masson & Pesenti, 2014). Similarly, modulating the locus of spatial attention affected addition and 
subtraction performance (e.g. Masson & Pesenti, 2016; Mathieu et al., 2016).

These attentional biases in mental arithmetic cannot be explained by all above theories. The heuristics account and 
the compression account alone do not predict spatial biases as they contain no spatial components. The AHAB model, 
on the other side, stipulates an association between addition signs and the right side of space and subtraction signs 
and the left side of space. This component which takes action in situations “when stimuli or responses are spatially 
distributed” can explain these spatial biases (Shaki et al., 2018, p. 141).

When it comes to the processes underlying mental arithmetic, a global and approximate evaluation is distinguished 
from an exact retrieval process. This dual-process assumption was based on the reaction time advantage for incorrect 
response alternatives with a large numerical distance from the correct outcome over correct response alternatives 
(Ashcraft & Stazyk, 1981). The extent to which approximate and exact processing strategies are concurrently applied 
depends on the stimuli and the task at hand (e.g. Klein et al., 2009).

The question arises what process gives rise to the hypothesised attentional shifts during mental arithmetic. The 
OM effect which has originally been interpreted as a consequence of the movement on the spatial representation of 
magnitude (attentional shift hypothesis) has been observed both during exact and approximate arithmetic but was 
stronger in a non-symbolic (i.e. purely approximate) calculation context (Katz & Knops, 2014; Knops et al., 2009). The 
SOAR effect emerged in non-symbolic (i.e. approximate) calculation but not in symbolic (i.e. exact) formats (Knops et 
al., 2009). Yet, the studies that tested the involvement of spatial attention in mental arithmetic by probing attentional 
modulations in target detection or temporal order judgment tasks as a consequence of the arithmetic operations, used 
only symbolic stimuli (e.g. Glaser & Knops, 2020; Liu et al., 2017; Masson & Pesenti, 2014). Such designs allowed for 
exact numerical processing that presumably involves both exact and approximate processing mechanisms (e.g. Li et al., 
2018; Liu et al., 2017). This makes it impossible to trace back (spatial attention) effects to only one of either mechanism. 
Hence, no study has so far systematically investigated spatial biases in the context of (solely) approximate arithmetic.

The present study intended to fill this gap by investigating whether the approximate solution process to non-sym
bolic addition and subtraction tasks induces attentional shifts to the right and left, respectively. The arithmetic task 
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made use of dot arrays that contained a minimum of 8 dots to avoid exact processing and rapid counting strategies. 
We sequentially presented an operation cue, the first operand dot array followed by a second presentation of the 
operation cue, the second operand dot array, and the concurrent presentation of four response option (RO) arrays. The 
participant’s task was to indicate verbally which of these four ROs was the correct result to the arithmetic problem. 
Spatial attention during the approximate calculation phase was measured with a target detection task between the 
arithmetic problem presentation and the RO presentation. To investigate the time-course of potential attentional shifts, 
we varied the delay between the offset of the second operand and the onset of the target detection task (150, 300, 500 
ms). Delays were chosen in accordance with previous studies (e.g. Liu et al., 2017). We predicted a rightward shift of 
attention for approximate addition processing (RTs right-sided targets < RTs left-sided targets) and a leftward shift of 
attention during subtraction processing (RTs left-sided targets < RTs right-sided targets).

We found no operation-dependent shifts in the target detection task but a spatial bias in the choice of RO locations 
of the arithmetic task (SOAR effect). To increase overall accuracy and overcome the overall underestimation bias that 
might have masked spatial effects in the target detection task, we conducted a second experiment that involved feedback 
on the arithmetic response during the practise phase. Again, no operation-dependent shifts were observed in the target 
detection task, but we replicated the SOAR effect in the arithmetic task. Exploratory analyses revealed that the OM 
effect is subject to sequence effects. The OM effect in trial n is more pronounced if the arithmetic operation is identical 
in trials n and n-1 compared to trials where the operation changes between n and n-1.

Experiment 1

Method
Participants

Eighteen German-speaking students from the Humboldt-Universität zu Berlin (Mage = 22.67 years, SDage = 4.68 years, 
range: 18-32 years, 13 female, 18 right-handed) took part in the experiment in exchange for course credit. All partici
pants had normal or corrected-to-normal vision and hearing. The experiment was non-invasive, and all procedures were 
carried out in accordance with the ethical standards established by the Declaration of Helsinki. Informed consent was 
obtained in written format from all individual participants.

Stimuli

9 addition and 9 subtraction problems that were matched with regard to their operands from Knops et al. (2009) were 
used (see the Supplementary Materials for the stimulus list). For all problems, 5 deviants (including the correct result) 
were created via the formula: C × 2(r +i /2) (C is the correct result, r is drawn from a uniform distribution between -0.25 
and 0.25, and i ranges from -2 to +2). Hence, without the jitter that was created with the r parameter, deviants ranged 
from C/2 to C×2. In the experiment, only four ROs out of five deviants were presented to avoid the strategy of always 
selecting the middle option. These ROs were later presented randomly in the four quadrants of the screen. To arrive at 
162 tasks per operation, we created 18 variants per task by a) jittering the operands (O1+1 ± O2-1; O1 ± O2; O1-1 ± 
O2+1), and b) by varying the range of the ROs (upper vs lower four ROs of five deviants), so that in 50% of the trials the 
2nd RO (upper range)/ 3rd RO (lower range) was correct.

The non-symbolic dot stimuli for the arithmetic task were created using MATLAB (R2016a) and the Psychtoolbox 
library (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) via a method that was adapted from Katz and Knops (2014) which 
in turn was based upon the method described by Gebuis and Reynvoet (2011). We first generated dot arrays for the 
operands. The dot arrays for the four ROs were controlled for intensive and extensive parameters to avoid selection 
strategies based upon these parameters instead of quantity. Two versions for each RO were created. Then, correlations 
between quantity and area subtended, between quantity and mean dot size, as well as between area subtended and mean 
dot size for all possible combinations of the four RO dot arrays were checked. We selected those stimuli with individual 
correlations r < .2. The mean correlation between quantity and area subtended (extensive visual parameter) was r = .063 
(SD = .116) and between quantity and mean dot size (intensive visual parameter) was r = -.018 (SD = .099).

Spatial Biases in Approximate Arithmetic 46

Journal of Numerical Cognition
2023, Vol. 9(1), 44–64
https://doi.org/10.5964/jnc.8373

https://www.psychopen.eu/


Apparatus

The experiment was presented via MATLAB (R2016a) and the Psychtoolbox package (Brainard, 1997; Kleiner et al., 
2007; Pelli, 1997) on an LCD monitor (resolution 1080 x 1920; refresh rate: 100 Hz; distance to screen: ~60 cm). We 
attached a black cardboard with a central quadratic opening to the screen to reduce the possibility of priming towards 
the horizontal axis. For the target detection task, participants were instructed to press the space bar on a keyboard with 
their preferred hand once a target was detected. Verbal responses in the arithmetic task were recorded via microphone. 
The voice onset reflects the time the sound signal exceeded a threshold level and launched the next trial. Data was 
analysed via R (R Core Team, 2022).

Procedure

The visual stimuli were presented on a light grey background. For fixation we used a white asterisk. All dot stimuli 
consisted of white dots on a grey circular background (radius 9.3°). Targets consisted of dark grey squares (.75° × .75°) 
that were presented with a distance of 5.12° from fixation (measured from the centre of the target).

The 396 trials were presented in 11 blocks of 36 trials each. Practise blocks contained 30 trials drawn randomly from 
the set of experimental trials. One practise block was mandatory. Another block was optional. Addition and subtraction 
trials were presented in interleaved, randomised order.

Every trial started with the fixation asterisk at the centre of the screen for 300 ms (Figure 1). The operation cue 
(letter ‘A’/’S’) was presented for 750 ms and indicated the upcoming arithmetic operation. Then, the first operand 
stimulus was presented for 750 ms, followed by the operation cue (500 ms), and the second operand (750 ms). The 
fixation asterisk was presented again to variably (150, 300, 500 ms plus jitter -80, -40, +40, +80 ms) delay the presentation 
of a target on the right or left side of fixation in 82% of the trials. In 18% no target appeared. Participants were instructed 
to press the space bar with their preferred hand upon target detection. Once decided upon the hand to use, participants 
were instructed to not change the hand during the experiment (in 2 cases the hand used did not match the self-reported 
handedness). Participants were told to respond as fast and accurately as possible. The target stayed on screen until a 
button press or a maximum of 2 seconds. After the button press or 2 seconds after the onset of the fixation a 500 ms 
blank screen was presented, followed by four ROs in the quadrants of the screen. Participants had to indicate verbally 
which was the correct result to the arithmetic problem presented beforehand. The letters ‘C’, ‘D’, ‘E’, ‘F’ were presented 
next to the respective ROs. The letter ‘A’ was avoided because it was already serving as an operation cue, and the letter 
‘B’ to avoid misunderstanding it for letter ‘D’. 500 ms after voice onset, the ROs disappeared for an inter trial interval 
(ITI) of 500 ms. If 6 s after the onset of the ROs no verbal response was detected, participants were prompted to respond 
faster or louder by a message on the screen for 1500 ms before the ITI and the next trial were launched. The complete 
experimental session lasted 1.5 hours.

Design

The factors operation (addition, subtraction), delay (bins around 150, 300, 500 ms) and target side (left, right) were varied 
within subjects. All condition combinations were repeated 27 times (i.e. 162 trials per operation). Additionally, 72 catch 
trials (no target) were included to ensure participants’ attention. Hence, the experiment consisted of a total of 396 trials.

Data Analysis

Reaction time (RTs) measurement in the target detection task started with the presentation of the target. We eliminated 
RTs that deviated more than two standard deviations from the subject’s mean (4.25%) or that were shorter than 200 
ms (0.1%). For inferential analysis, RTs were log10-transformed because the distribution of non-transformed RTs is not 
symmetrical.

For the analysis of the arithmetic task, catch trials were included as they contained an arithmetic task response 
worth investigating. As the ROs were jittered, the correct RO did not contain the same amount of dots for all repetitions 
of that task. Therefore, we calculated the mean of these amounts over all repetitions in the experiment, so that the 
“correct value” in the result section constitutes the mean of the correct amounts. The correct value and the chosen value 
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by the participant were log10-transformed. Whenever Mauchley’s test of sphericity indicated a violation of the sphericity 
assumption, the Greenhouse-Geisser correction was used. Raw data are available as Supplementary Materials.

Figure 1

Trial Structure of Experiment 1 and Experiment 2

Results
Target Detection Task

In no-target (catch) trials the error rate (i.e. false alarm rate) was around 0.28%. For the further analysis of the target 
detection task, only left- and right-sided target trials (i.e. no catch trials) were considered. We predicted an interaction 
between target side and operation in the form of faster RTs for left-sided targets in subtraction trials and faster RTs for 
right-sided targets in addition trials. Mean RTs (and SDs) are shown in Table 1. Figure 2 depicts the difference values 
between RTs to left- and right-sided targets (deltaRT = RTleft - RTright). Negative values indicate that the left-sided 
targets were detected faster (than the right-sided targets) and vice versa for positive values. The figure indicates that in 
most of the conditions right-sided targets were detected faster, independent of operation. A repeated measures ANOVA 
with the factors operation, delay and side of target on the log-transformed mean-aggregated RT variable revealed main 
effects of operation, F(1, 17) = 6.795, p < .05, ηG2  = 0.002, and delay, F(2, 34) = 32.096, p < .001, ηG2  = 0.026. Crucially, the 
ANOVA did not support our hypothesis of a significant interaction between target side and operation, F(1, 17) = 1.77, p = 
0.2, ηG2  = 0.0004.

Table 1

Mean RT (and SD) in ms of the Target Detection Task by Operation, Delay and Target Side of Experiment 1

Target side

Addition Subtraction

150 300 500 150 300 500

Left 527 (170) 477 (151) 475 (160) 508 (174) 481 (153) 471 (152)

Right 511 (165) 488 (168) 475 (165) 495 (161) 470 (150) 462 (160)
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Figure 2

Difference in Reaction Times Between Left-Sided and Right-Sided Targets by Delay and Operation (deltaRT = RTleft - RTright) of Experiment 1

Note. Positive values indicate that the right-sided targets were detected faster, negative values indicate that the left-sided targets were detected faster.

Arithmetic Task: Non-Random Distribution of Responses

We needed to examine whether the participants chose among the four ROs randomly. A non-random distribution 
(centred around the correct value) would indicate that they did indeed base their judgments on the arithmetic problem 
at hand. Figure 3A shows the response percentages for the deviants of the present experiment. The correct outcome 
is labelled D3. Depending on the RO range, either the upper (D2-D5) or lower (D1-D4) four ROs were presented. The 
plot indicates that in case of addition, the distribution was centred around the correct value (D3) in the upper range 
condition, and around the second RO (D2) in the lower range condition. For subtraction, subjects predominantly selected 
the smallest available option (D1 in lower range, D2 in upper range condition). This suggests an underestimation bias 
and generally reflects a pattern that has already been observed before (Knops et al., 2009). An ANOVA on the response 
percentages by operation, RO rank (P1 - P4) and RO range (upper, lower) showed no main effect of operation, F(1, 17) 
< .001, p > .99, ηG2  < 0.0001, but a main effect of RO rank, F(2.22, 37.75) = 24.609, p < .001, ηG2  = 0.36, and significant 
interactions between operation and RO rank, F(2, 34) = 32.336, p < .001, ηG2  = 0.443, as well as between RO rank and RO 
range, F(3, 51) = 15.901, p < .001, ηG2  = 0.089. Finally, the ANOVA showed a significant three-way interaction between 
operation, RO rank and RO range, F(3, 51) = 7.626, p < .001, ηG2  = 0.038. Overall, the ANOVA indicated that in both 
operations the four ROs were not chosen at random. Instead, depending on the range condition, different patterns of RO 
choices emerged.

In line with previous results, we observed that responses for addition problems were on average more accurate 
compared to subtraction. Two observations underline this. First, on average the correct response alternative was chosen 
significantly more often in addition (M = 0.316, SD = 0.05) compared to subtraction, M = 0.232, SD = 0.055; t(17) = 5.206, 
p < .001. Second, while response distributions peaked at or close to the correct outcome for additions (see Figure 3A), in 
subtraction the most often chosen response alternatives were the smallest values on screen.

Arithmetic Task: Operational Momentum Effect

For the analysis of the Operational Momentum (OM) effect, we calculated the response bias as the difference between 
the logarithm of the chosen value and the logarithm of the correct value. Figure 3B shows the mean response bias for 
both operations. Participants tended to select smaller outcomes (compared to correct values) in subtraction tasks (M = 
-0.079, SD = 0.029) compared to addition tasks, M = 0.002, SD = 0.041, t(17) = 6.356, p < .001. Two one-sample t-tests 
against zero for both operations indicated that participants significantly underestimated subtraction problems, t(17) = 
-11.38, p < .001, but that their performance was fairly accurate for addition problems, t(17) = .173, p = .865.
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Figure 3

Arithmetic Task of Experiment 1

Note. A) Distribution of the participants’ choices across the five deviants. D3 was always the correct outcome. Depending on the RO range condition 
only the upper (D2-D5) or lower (D1-D4) four ROs were drawn from the set of five deviants. B) Mean response bias defined as the difference between 
the logarithm of the chosen value and the logarithm of the correct values. A negative value indicates an underestimation, and a positive value 
indicates an overestimation. C) The response frequencies of the four RO locations by arithmetic operation (black). Grey lines indicate the presentation 
frequencies of the correct RO at the given location.

Arithmetic Task: Influence of the Arithmetic Operation on the Spatial Distribution of Responses

Even though, we found no operation-dependent spatial bias in the target detection task, it is conceivable that the arith
metic operation had an impact on the locations of the ROs chosen (SOAR effect; cf. Knops et al., 2009). Figure 3C depicts 
the frequencies of how often the four RO locations were chosen, as well as the frequencies of how often the correct 
RO was presented at that location. The figure illustrates that especially for subtraction participants preferred left-sided 
response locations. A repeated measures ANOVA with the factors operation and side on the response frequencies 
confirmed this with a significant effect of side, F(1, 17) = 5.799, p < .05, ηG2  = 0.193, and, crucially, a significant interaction 
between operation and side, F(1, 17) = 31.95, p < .001, ηG2  = 0.358. To examine the operational origin of the significant 
interaction between operation and side, we conducted four separate, directional t-tests against zero for the difference 
values between the choice frequencies (i.e. how often that location was chosen) and the presentation frequencies (i.e. 
how often the correct RO was presented at that location) – pooled over the vertical axis. This analysis revealed that in 
the addition condition, participants chose significantly less options from the left-hand side, M = -7.5, SD = 13.967, t(17) = 
-2.278, p < .05, and significantly more options from the right-hand side, M = 6.556, SD = 14.106, t(17) = 1.971, p < .05. 
In the subtraction condition, participants chose significantly less options from the right-hand side, M = -18.389, SD = 
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15.244, t(17) = -5.118, p < .0001, and significantly more options from the left-hand side, M = 17.389, SD = 15.47, t(17) = 
4.769, p < .0001.

Arithmetic Task: Block-Wise Analysis

In this exploratory analysis we analysed the response bias (defined as the difference between the logarithm of the 
chosen value and the logarithm of the correct value) and a CV_block variable (CV = SD/M) over experimental blocks 
to investigate how performance developed over time. Figure 4 depicts the response bias variable separately for addition 
and subtraction tasks over the course of the experiment. In addition blocks, performance was constantly close to perfect. 
In subtraction blocks, however, performance deteriorated over time. More precisely, subjects performed fairly accurate 
at the beginning and then tended to underestimate results (OM effect). This pattern then remained constant over the 
rest of the experiment. A repeated measures ANOVA with the factors operation and block on the response bias variable 
revealed no main effect of block, F(10, 170) = 1.361, p = .202, ηG2  = 0.024, but a main effect of operation, F(1, 17) = 40.249, p 
< .001, ηG2  = 0.379, and, importantly, a significant interaction between block and operation, F(10, 170) = 2.69, p < .01, ηG2  = 
0.035.

Figure 4

Mean Response Bias by Block

Note. The response bias is defined as the difference between the logarithm of the chosen value and the logarithm of the correct value.

Figure 5

Coefficient of Variation (CV) by Block

Note. CV is defined as the ratio between the standard deviation and mean of the subjects’ response (CV = SD/M).
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Figure 5 illustrates the CV variable by block. It shows that the CV stayed almost constant over the experimental blocks. 
This was confirmed by testing the regression slopes of the individual subject’s CV over block against zero, t(17) = .011, 
p = .991.

Discussion
This study set out to investigate spatial biases and attentional shifts in the context of approximate addition and 
subtraction processing. We sequentially presented participants with arithmetic task components in the form of dot 
arrays. In the calculation phase, i.e. before the presentation of four ROs of which the correct solution had to be chosen, a 
target detection task was used to measure the locus of spatial attention.

The analysis of the target detection task showed no operation-dependent differences in target detection times for 
left-sided and right-sided targets. Hence, this experiment did not reveal spatial biases in approximate arithmetic in the 
target detection task. An increase in chosen numerosities and in response variability as a function of the correct value 
indicates that the ROs were not chosen randomly. We observed a response bias, defined as the difference between 
the chosen option and the correct result, that differed significantly between the operations (OM effect). Participants 
tended to select smaller ROs than the correct result in subtraction trials (underestimation). A block-wise analysis further 
revealed that this pattern of underestimation gradually develops over the course of the first blocks of the experiment 
and then remains nearly constant.

We also found that the arithmetic operation influenced the location of the ROs chosen: Participants preferentially 
selected left-sided ROs in subtraction trials, and right-sided ROs in addition trials. This SOAR effect implies some form 
of operation-dependent spatial bias. These findings are evocative of the observations made by Knops et al. (2009), 
despite the presentation of only four ROs in the current study compared to seven in Knops et al. (2009).

Although some spatial bias was observed in form of a SOAR effect, we hypothesised that providing feedback might 
increase overall accuracy and calibrate the responses on the correct outcome which would potentially help overcoming 
the overall underestimation bias. It is known from Izard and Dehaene (2008) that feedback can be used to improve 
performance in a dot numerosity estimation task. In their study, participants were provided with a comparison dot 
array together with a symbolic number that they were told to be the amount of the dots presented. Performance in the 
estimation task then improved, because the dot array numerosity that had to be estimated could then be compared with 
this comparison stimulus presented, i.e. it served as a form of calibration. Hence, we hypothesised that performance in 
an approximate arithmetic task would also benefit from feedback. The second experiment, therefore comprised an initial 
feedback during practise trials. After providing their verbal response to the arithmetic task (i.e. saying “C”, “D”, “E” or 
“F” for the respective RO/quadrant), participants saw a green frame appear around the RO that was the correct solution 
to the problem. Additionally, we increased the amount of mandatory practise blocks from one in Experiment 1 to three. 
Another two practise blocks with feedback were optional. The experimental blocks did not contain feedback and were 
identical to the ones used in Experiment 1.

Experiment 2

Method
Participants

Twenty-one participants took part in the experiment (Mage = 25.67 years, SDage = 5.38 years, range: 18-33 years, 14 
female, 18 right-handed). All subjects were German-speaking students from the Humboldt-Universität zu Berlin and had 
normal or corrected-to-normal vision and hearing. The experiment was non-invasive and all procedures were carried 
out in accordance with the ethical standards established by the Declaration of Helsinki. Informed consent was obtained 
in written format from all individual participants.
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Stimuli, Apparatus, Procedure and Design

Experiment 2 was completely identical to Experiment 1 except for the fact that practise trials involved feedback and 
that the number of practise trials was increased. The feedback involved the presentation of a green frame for 2 seconds 
around the correct option once the participant had given a verbal response. Each practise block consisted of 25 trials 
drawn randomly from the set of experimental trials. Three practise blocks were mandatory and two further blocks were 
optional. Again, participants were instructed to press the space bar with their preferred hand once a target was detected 
in the target detection task (in one case the hand used did not match the self-reported handedness). Before the practise 
blocks, they were informed that after each response to the arithmetic task, a green frame around one of the four ROs 
would indicate the correct solution.

Data Analysis

For the analysis of the target detection task, again, we eliminated RTs that deviated more than two standard deviations 
from the subject’s mean (4.26%) or that were shorter than 200 ms (0.12%). In Experiment 2 (in contrast to Experiment 
1) we also analysed the practise data because it contained feedback and was, therefore, deemed worth investigating 
(see “Arithmetic Task: Effect of feedback”). We failed to collect the practise trial data of one subject, so that for the 
analysis of the arithmetic performance within the practise (feedback) blocks, we could only use the data of 20 subjects. 
The experiment offered five practise blocks, but only three blocks were mandatory. For that reason, data for the 4th 
and 5th practise block was not available from all subjects. In fact, only three subjects made use of the 4th block and no 
subject used the 5th practise block. Therefore, we only analysed the arithmetic performance data of the mandatory three 
practise blocks. Raw data are available as Supplementary Materials.

Results
Target Detection Task

In no-target (catch) trials the error rate (i.e. false alarm rate) was around 0.37%. For the further analysis of the target 
detection task, only left- and right-sided target trials (i.e. no catch trials) were considered. As in Experiment 1, we 
predicted an interaction between target side and operation (see Table 2 for RT means and SDs and Figure 6 for 
deltaRTs). A repeated measures ANOVA with the factors operation, delay and side of target on the log-transformed 
mean-aggregated RT variable showed main effects of side, F(1, 20) = 4.434, p < .05, ηG2  = 0.002, and delay, F(2, 40) = 
43.482, p < .001, ηG2  = 0.023, but no interaction between target side and operation, F(1, 20) = 3.373, p = .081, ηG2  = 0.0003.

Table 2

Mean RT (and SD) in ms of the Target Detection Task by Operation, Delay and Side of Target of Experiment 2

Target side

Addition Subtraction

150 300 500 150 300 500

Left 468 (151) 455 (151) 436 (141) 469 (144) 448 (157) 434 (154)

Right 459 (140) 440 (137) 423 (133) 467 (144) 437 (143) 426 (136)
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Figure 6

Difference in Reaction Times Between Left-Sided and Right-Sided Targets by Delay and Operation (deltaRT = RTleft - RTright) for Experiment 2

Note. Positive values indicate that the right-sided targets were detected faster, negative values indicate that the left-sided targets were detected faster.

Arithmetic Task: Non-Random Distribution of Responses

Figure 7A shows the response percentages for the deviants of the second experiment. Note, that D3 is always the correct 
value. Again, the ANOVA with operation, RO rank (P1 – P4) and RO range (upper, lower) as factors showed no main 
effect of operation, F(1, 20) < .001, p > .99, ηG2  < 0.0001, a main effect of RO rank, F(1.98, 39.63) = 22.342, p < .001, ηG2  = 
0.331, and significant interactions between operation and RO rank, F(1.67, 33.33) = 22.839, p < .001, ηG2  = 0.338, as well 
as between RO rank and RO range, F(3, 60) = 41.168, p < .001, ηG2  = 0.082. The three-way interaction between operation, 
RO rank and RO range was significant, F(3, 60) = 10.579, p < .001, ηG2  = 0.033. This is the same pattern of results as in 
Experiment 1 and indicates that the four ROs were not chosen at random.

Similar to Experiment 1, in addition tasks the correct RO was chosen significantly more often (M = 0.322, SD = 0.072) 
than in subtraction, M = 0.239, SD = 0.031, t(20) = 5.548, p < .001. Furthermore, for additions the distributions peaked 
around the correct outcome (see Figure 7A), while in subtraction the smallest value on the screen was chosen most 
often. These findings indicate that addition responses were on average more accurate than subtraction responses.

Arithmetic Task: Operational Momentum Effect

Figure 7B depicts the response bias variable of Experiment 2 for additions and subtractions. Similar to Experiment 1, 
participants tended to select smaller outcomes (compared to correct values) in subtraction tasks (M = -0.077, SD = 0.042) 
compared to addition tasks, M = -0.006, SD = 0.048, t(20) = 4.705, p < .001. Two one-sample t-tests against zero indicated 
that participants significantly underestimated subtraction problems, t(20) = -8.42, p < .001, but that performance was 
rather precise for addition problems, t(20) = -.549, p = .589.

Arithmetic Task: Influence of the Arithmetic Operation on the Spatial Distribution of Responses

Figure 7C depicts the frequencies of how often the four RO locations were chosen, as well as the frequencies of how 
often the correct RO was presented at that location of Experiment 2. Similar to Experiment 1, participants appeared 
to prefer left-sided response locations in subtractions tasks. A repeated measures ANOVA on the collapsed response 
frequency data of the left and right locations (collapsed top and bottom data) revealed a significant effect of side, F(1, 
20) = 8.105, p < .05, ηG2  = 0.226, and a significant interaction between operation and side, F(1, 20) = 63.448, p < .001, ηG2  = 
0.467. To examine the operational origin of the significant interaction between operation and side, we conducted four 
separate, directional t-tests against zero for the difference values between the choice frequencies (i.e. how often that 
location was chosen) and the presentation frequencies (i.e. how often the correct RO was presented at that location) 
– pooled over the vertical axis. This analysis revealed that in the addition condition, participants chose significantly 
less options from the left-hand side, M = -5.143, SD = 10.561, t(20) = -2.231, p < .05, but not significantly more options 
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from the right-hand side, M = 3.762, SD = 10.667, t(20) = 1.616, p = .061. In the subtraction condition, participants chose 
significantly less options from the right-hand side, M = -16.381, SD = 11.465, t(20) = -6.548, p < .0001, and significantly 
more options from the left-hand side, M = 15.19, SD = 11.21, t(20) = 6.21, p < .0001.

Figure 7

Arithmetic Task of Experiment 2

Note. A) Distribution of the participants’ choices across the five deviants. D3 was always the correct outcome. Depending on the RO range condition 
only the upper (D2-D5) or lower (D1-D4) four ROs were drawn from the set of five deviants. B) Mean response bias defined as the difference between 
the logarithm of the chosen value and the logarithm of the correct values. A negative value indicates an underestimation, and a positive value 
indicates an overestimation. C) The response frequencies of the four RO locations by arithmetic operation (black). Grey lines indicate the presentation 
frequencies of the correct RO at the given location.

Arithmetic Task: Block-Wise Analysis and Effect of Feedback

To investigate whether feedback during practise blocks of Experiment 21 had an impact on arithmetic performance we 
focussed on the response bias (defined as the difference between the logarithm of the chosen value and the logarithm 
of the correct value) to quantify the OM effect and a CV_block variable (CV = SD/M) to illustrate the constant response 
variability.

1) Note, that contrary to Experiment 2, in Experiment 1 no practice trial data was collected. Furthermore, it is important to point out that trial amounts 
slightly differed between practice and experimental blocks in both experiments: Experiment 1 included one mandatory and one optional practice block á 30 
trials. Experiment 2 included three mandatory and two optional practice blocks á 25 trials. Both experiments consisted of 11 experimental blocks á 36 trials. 
Consequently, practice and experimental blocks are not fully comparable.
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Figure 8 shows the response bias variable separately for addition and subtraction tasks over the course of the 
experiment. Performance was close to perfect in addition tasks and did not change over blocks. In subtraction tasks, 
subjects tended to underestimate the results. Accuracy decreased over the course of the practice trials and remained 
constant over the rest of the experiment. In other words, the OM effect in subtraction was increased with practise. 
Inferentially, a repeated measures ANOVA with the factors operation and block on the response bias variable revealed 
a main effect of block, F(5.82, 104.75) = 2.401, p < .01, ηG2  = 0.039, and a main effect of operation, F(1, 18) = 31.787, p < 
.001, ηG2  = 0.284. However, the interaction between block and operation was not statistically significant, F(5.59, 100.71) = 
1.761, p = .05, ηG2  = 0.028. These results suggest that the feedback during the practise trials did not improve arithmetic 
performance. More specifically it did not reduce the response bias (underestimation) that was observed especially in 
subtraction tasks.

Figure 8

Mean Response Bias by Block

Note. P1-P3 indicate the practise blocks; E1-E11 indicate the experimental blocks. The response bias is defined as the difference between the logarithm 
of the chosen value and the logarithm of the correct value.

Figure 9 depicts the CV separately for each block and illustrates that the CV variable stayed nearly constant over the 
course of the experiment, as confirmed by testing the regression slopes of the individual subject’s CV over block against 
zero, t(19) = .586, p = .565. This suggests that feedback during practise trials had no impact on the response variability 
over the course of the experiment.

Figure 9

Coefficient of Variation (CV) by Block

Note. CV is defined as the ratio between the standard deviation and mean of the subjects’ response (CV = SD/M).
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Joint Analysis of Experiment 1 and 2: Replication Check

To examine whether the results differed between experiments, we performed two mixed ANOVAs on the response bias 
variable (OM effect) and the response location variable (SOAR effect) data of both experiments. With regard to the OM 
effect, the ANOVA on the response bias variable revealed a significant effect of operation, F(1, 37) = 56.619, p < .001, ηG2  = 
0.471, but, crucially, no significant interaction between operation and experiment, F(1, 37) = .216, p = .645, ηG2  = 0.003, 
indicating that the response bias effect (OM effect) did not differ between experiments. As regards the SOAR effect, the 
ANOVA on the response frequencies indicated a main effect of side, F(1, 37) = 13.75, p < .01, ηG2  = 0.209, and a significant 
interaction between operation and side (SOAR effect), F(1, 37) = 90.999, p < .001, ηG2  = 0.414, but crucially, no interactions 
with the factor experiment (all ps > .05) indicating that the SOAR effect did not differ between experiments.

Joint Analysis of Experiment 1 and 2: Analysis of the Operation-Side Interaction for the Location Analysis of 
the Arithmetic Task

In order to examine the spatial distribution of responses and their operational origin, we pooled the data of both 
experiments and performed four separate, directional t-tests against zero. In additions, participants chose significantly 
less options from the left-hand side, M = -6.231, SD = 12.141, t(38) = -3.205, p < .01, and significantly more options from 
the right-hand side, M = 5.051, SD = 12.284, t(38) = 2.568, p < .01. In subtractions, participants chose significantly less 
options from the right-hand side, M = -17.308, SD = 13.197, t(38) = -8.19, p < .0001, and significantly more options from 
the left-hand side, M = 16.205, SD = 13.207, t(38) = 7.662, p < .0001.

Joint Analysis of Experiment 1 and 2: Exploratory Analysis of Sequential Dependencies

In an exploratory analysis we analysed the response bias (OM) depending on whether the previous trial (n-1) involved 
the same or different operation as the current trial (repeat trial: Add → Add, Sub → Sub; switch trial: Add → Sub, 
Sub → Add)2. We observed a significant interaction between the operation and the switch trial property, F(1, 38) = 21.59, 
p < .001, ηG2  = 0.362. Post-hocs tests revealed that in subtraction trials, the response bias became more negative when 
the previous trial was a subtraction trial (repeat) compared to switch trials, t(38) = -3.91, p < .001. In addition trials, the 
response bias became more positive in repeat trials compared to switch trials, t(38) = 2.61, p < .05. These results suggest 
that the OM effect increases when an operation is repeated over trials.

Discussion
In Experiment 2, we provided feedback in the practise blocks to assure that participants performed the approximate 
calculation adequately. No operation-dependent effects were observed in the target detection task (as in Experiment 1). 
Additionally, the feedback did not lead to an improvement in the arithmetic performance. The remaining performance 
pattern matched the results from Experiment 1 extremely closely. Participants selected smaller numerosities as correct 
results in subtraction tasks compared to addition tasks (OM effect) and preferentially selected left-sided ROs in subtrac
tion trials and right-sided ROs in addition trials (SOAR effect). A pooled analysis over both experiments revealed 
increased OM effects when the operation is repeated over trials.

Similar to Experiment 1, we found that performance in subtraction trials was initially centred on the mean outcome 
and only successively became biased towards underestimation.

General Discussion
This study set out to investigate spatial biases and attentional shifts in the context of approximate addition and 
subtraction. In two experiments, participants were presented with non-symbolic addition and subtraction problems and 
had to choose the correct solution amongst four ROs. Spatial attention was measured via a target detection task that was 

2) The switch trial property was not experimentally varied, but the data involved a nearly equal amount of switch (.52%) and repeat trials (.48%).
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presented after the arithmetic task and before the RO presentation. In the second experiment we introduced a feedback 
during initial training trials to increase the reliance on approximate calculation and its accuracy.

We replicated the OM effect in both experiments (Knops et al., 2009; McCrink et al., 2007). Participants selected 
smaller ROs than the correct result in subtraction trials (underestimation). We also replicated the SOAR effect in both 
experiments. Participants preferentially selected left-sided ROs in subtraction tasks and right-sided ROs in addition 
tasks. The results of the target detection task that we used to directly probe the presence of attentional shifts showed 
no operation-dependent bias, i.e. no reaction time difference between left- and right-sided targets for addition or 
subtraction tasks. Hence, while we failed in detecting horizontal shifts of spatial attention in the context of approximate 
addition and subtraction via the target detection task, we reliably observed spatial and arithmetic biases (SOAR effect, 
OM effect) in the context of an approximate calculation task. Latter observations (SOAR, OM) are in line with previous 
studies (e.g. Knops et al., 2009). Even more so, the observations of a SOAR effect are in accord with more general 
observations linking visuospatial and numerical processing (Grasso, Anobile, & Arrighi, 2021; Grasso, Anobile, Caponi, 
et al., 2021).

How can this pattern of results be linked to the models explaining the OM effect? The models differ regarding their 
predictions of spatial biases: The compression account and the heuristics account do not predict spatial biases, while 
the AHAB model contains a spatial component (sign-space association). Note however, that the present study did not 
involve operation signs but the letters “A” and “S”, respectively. Nevertheless, if this component would be generalised 
to an “operation-space association” it would still predict a spatial bias. The heuristics and compression accounts could 
make spatial predictions under the additional assumption of magnitude-space associations. Hence, all models could 
potentially predict operation-dependent spatial biases, i.e. effects in the target detection task and the arithmetic choice 
locations (SOAR). But this is not what we found.

This prompts the question of why spatial biases have been observed in one task (arithmetic task: locations) but 
not the other (target detection task). We would like to discuss two possible explanations. First, the way we realised 
the target detection task might not have been sensitive enough to measure spatial biases. Previous studies using this 
paradigm differ largely with respect to the timings (target onset and durations), use of no-target trials and response 
(to target or target side). In the present study, the choice to leave the target on screen until the response might have 
impeded the detection of RT effects: Participants had no incentive to react as fast as possible because even if they didn’t 
detect the target at first, they would at some point. However, previous experiments (Liu et al., 2017) with a comparable 
design observed such effects, suggesting that attentional biases are observable with such a target detection set-up and 
that other factors are more likely to have caused the absence of effects in the target detection task of the present study.

Another possible explanation might be that the time window of the target detection task did not capture the 
approximate calculation process. Attentional modulations of activity in posterior parietal cortex and of reaction times 
have been observed in response to the presentation of an arithmetic operator. For example, Mathieu and colleagues 
(Mathieu et al., 2016) serially presented participants with arithmetic problems. Crucially, the second operand was 
presented either to the left or to the right side of the operator, essentially acting as a cued target. They found that 
addition problems were solved faster when the second operand appeared to the right of the operator compared to its 
appearance on the left. An equivalent association between subtraction and left targets was observed (cf. Campbell et al., 
2021, however, who did not find the latter effect). This effect was maximal when the second operand appeared 300 ms 
after the operator. More recently, the time-resolved analysis of gaze position during arithmetic problem solving revealed 
differences in horizontal eye positions between addition and subtraction in two time windows – immediately after the 
presentation of the arithmetic operator and during response preparation (Salvaggio et al., 2022). These results suggest 
that early attentional effects emerge very rapidly upon the presentation of the arithmetic operator. It should be noted, 
however, that these biases emerged in the context of exact arithmetic calculation tasks where problems were visually 
presented in symbolic format (Arabic digits). In contrast, we presented participants with non-symbolic stimuli that 
triggered approximate rather than exact arithmetic processing. The exact strategies underlying exact and approximate 
arithmetic are still poorly understood but both might involve a first approximation of the result involving the activation 
of the numerical magnitude representation. The early attentional effects associated with the operator might reflect 
a first activation of the numerical range of potentially eligible outcomes (i.e. results larger than the first operand in 
addition trials and results smaller than the first operand in subtraction trials) against which the final outcome of the 
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operation is compared, leading to the late attentional modulations. The temporal structure of our task did not allow to 
capture the fast attentional modulation observed in previous studies. However, we observed late attentional modulations 
in the form of the SOAR effect. This is even more surprising when we consider that the processing of the four ROs in 
the quadrants of the screen might be associated with additional biaxial attentional deflections (into to the four positions) 
that would precede any response (bias).

The time window might also differ as a function of the type of response, depending on whether a free response 
(e.g. verbal input or dot production) must be given or a forced-choice decision has to be made on one or multiple ROs. 
The present study involved an approximate arithmetic task in combination with a forced-choice response (choice among 
four ROs). In that case, it is plausible that actual processing - i.e. operation upon the numerical representation - occurred 
only when the ROs were presented and the correct solution had to be selected. Consequently, spatial biases should have 
been observed in the RO presentation part of the arithmetic task but not before. This is exactly what we observed: 
Spatial biases were not observed before the ROs via the target detection task but during the RO presentation phase 
via the arithmetic task response. Future studies need to systematically measure spatial attention during the arithmetic 
response, i.e. during the RO selection phase in non-symbolic approximate arithmetic.

Another major finding of the present study is that both experiments did not differ in their result patterns even 
though the second experiment involved feedback during the practise blocks. In contrast with the hypotheses, however, 
participants’ performance (accuracy and CV) did not improve via feedback, and the OM and SOAR effect remained the 
same. This means that the observed effects are relatively invariant to feedback. Two potential explanations for the lack 
of improvement in arithmetic performance after feedback can be discussed.

Firstly, it is plausible that due to its shortness, the feedback used in the present study was not efficient enough to 
improve arithmetic performance. Other studies involving some form of training often used multiple training sessions 
(e.g. Park & Brannon, 2013). In the present experiment, however, participants practised on average for 3 blocks á 25 
trials, which might not have been enough to improve participants’ arithmetic performance. Alternatively, the lack of 
an incentive in our study may have left participants unmotivated to improve performance by taking the feedback into 
account. In line with a recent study that shows how an incentive motivation improves the precision of the ANS, future 
studies may want to induce this type of reward-related enhancements (Dix & Li, 2020).

Secondly, simply relying on a feedback might not have been sufficient to induce improvements of performance. Sev
eral studies investigated the effects of correct/incorrect feedback on approximate numerical processing or approximate 
arithmetic - with mixed results: Two studies described improvement in symbolic arithmetic after approximate arithmetic 
training (Park & Brannon, 2013, 2014). However, Lindskog and Winman (2016) pointed out that the improvement during 
approximate arithmetic training was not indicative of learning. Similarly, Szkudlarek et al. (2021) were not able to 
replicate their own findings (Park & Brannon, 2013, 2014). These studies indicate that training via correct/incorrect 
feedback might only be suitable to improve approximate arithmetic performance under certain constraints. Of note, the 
present study did not involve a correct/incorrect feedback but a feedback on the correct RO so that participants did not 
only receive information about the correctness but also about their deviation from the correct result. Surprisingly, the 
additional information provided by the feedback did not have a strong impact on performance. This may reflect the 
overall robustness of the OM effect. Alternatively, the initial feedback period may not have been long enough or might 
require periodic topping-up.

Furthermore, earlier studies investigating the processing of non-symbolic stimuli were in fact able to observe 
reduced variability after providing feedback of the real numerosity of stimuli (Minturn & Reese, 1951) or after providing 
inducer arrays (Izard & Dehaene, 2008; Krueger, 1984). Compared to the feedback of the present study, this feedback 
involved a transcoding process from a non-symbolic stimulus into symbolic information which allowed for an exact 
numerical representation. Perhaps a transcoding process might be what is needed to sufficiently improve approximate 
performance (see Lindskog et al., 2013 for a similar argument).

Nevertheless, it is important to point out that studies by Park and Brannon (2013, 2014) involved training of 
non-symbolic arithmetic while in Izard and Dehaene (2008) mprovement of non-symbolic processing performance was 
only shown in an estimation task. Single numerosity processing and arithmetic processing do not overlap in all of their 
underlying mechanisms making it difficult to fully be able to generalise findings of estimation tasks onto arithmetic 
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tasks. Therefore, further research is needed to investigate how exact/symbolic information can improve non-symbolic 
arithmetic.

The two experiments of the present study further revealed that the underestimation in subtraction trials gradually 
emerged over the first blocks of the experiment. In Experiment 1, where no practise trial data was collected, participants 
performed fairly accurate in the first experimental block and then tended to progressively underestimate subtraction 
results. In Experiment 2, this pattern was already detectable in the practise trials – despite them involving feedback. We 
did not expect this surprising finding. The current study is the first to describe this type of time-resolved performance in 
the context of a non-symbolic arithmetic task. Hence, we cannot know whether this is something seen frequently or not. 
We can only speculate what might have caused participants in subtraction trials to choose values that become smaller 
over time. The OM effect might require a contextual build-up phase in which participants create an internal distribution 
of the stimuli that are used in the experiment and elaborate their strategy. In our study, the operands were identical for 
addition and subtraction. Hence, participants may have learned over time that the average outcome for subtraction is 
smaller compared to addition which may have biased their decision. Note, that the CV remains constant throughout the 
entire experiment for both addition and subtraction, meaning that participants did not become increasingly inaccurate. 
Rather, the overall mean of the preferred outcome with respect to the correct outcome stabilizes only after ~75 trials 
during which the OM effect increases. This suggests that the OM effect builds up over time by biasing the decisional 
processes without affecting the precision of the perceptual basis. This is a new and exciting discovery that requires a 
systematic investigation in future experiments. It is unclear, for example, why this was observed only for subtraction. 
One potential reason might be that the approximate addition of visual stimuli is easier than approximate subtraction 
because such stimuli might be visually superimposed in visual working memory. Approximate subtraction, on the other 
hand, involves a more complex mechanism of mentally erasing stimuli from the mental representation of the minuend. 
What is more, real-life subtraction usually involves the “disappearance” of a certain amount of objects – whereas the 
operationalisation of approximate subtraction in the current study involved the additional presentation of a second 
visual stimulus as a subtrahend. As this mechanism deviates from the real-life visual subtraction, it might be more 
difficult for participants to achieve. Consequently, subjects might fall back to a simple heuristic of choosing the smallest 
option leading to the underestimation bias. Of course, this remains highly speculative, and it does not explain why 
participants start off fairly accurate in approximate subtraction. Future studies are needed to systematically investigate 
the differences between approximate addition and subtraction.

Finally, the joint analysis of both experiments revealed sequential dependencies in the form of increased OM biases 
in cases where the operation was the same as in the previous trial compared to when it was different (switch). This 
finding might indicate that more mechanisms than only attentional shifts are involved in the formation of the OM. 
This is an exploratory finding which needs to be treated with caution as the switch property was not experimentally 
manipulated. Nevertheless, it provides an interesting new field of research. In a variety of tasks, the perception of a cur
rent stimulus is modulated by previous perceptual history. Bayesian theories of perception propose that the perceptual 
history serves to predict current perception via changes of perceptual priors. One possible perceptual mechanism that 
could explain the observed increase in the OM bias on repeated operation trials and that does not require additional the
oretical assumptions for explaining the OM effect operates on the perceived numerosity (Cicchini et al., 2014): Since we 
matched the operands between addition and subtraction, the average of the presented outcomes of subtraction problems 
was smaller compared to addition problems on any given trial. This might have biased the perceived numerosity of the 
operands of the successive trial. In line with previously described attractive serial dependency effects (Fornaciai & Park, 
2020), the larger average values in addition trials may have increased the perceived quantity of the subsequent operand 
in subtraction trials when operation switched. This means that the outcome of the subtraction trial is larger compared 
to situations where operation did not switch and the operands of the subsequent subtraction trials was not biased in this 
direction. Hence, this serial dependency effect induces a bias towards smaller numerosities after subtractions and larger 
numerosities after additions, enhancing or diluting the OM effect if subsequent operation was repeated or switched, 
respectively. We tested this assumption by computing a linear regression of the mean outcome of the previous trial on 
the OM effect in switch and in repeat trials. We found that the OM effect was positively correlated with the average 
outcome of the previous trial in repeat trials (mean slope: 0.00094) while this relation was negative in switch trials 
(mean slope: -0.00075). The difference between these slopes was significant, t(38) = 8.02, p < .001. Alternatively, serial 
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dependence effects may arise at post-perceptual information processing instances (Ceylan et al., 2021). According to this 
idea, the mean chosen outcome on a given trial might exert an influence on the chosen outcome in the next trial. To 
test this hypothesis, we computed the difference between the chosen outcome in the current trial and the previous trial 
(delta_CO), separately for switch and repeat trials and entered it in a liner regression on the OM effect. In switch trials, a 
larger absolute difference between current choice and past choice (i.e. more extreme values) lead to a larger OM effect in 
repeat trials compared to switch trials (steeper regression slope; t(38) = 21.338, p < .001).

We corroborated these results by comparing the relative importance of both variables (by partitioning of the total 
explained variance (R 2) of the model into individual R 2 contributions; see Grömping, 2007) when entered as predictors in 
a multiple regression on the strength of the OM effect. These two variables were able to explain (R 2) for 29% and 34% of 
the variance in switch and repeat trials, respectively. Of these, the choice in the previous trial explained more variance 
(i.e., was a better predictor) compared to the mean numerical size of the response alternatives (81% vs. 79% for repeat 
trials and 80% vs. 20% for switch trials).

Based on these (exploratory) results, we tentatively conclude that the locus of the amplification of the OM bias is 
at a central cognitive level, rather than on the perceptual side of the process. It may be interpreted as the consequence 
of an inhibition of the irrelevant task set (here: the alternative arithmetic operation; Koch et al., 2010) that impedes 
the execution of the previously inhibited operation in switch trials but not in trials where the operation is repeated. A 
cognitive interpretation also links nicely with the observed emergence of the OM effect in subtraction over the course 
of the first ~75 trials that also points to a successive built-up process that is independent of the core parameters of 
the perceptual performance (i.e. CV remained constant). These effects do not easily integrate into the attentional bias 
hypothesis of the OM effect and point to additional processes that influence performance in approximate arithmetic.

The present study investigated spatial attention in the context of approximate addition and subtraction. While no 
shifts could be observed via the target detection task, participants preferentially selected right ROs after addition and 
left ROs after subtraction processing (SOAR effect) implying a spatial bias in the context of approximate calculation 
during the RO selection stage. The feedback introduced in the second experiment in the form of highlighting the correct 
arithmetic answer after the participant had given their response during the practise trials, did not improve arithmetic 
performance. Consequently, the pattern of results was identical to the first experiment. Put positively, the observed 
effects and biases are robust and not easily malleable by feedback. The newly described serial dependency effect and the 
built-up of the OM effect over trials point to additional cognitive factors that require a more systematic exploration in 
future studies.

Funding: The authors have no funding to report.

Acknowledgments: The authors have no additional (i.e., non-financial) support to report.

Competing Interests: André Knops is the Editor-in-Chief of the Journal of Numerical Cognition but played no editorial role in this particular article or 

intervened in any form in the peer review process.

Data Availability: For this article, a data set is freely available (Glaser & Knops, 2022).

Supplementary Materials
The Supplementary Materials contain the following items (for access see Index of Supplementary Materials below):

• Raw data and codebook
• Arithmetic stimuli used in both experiments. The stimuli were based on the stimuli of Knops et al. (2009).

Index of Supplementary Materials

Glaser, M., & Knops, A. (2022). Supplementary materials to "Spatial biases in approximate arithmetic are subject to sequential dependency 
effects and dissociate from attentional biases" [Research data and codebook]. PsychOpen GOLD. 
https://doi.org/10.23668/psycharchives.8268 

Glaser & Knops 61

Journal of Numerical Cognition
2023, Vol. 9(1), 44–64
https://doi.org/10.5964/jnc.8373

https://doi.org/10.23668/psycharchives.8268
https://www.psychopen.eu/


Glaser, M., & Knops, A. (2023). Supplementary materials to "Spatial biases in approximate arithmetic are subject to sequential dependency 
effects and dissociate from attentional biases" [Arithmetic stimuli]. PsychOpen GOLD. https://doi.org/10.23668/psycharchives.12500 

References

Ashcraft, M. H., & Stazyk, E. H. (1981). Menatal addition: A test of three verification models. Memory & Cognition, 9(2), 185–196. 
https://doi.org/10.3758/BF03202334

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357
Campbell, J. I. D., Chen, Y., & Azhar, M. (2021). Not toeing the number line for simple arithmetic: Two large-n conceptual replications 

of Mathieu et al. (Cognition, 2016, Experiment 1). Journal of Numerical Cognition, 7(3), 248–258. https://doi.org/10.5964/jnc.6051
Casarotti, M., Michielin, M., Zorzi, M., & Umiltà, C. (2007). Temporal order judgment reveals how number magnitude affects 

visuospatial attention. Cognition, 102(1), 101–117. https://doi.org/10.1016/j.cognition.2006.09.001
Ceylan, G., Herzog, M. H., & Pascucci, D. (2021). Serial dependence does not originate from low-level visual processing. Cognition, 212, 

Article 104709. https://doi.org/10.1016/j.cognition.2021.104709
Chen, Q., & Verguts, T. (2012). Spatial intuition in elementary arithmetic: A neurocomputational account. PloS One, 7(2), Article 

e31180. https://doi.org/10.1371/journal.pone.0031180
Cicchini, G. M., Anobile, G., & Burr, D. C. (2014). Compressive mapping of number to space reflects dynamic encoding mechanisms, 

not static logarithmic transform. Proceedings of the National Academy of Sciences of the United States of America, 111(21), 7867–
7872. https://doi.org/10.1073/pnas.1402785111

Dix, A., & Li, S.-C. (2020). Incentive motivation improves numerosity discrimination: Insights from pupillometry combined with drift-
diffusion modelling. Scientific Reports, 10(1), Article 2608. https://doi.org/10.1038/s41598-020-59415-3

Fornaciai, M., & Park, J. (2020). Attractive serial dependence between memorized stimuli. Cognition, 200, Article 104250. 
https://doi.org/10.1016/j.cognition.2020.104250

Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43(4), 981–986. 
https://doi.org/10.3758/s13428-011-0097-5

Glaser, M., & Knops, A. (2020). When adding is right: Temporal order judgements reveal spatial attention shifts during two-digit 
mental arithmetic. Quarterly Journal of Experimental Psychology, 73(7), Article 1747021820902917. 
https://doi.org/10.1177/1747021820902917

Grasso, P. A., Anobile, G., & Arrighi, R. (2021). Numerosity adaptation partly depends on the allocation of implicit numerosity-
contingent visuo-spatial attention. Journal of Vision, 21(1), Article 12. https://doi.org/10.1167/jov.21.1.12

Grasso, P. A., Anobile, G., Caponi, C., & Arrighi, R. (2021). Implicit visuospatial attention shapes numerosity adaptation and 
perception. Journal of Vision, 21(8), Article 26. https://doi.org/10.1167/jov.21.8.26

Grömping, U. (2007). Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 17, 1–27. 
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews 

Neuroscience, 6(6), Article 435. https://doi.org/10.1038/nrn1684
Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221–1247. 

https://doi.org/10.1016/j.cognition.2007.06.004
Katz, C., & Knops, A. (2014). Operational momentum in multiplication and division? PloS One, 9(8), Article e104777. 

https://doi.org/10.1371/journal.pone.0104777
Klein, E., Nuerk, H.-C., Wood, G., Knops, A., & Willmes, K. (2009). The exact vs. approximate distinction in numerical cognition may 

not be exact, but only approximate: How different processes work together in multi-digit addition. Brain and Cognition, 69(2), 
369–381. https://doi.org/10.1016/j.bandc.2008.08.031

Kleiner, M., Brainard, D., & Pelli, D. G. (2007). What's new in Psychtoolbox-3? Perception, 36(ECVP Abstract Supplement), 14. 
Knops, A. (2018). Neurocognitive evidence for spatial contributions to numerical cognition. In A. Henik & W. Fias (Eds.), Heterogeneity 

of function in numerical cognition (pp. 211-232). Elsevier: Academic Press.
Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence 

from the operational momentum effect. Attention, Perception, & Psychophysics, 71(4), 803–821. https://doi.org/10.3758/APP.71.4.803

Spatial Biases in Approximate Arithmetic 62

Journal of Numerical Cognition
2023, Vol. 9(1), 44–64
https://doi.org/10.5964/jnc.8373

https://doi.org/10.23668/psycharchives.12500
https://doi.org/10.3758/BF03202334
https://doi.org/10.1163/156856897X00357
https://doi.org/10.5964/jnc.6051
https://doi.org/10.1016/j.cognition.2006.09.001
https://doi.org/10.1016/j.cognition.2021.104709
https://doi.org/10.1371/journal.pone.0031180
https://doi.org/10.1073/pnas.1402785111
https://doi.org/10.1038/s41598-020-59415-3
https://doi.org/10.1016/j.cognition.2020.104250
https://doi.org/10.3758/s13428-011-0097-5
https://doi.org/10.1177/1747021820902917
https://doi.org/10.1167/jov.21.1.12
https://doi.org/10.1167/jov.21.8.26
https://doi.org/10.1038/nrn1684
https://doi.org/10.1016/j.cognition.2007.06.004
https://doi.org/10.1371/journal.pone.0104777
https://doi.org/10.1016/j.bandc.2008.08.031
https://doi.org/10.3758/APP.71.4.803
https://www.psychopen.eu/


Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching: A review. Psychonomic Bulletin & 
Review, 17(1), 1–14. https://doi.org/10.3758/PBR.17.1.1

Krueger, L. E. (1984). Perceived numerosity: A comparison of magnitude production, magnitude estimation, and discrimination 
judgments. Perception & Psychophysics, 35(6), 536–542. https://doi.org/10.3758/BF03205949

Li, M., Liu, D., Li, M., Dong, W., Huang, Y., & Chen, Q. (2018). Addition and subtraction but not multiplication and division cause 
shifts of spatial attention. Frontiers in Human Neuroscience, 12, Article 183. https://doi.org/10.3389/fnhum.2018.00183

Lindskog, M., & Winman, A. (2016). No evidence of learning in non-symbolic numerical tasks–A comment on Park and Brannon 
(2014). Cognition, 150, 243–247. https://doi.org/10.1016/j.cognition.2016.01.005

Lindskog, M., Winman, A., & Juslin, P. (2013). Are there rapid feedback effects on Approximate Number System acuity? Frontiers in 
Human Neuroscience, 7, Article 270. https://doi.org/10.3389/fnhum.2013.00270

Liu, D., Cai, D., Verguts, T., & Chen, Q. (2017). The time course of spatial attention shifts in elementary arithmetic. Scientific Reports, 
7(1), Article 921. https://doi.org/10.1038/s41598-017-01037-3

Masson, N., & Pesenti, M. (2014). Attentional bias induced by solving simple and complex addition and subtraction problems. The 
Quarterly Journal of Experimental Psychology, 67(8), 1514–1526. https://doi.org/10.1080/17470218.2014.903985

Masson, N., & Pesenti, M. (2016). Interference of lateralized distractors on arithmetic problem solving: A functional role for attention 
shifts in mental calculation. Psychological Research, 80(4), 640–651. https://doi.org/10.1007/s00426-015-0668-7

Mathieu, R., Gourjon, A., Couderc, A., Thevenot, C., & Prado, J. (2016). Running the number line: Rapid shifts of attention in single-
digit arithmetic. Cognition, 146, 229–239. https://doi.org/10.1016/j.cognition.2015.10.002

McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic 
arithmetic. Perception & Psychophysics, 69(8), 1324–1333. https://doi.org/10.3758/BF03192949

McCrink, K., & Wynn, K. (2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of 
Experimental Child Psychology, 103(4), 400–408. https://doi.org/10.1016/j.jecp.2009.01.013

Minturn, A. L., & Reese, T. W. (1951). The effect of differential reinforcement on the discrimination of visual number. The Journal of 
Psychology, 31(2), 201–231. https://doi.org/10.1080/00223980.1951.9712804

Myachykov, A., Ellis, R., Cangelosi, A., & Fischer, M. H. (2016). Ocular drift along the mental number line. Psychological Research, 
80(3), 379–388. https://doi.org/10.1007/s00426-015-0731-4

Nicholls, M. E. R., Loftus, A. M., & Gevers, W. (2008). Look, no hands: A perceptual task shows that number magnitude induces shifts 
of attention. Psychonomic Bulletin & Review, 15(2), 413–418. https://doi.org/10.3758/PBR.15.2.413

Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 
2013–2019. https://doi.org/10.1177/0956797613482944

Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying 
mechanism. Cognition, 133(1), 188–200. https://doi.org/10.1016/j.cognition.2014.06.011

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–
442. https://doi.org/10.1163/156856897X00366

Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. 
Cognition, 109(3), 408–415. https://doi.org/10.1016/j.cognition.2008.09.003

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
https://www.r-project.org

Salvaggio, S., Masson, N., Zénon, A., & Andres, M. (2022). The predictive role of eye movements in mental arithmetic. Experimental 
Brain Research, 240(5), 1331–1340. https://doi.org/10.1007/s00221-022-06329-3

Shaki, S., Pinhas, M., & Fischer, M. H. (2018). Heuristics and biases in mental arithmetic: Revisiting and reversing operational 
momentum. Thinking & Reasoning, 24(2), 138–156. https://doi.org/10.1080/13546783.2017.1348987

Szkudlarek, E., Park, J., & Brannon, E. M. (2021). Failure to replicate the benefit of approximate arithmetic training for symbolic 
arithmetic fluency in adults. Cognition, 207, Article 104521. https://doi.org/10.1016/j.cognition.2020.104521

Glaser & Knops 63

Journal of Numerical Cognition
2023, Vol. 9(1), 44–64
https://doi.org/10.5964/jnc.8373

https://doi.org/10.3758/PBR.17.1.1
https://doi.org/10.3758/BF03205949
https://doi.org/10.3389/fnhum.2018.00183
https://doi.org/10.1016/j.cognition.2016.01.005
https://doi.org/10.3389/fnhum.2013.00270
https://doi.org/10.1038/s41598-017-01037-3
https://doi.org/10.1080/17470218.2014.903985
https://doi.org/10.1007/s00426-015-0668-7
https://doi.org/10.1016/j.cognition.2015.10.002
https://doi.org/10.3758/BF03192949
https://doi.org/10.1016/j.jecp.2009.01.013
https://doi.org/10.1080/00223980.1951.9712804
https://doi.org/10.1007/s00426-015-0731-4
https://doi.org/10.3758/PBR.15.2.413
https://doi.org/10.1177/0956797613482944
https://doi.org/10.1016/j.cognition.2014.06.011
https://doi.org/10.1163/156856897X00366
https://doi.org/10.1016/j.cognition.2008.09.003
https://www.r-project.org
https://doi.org/10.1007/s00221-022-06329-3
https://doi.org/10.1080/13546783.2017.1348987
https://doi.org/10.1016/j.cognition.2020.104521
https://www.psychopen.eu/


Journal of Numerical Cognition (JNC) is an official 
journal of the Mathematical Cognition and 
Learning Society (MCLS).

PsychOpen GOLD is a publishing service by 
Leibniz Institute for Psychology (ZPID), Germany.

Spatial Biases in Approximate Arithmetic 64

Journal of Numerical Cognition
2023, Vol. 9(1), 44–64
https://doi.org/10.5964/jnc.8373

https://www.psychopen.eu/

	Spatial Biases in Approximate Arithmetic
	(Introduction)
	Experiment 1
	Method
	Results
	Discussion

	Experiment 2
	Method
	Results
	Discussion

	General Discussion
	(Additional Information)
	Funding
	Acknowledgments
	Competing Interests
	Data Availability

	Supplementary Materials
	References


