
Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 53

https://isedj.org/; https://iscap.info

Examining the Number of Concepts

Students Apply in the Exam Solutions of an
Introductory Programming Course

Pratibha Menon
menon@pennwest.edu

Department of Computer Science and Information Systems
Pennsylvania Western University, California

California, PA, 15419, USA

Abstract

Instruction in an introductory programming course is typically designed to introduce new concepts and
to review and integrate the more recent concepts with what was previously learned in the course.
Therefore, most exam questions in an introductory programming course require students to write lines
of code that contain syntactic elements corresponding to the programming concepts covered during the
instruction. This study investigates the number of concepts involved in the exam problems of an
introductory Java programming course. In addition, this study compares how the increase in the number

of concepts correlates with the ability of students to write error-free lines of code. The instructional
method adopted in this study focuses on providing students with a problem-solving schema and a
resultant programming plan that integrates many concepts to meet the problem’s goal. Results from
this study indicate that as the course progresses through the semester, students, on average, apply

appropriate problem-solving schemas and programming plans to produce more error-free lines of code,
despite an increase in the concept count in the problems. Furthermore, the exam problems later in the
course repeat the application of cluster concepts that have appeared in the past exam. This paper

illustrates how programming is a cumulative skill and that repeating and building upon the applications
of these concept clusters several times through the course increases the likelihood that students will
produce more correct lines of code as the semester progresses.

Keywords: Concepts, Introductory-Programming, Lines-of-code, Exams, Program.

1. INTRODUCTION

Failure rates in introductory programming
courses have prompted several researchers to
identify the causes that make these courses
difficult for students (Watson & Li, 2014;

Medeiros et al., 2019; Bennedsen & Caspersen,
2019). One thread of research has explored the
types of assessment used in introductory
programming courses to determine the factors
that make the test items difficult (Zur & Vilner,
2014; Ford & Venema, 2010). Exams in a
programming course typically consist of tasks

designed to assess how well students can apply
various programming constructs to solve
problems. The difficulty of a programming task in

an exam item may be evaluated subjectively from
student self-assessments or objectively by
collecting data about the problems'
characteristics and their solutions (Braarud,
2001).

Prior studies have found that the difficulty of
exam questions in introductory programming
courses taught by different instructors depended
on various measures of complexity such as the
degree of explicitness, reference to an external
and unfamiliar domain, hard-to-learn concepts,
linguistic complexity, intellectual complexity level

based on Bloom's taxonomy. (Sheard et al.,
2011; Sheard et al., 2013; Harland, D’Souza &
Hamilton, 2013). In these studies, the complexity

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 54

https://isedj.org/; https://iscap.info

measures were evaluated based on the

instructors' perceptions, and the exam questions'
resulting difficulty was inferred through the
students' marks.

Studies also noted that exam questions in
introductory courses were predominantly
composed of integrative code-writing questions
that required students to apply multiple concepts
(Petersen et al., 2011). Evaluating questions'
content and cognitive requirements indicate that

students must internalize a large amount of
introductory programming content and gain
enough practice solving problems to succeed in
the exams. While academics can evaluate the
difficulty of the exams, they tend to
underestimate the total number of concepts used

versus those evaluated (Simon et al., 2012). For
example, a question on loops requires students to
master basic concepts such as Boolean logic,
variables, data types, operators, and the
associated syntax before constructing a loop that
solves a given problem. Some programming
concepts are so fundamental that they are used

in every code-writing instance and must be
committed to long-term memory.

Cognitive load theory explains that concepts not
fully internalized must be reasoned in the working
memory (Ericsson & Kintsch, 1995; Berssanette
& de Francisco, 2022). In addition, the mind is

limited in its ability to work with multiple concepts
simultaneously, and therefore, students who

need more mastery of fundamental concepts face
an increasing cognitive burden (Muller et al.,
2007). Results from prior studies argue that we
may be asking students in introductory

programming courses to master too many
concepts in a short time (Goldman et al., 2010).

This study investigates the intrinsic cognitive load
of course contents in an introductory
programming course by quantifying the
conceptual complexity of the exam problems used

to assess student learning. The conceptual
complexity of an exam problem is measured by
the number of distinct concepts contained in an
optimal code solution. Instruction in an

introductory programming course takes place by
introducing students to new concepts and
integrating them with the previously taught

concepts. Therefore, exam questions are
formulated to assess the conceptual knowledge
gained by students by evaluating how well
students learn to integrate and apply these
concepts to solve problems.

This study investigates how the cognitive load
introduced in learning programming concepts

impacts the ability of students to produce correct

code. First, the conceptual complexity of the
course contents is measured by counting the
concepts expected to be applied in each of the

solutions to the exam problems. Then, the
learning outcome is measured as the correctness
of the lines of code of the solutions produced by
students at three different points through a
fifteen-week semester.

The approach of evaluating the conceptual

complexity of exam problems by identifying and
counting the number of concepts applied in the
expected solution, as explained in this paper,
could be used by instructors to objectively gauge
the difficulty of exam questions in their
introductory programming courses. This paper

also examines the possibility of using lines of code
as a reasonably good metric within an
introductory programming course to score the
exam solutions for a student's ability to write code
by applying the required concepts. The research
question of this study is formulated as follows:

RQ1: How do the number of distinct concepts
students apply to solve exam problems increase
as the semester progresses in an introductory
programming course?

RQ2: How do the number of concepts students
apply to solve a programming problem correlate

with their ability to produce an error-free solution
as they obtain instruction and practice to solve

application-based problems in an introductory
programming course?

This study takes place in a live classroom with

class lectures and a detailed code walkthrough
demonstrating the instructor's practices in
applying the concepts to solve problems. The
introductory programming course investigated in
this study has three monthly exams that test the
ability of students to recall, analyze and apply
their conceptual knowledge to write code

sequences. The findings of this study have
implications for designing instruction that
supports instructors and students in taming the
complexity of integrating many concepts in

programming solutions.

2. THE COURSE CONCEPTS AND

LINES OF CODE

Course exams are a valuable proxy for deriving
curricular expectations and determining what
instructors understand as essential. This study
explores the concepts used in the exam questions

of an introductory Java programming course.
While no standard concept inventory exists for

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 55

https://isedj.org/; https://iscap.info

introductory programming courses, researchers

have used varying methods to derive a list of
essential concepts. For example, Tew and Guzdial
have used the contents of textbooks to identify

ten critical topics (Tew & Guzdial, 2010). Schulte
and Bennedsen shortlisted 28 topics from the
literature and asked instructors to rate the
difficulty and relevance of each (Schulte &
Bennedsen, 2006). A prior study by Petersen et
al. evaluated exam contents and observed that
the number of concepts considered by instructors

while evaluating and grading programming
solutions in an exam is fewer than those used to
construct the program (Petersen et al., 2011).

This study draws the concepts from a concept
inventory created for CS1 courses (Goldman et

al., 2010), as depicted in Table 1.

 Concept

Program
Structure

Arithmetic
Operators

Method
Structure

Assignment
Operator

Method
Parameter

Operator
Precedence

Method

Return

Proper use of

parenthesis

Method
Call Expression

Syntax Statement

Data

Types Conditionals

Variables
Decision
Structures

Literals Loops

Boolean
Operators Nested Loops

Variable
Scope

String
methods

Table 1. List of Concepts

All the concepts displayed in Table 1 are treated
as being equally difficult, although studies have
qualitatively identified certain threshold concepts
that are more critical than others in the learning
process (Meyer & Land, 2005; Sanders &

McCartney, 2016). However, the results of these

studies could only broadly identify the threshold
concepts, for example, as pointers or object-
oriented programming. Both these topics were
not included in the curriculum of the introductory
course, whose content is investigated in this
paper. A study by Cherenkova et al. (2014)

investigated a large dataset of CS1 code-writing
attempts and found that certain straightforward
application of concepts tend to be problematic
even towards the end of the term.

Thus far in computing education, evaluating code

complexity of solutions has either involved expert
evaluation or the use of convenient metrics, such
as the number of syntactic elements in a piece of

code. While metrics-driven software engineering
has fallen out of favor, they are a convenient
quantitative method for measuring code
(DeFranco & Voas, 2022). One popular metric,
lines of code, is commonly used to measure
developers' productivity. Lines of code is also an
intuitive metric for measuring software size since

its effect can be visualized. For example, lines of
code could be used to count a program's volume
of instructions (or statements). However, not all
lines of code in a Java program may terminate in
a semi-colon. For example, a for-loop does not
contain a semi-colon but forms a line of code

containing an executable entity.

Lines of code may be composed differently by
novice and professional programmers (Kramer et
al., 2017). Skilled developers can apply more
syntactic entities with far less code. However,
most novice developers, such as the students

who attend an introductory programming course,
only pack a physical line of code with a few logical
constructs. While learning, it is easier for novices
to comprehend and write code if each physical
line contains the application of fewer logical
constructs and the program is written in a step-
by-step manner, as a logical sequence, using

separate lines.

This study considers two types of heuristics - the
number of concepts expected to be applied in an
optimal solution and the expected lines of code to
study how these metrics could infer the problem's

complexity. The lines of code count all the
instances of using syntactic elements that
correspond to the concepts used to solve the
problem. On the other hand, the concept count
only considers the "distinct concepts" used to
formulate an optimal solution. It is important to
note that the number of distinct concepts applied

in the solution should be optimal, which means
these concepts are the ones whose application is
necessary and cannot be avoided in the solution.
This study explores how these two heuristics - the

number of distinct concepts expected in an
optimal solution and the total number of lines of
code in the students' solution, could gauge

students' learning progress to solve increasingly
more significant problems in a course during a
semester.

3. THE STUDY

This study takes place in a 15-week introductory
Java Programming class in an undergraduate-

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 56

https://isedj.org/; https://iscap.info

level Computer Information Systems program at

a public university. The course has three-unit
exams that are spread out throughout the course.
Exam1 covers the topics of decision structures.

Exam 2 focuses on loops, and Exam 3 tests the
ability of students to modularize their code using
methods.

The Exams
The exams comprised coding problems that
required students to apply their conceptual

knowledge. Some questions only require students
to analyze code. Most questions, however,
require students to write a code solution. The
exam questions were of variable points, and
scores were assigned to each question based on
the correctness of the code lines expected in the

solution. In addition, students are given partial
points to a solution based on the percentage of
the number of lines of code answered correctly,
compared to the lines of code expected in a
correct solution. Given the stringent time allotted
to complete the exams, no open-ended questions
could have resulted in a high degree of code

variability in the solutions. Each hour-long,
closed-book exam was conducted in a classroom,
and the exam was strictly timed and proctored.
Students access and submit their exams through
the course learning management system.
Furthermore, due to the time limits of the exams,
students were not asked to use a compiler to run

their solutions during the exam. The exam's
primary intent was to test students' ability to

recall the syntax and apply their conceptual
knowledge to write java program statements.

Points carried by an exam question correlated

with the number of lines of code students had to
write or analyze. For example, short answer
questions required students to write or analyze
one or two lines of code. Medium-sized questions
had solutions that contained between 5-11 lines
of code. A more extensive solution had about 12-
26 lines of code. A summary of the characteristics

of the exam questions for the three exams is
given in Table 2. The upcoming sections of this
paper will illustrate how the conceptual
complexity of the exam questions evolves

between the three exams. It must be emphasized
that the exam questions were created such that
the program solutions resembled a multi-step

problem solving process, where each step
involves application of a different cluster of
concepts. Therefore, care was taken to ensure
that larger code sizes in the exam solutions did
not just result from repetition of similar
statements involving the same group of concepts.

 Exam1 Exam2 Exam3

Duration 1 hour 1 hour 1 hour

Max
points 50 70 100

of
questions 8 8 5

Points/
question

between
 5 and
20

between
 5 and
20

between
10 and
50

Approx #
of

expected
Lines of
Code /
question

between
 1 and
16

between
 1 and
16

between
 7 and
25

Table 2 – Exam summary

The Instruction
Before each exam, students were exposed to the
exam topics via class lectures, code
demonstrations, and weekly assignment
exercises. The course contents are covered in
four modules. Appendix D shows the assignment

problems from each module along with the key
concepts covered in that module. Through these
learning activities, students are exposed to
various problems that apply the concepts listed in
Table 1. Appendix D also categorizes problem into
various types such as calculators, checkers,

counters etc. The code demonstrations used to
instruct problem solving methods in class,
covered several application scenarios and code

development techniques. Every code walkthrough
thoroughly explained a programming problem
and solutions using a program plan that reflected
the instructor’s problem-solving schema.

Appendix C also shows how a simple problem
could be broken down into various steps to
develop a code walkthrough. Appendix C also
shows a flow chart used by the instructor to plan
the code walk through for any given problem.

The assignment problems provided means for

students to solidify their conceptual
understanding and apply (or modify) their
problem-solving schemas to solve similar
problems from a different context. Appendix D
shows a sequence of assignment problems that

also allows the reuse the concepts covered in the

previous assignments. The assignment problems
are similar in scope and scale to the ones whose
solutions are explained in the code
demonstrations. The exams help the instructor
evaluate how correctly students transfer the
problem-solving schemas and program plans
involving multiple concepts to fit the specific

context of an exam problem.

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 57

https://isedj.org/; https://iscap.info

Exam solutions of 25 students who attended all

three exams were collected. Any information
identifying a student was removed from the
solutions. Student submissions were not matched

across the exams. Students' answers were scored
for correctness by comparing them with the
expected statements and syntax of the lines of
code in the instructor's solutions. Every line of
code that formed a statement was checked for
correctness and assigned a point only if there
were no errors.

4. RESULTS

Concepts in the Exam Questions
An analysis of the exam questions by the course
instructor revealed all the concepts that a student

needs to apply to solve each exam question.
Figure 1 shows that the total number of concepts
increased in the later exams. Figure 1 names
each exam problem using the exam number and
the problem number. For example, E3P5 stands
for Exam 3, problem 5. Appendix A shows the
mapping of each exam problem to the distinct

concepts that need to be applied to write an
optimal solution. Appendix B lists a partial list of
questions from the three exams.

Figure 1 also shows the approximate number of
lines of code students were expected to write or
analyze in each exam problem. It can be

observed from Figure 1 that even a single line of
code could contain syntactic elements that

represented multiple concepts. For example,
problem E1P1 (described in Appendix B) required
students to analyze a statement that contained a
compound Boolean expression containing

comparison and logical operators. While students
were evaluated based on their understanding of
Boolean expressions, they also needed to
understand several foundational concepts, such
as operator precedence, proper use of
parenthesis, and the Java syntax used to
comprehend a Boolean expression.

In Exam 1, problems 1, 2, and 3 (listed as E1P1,
E1P2, and E1P3) required students to analyze a
given statement, and problems 4, 5, 6, 7, and 8

(depicted as E1P4 – E1P8) required students to
write lines of code using the concepts required to
write if-else or switch statements.

Appendix B describes some of the questions from
Exam 1. For example, writing lines of code that
contain decision structures and the actions that
follow the truth value of each conditional
expression in the decision structure brings
together 10 – 14 concepts, as observed in the

concept mapping table in Appendix A. The bars
corresponding to E1P5, E1P6, E1P7, and E1P8 in

Figure 1 also show the many concepts used to

solve these problems.

Figure 1. Concept count and the expected

lines of code for exam questions.

Exam 2 required students to know how to write
applications that use while, do-while, and for
loops. Programs that included loops also
contained foundational concepts such as
variables, Boolean expressions, different types of

operators, and simple conditional statements. To
apply loops in a program, students also need
knowledge of data types and syntax rules to
compose expressions and statements. The
number of lines of code in Exam 2 composed of
problems E2P1 till E2P8 are shown in Figure 1.

Even though two problems may have the exact
concept count, their lines of code may differ
based on the program plan for the solution. Some

problems may have additional statements
requiring using a different set of operators and
print statements, thereby adding the number of
lines of code without increasing the concept

count. For example, this was the case in problem
E2P4 compared to other problems with similar
concept counts.

Appendix A shows the concept mapping of these
problems, and Appendix B describes a partial list
of the problem statements. The concept count of

0 10 20 30

E1P1

E1P3

E1P5

E1P7

E2P1

E2P3

E2P5

E2P7

E3P1

E3P3

E3P5

LINES OF CODE

EX
A

M
 -

P
R

O
B

LE
M

Number of Concepts Lines of Code (approx)

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 58

https://isedj.org/; https://iscap.info

the Exam 2 problems is relatively high compared

to the expected lines of code in the solutions. For
example, writing a simple for-loop requires
knowledge of arithmetic and Boolean operators,

appropriate use of variables and their scope, and
the syntactic elements used to compose
expressions and statements. Additional concepts
are used to write statements that form the loop’s
actions.

Exam 3 requires students to write modular code

using methods. Students must comprehend the
questions and translate the requirements into
code by writing the correct return type,
arguments, and statements in the method’s body.
Depending on the problem’s requirements, a
method’s body may require the application of

concepts such as arithmetic and Boolean
operations, decision structures, or loops.
Therefore, questions in Exam 3 also included the
concepts that constituted the problems in exams
1 and 2. Appendix A reveals some of the concepts
involved in Exam 1 and 2 that were repeated in
Exam 3. Figure 1 shows that Exam 3 questions

E3P1, E3P2, E3P3, and E3P4 have code lines with
high concept counts. The question E3P5, which
carried the most points and concept count,
required students to write a menu-driven
application that repeated several if-else
statements to direct the program based on user
choices during execution time. Repeating the if-

else statements added code lines that used the
same concepts, and therefore, the concept count

did not increase as much as the code lines did.
The table in Appendix B describes problem E3P5.

The Pearson correlation results indicated a

significant positive relationship between the lines
of code per exam problem and the number of
concepts (r = .592, p = .005). Therefore, for this
study, the number of correct lines of code written
by students could be used to gauge their latent
conceptual knowledge. It is important to
ascertain this positive correlation if the correct

number of lines of code is to be used to measure
student performance in the exams.

Student Performance

Student submissions were scored based on the
percentage of the expected lines of code that
were correct for each question. Tables 4, 5, and
6 show the average values of correctly written

lines of code (or statements) for each question
from the three exams. The tables also show the
average percentage score per problem and the
number of concepts in each question. The
Pearson correlation results indicated a significant
positive relationship between the percentage of

correct lines of code for each solution and the

number of concepts used to solve the problem (r
= .67, p < .001).

Problem
Avg
Score

Concepts

Avg
Correct
lines of
code

E1P1 71.41% 9 0.714

E1P2 85.71 % 10 0.857

E1P3 52.38 % 9 0.524

E1P4 68.57 % 12 2.744

E1P5 96.03 % 11 5.76

E1P6 75.24 % 12 7.52

E1P7 58.57 % 10 9.376

E1P8 90.71 % 14 13.605

Avg
values 75.00% 10.875 5.1375

Table 4 Exam 1 Results

Problem
Avg
Score

Concepts

Avg
Correct
Lines of
Code

E2P1 82.86 % 11 2.487

E2P2 76.19 % 11 6.858

E2P3 73.33 % 12 2.199

E2P4 75.24 % 12 12.032

E2P5 77.14 % 12 0.771

E2P6 91.43 % 12 0.914

E2P7 86.67 % 12 3.468

E2P8 88.1 % 12 2.643

Avg
Values 79% 11.75 3.9215

Table 5 Exam 2 Results

Problem
Avg
Score

Concepts

Avg
Correct
Lines of
Code

E3P1 86.39 % 13 6.048

E3P2 73.47 % 15 3.675

E3P3 85.71 % 15 4.285

E3P4 81.63 % 15 8.976

E3P5 87.66 % 19 22.802

Avg
values 82% 15.4 9.1572

Table 6 Exam 3 Results
Tables 4, 5 and 6 indicate that problems that
required students to apply more concepts were
the ones that students tended to score the most.
In addition, the tables show that the average test

score percentage increased after every exam. If

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 59

https://isedj.org/; https://iscap.info

the number of concepts used in a problem

indicates its complexity, these results mean
students are getting better at handling many
concepts as they progress through the course.

Looking at the mapping of concepts in Appendix
A, one can observe that Exam 1 uses many
foundational concepts that are re-applied in all
subsequent exams. Students also revisit many of
these concepts in the assignment problems that
follow Exam 1. Therefore, many code lines in the

second and third exams repeat the concepts used
in the first exam. Appendix A also shows that
many of the same concept cluster together in
various exam problems. For example, almost all
programs use variables, data types, operators,
and expressions. Knowledge of the correct syntax

to construct statements is fundamental to all
problems. Introducing newer concepts, such as
decision structures and loops, helps to reinforce
the use of foundational concepts covered earlier
in the course, such as Boolean expressions and
the use of different types of operators. The use of
basic operators and inputs and outputs methods

reoccur in almost all the programs that involve
decision structures and loops. Therefore,
repeated application of these concept clusters to
meet the problem's sub-goals and create a more
extensive program plan allows students to write
correct code involving these concepts in
subsequent exams.

A solid understanding of basic concepts and how

they occur as a cluster to meet the program's goal
and sub-goals allows students to incrementally
integrate newer concepts successfully as they
learn to write more extensive and complex

programs.

5. DISCUSSION

It may appear concerning that students must
grasp as many as 11 concepts by Exam 1,
conducted during week 6 of the course. The Table

in Appendices A and B shows that even writing a
simple statement to solve a Boolean or Arithmetic
operation requires knowledge of a cluster
composed of many concepts. For example, nine

concepts in the first three questions of Exam
1(E1P1, E1P2, and E1P3) are written using a
single line of code that applies operator

precedence rules. Even though there is no drastic
increase in the number of concepts elsewhere in
the course, students must learn to integrate
newer concepts with what they already know to
write programs as the course progresses.

Results from Tables 4, 5, and 6 indicate that
students could write more correct lines of code as

the semester progressed. Therefore, reapplying

the same concept cluster many times throughout
the semester and the familiarity gained would
have led to mastery and better performance later

in the course. However, it is to be noted that
learning to solve different application problems
happens not just by repeated exposure to the
application of concepts but through the dynamic
process of reconfiguring prior concepts to
integrate a new concept required to solve a
problem. Therefore, instruction could be designed

to support acquiring new conceptual knowledge
by reconfiguring and reapplying prior knowledge
and skills and learning to apply a newer concept.

The progression of code writing exercise problems
could play an essential role in helping students

learn how to restructure their problem-solving
schema and recombine prior concepts to solve
new problems. For example, as evident from the
assignment problem types in Appendix D, basic
arithmetic operators, covered early in the
semester, could be applied to develop various
types of calculators. However, in the later

module, problems that incorporate checkers into
calculators will require students to incorporate
Boolean operators into their pre-existing
arithmetic operators and expressions schema.
Problems that students solve later in the course
require them further incorporate basic knowledge
of arithmetic and Boolean operators in new ways

to implement decision structures and loops. While
there is considerable repetition of concept

clusters throughout the course, there is also a
need to restructure the previously learned cluster
of concepts in new ways to solve different types
of problems.

The problem-solving schema transferred through
instructional code walkthrough helps students re-
configure and re-apply concept clusters to solve
problems. The instructional code walkthrough
could help students identify the goals and sub-
goals of the problem and then identify and

configure a concept cluster to meet the sub-goals.
For example, Appendix C shows the goals and
sub-goal identification for a simple PIN
identification problem, one of the assignment

problems given to students. This solution pattern
for the PIN identification problem could be
modified to create applications that may validate

user inputs or allow users to log in with a
username and password. This problem and
solution pattern could also be extended using
loops to incorporate reattempts to check the user
inputs.

Classic works in learning theory have argued that
learners accumulate schema, or a problem-

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 60

https://isedj.org/; https://iscap.info

solving plan, rather than build their solution from

scratch by applying all the elementary concepts
(Rist, 1989; Clancy & Linn, 1999). Per this model,
errors in applying a schema to solve a problem in

an unfamiliar context or modifying the schema to
fit the problem requirements may reveal flaws in
the learner's understanding of the concepts used
to compose the solution. The application of
schema theory to computing pedagogy has taken
a renewed interest, as indicated by the data-
mining efforts to study common error patterns

encountered by students during their learning
process (Zehetmeir et al., 2016).

Repeated schema application or its modification
to the problems' contexts allowed students to re-
apply a cluster of concepts and assemble their

solutions multiple times throughout the course.
For example, based on the instructor's report,
decision structure problems E1P5, E1P6, and
E1P8 were analogous to problems in previously
graded assignments. However, problems E1P1,
E1P2, and E1P3 were single-line problems that
did not directly resemble any assignment

problems or were applied as part of a larger
program plan. Even though students would have
used smaller Boolean expressions to build
decision structures, problems E1P1, E1P2, and
E1P3 needed students to reason about the
solution by considering every concept in the
statement. Problem E1P7 was another problem

that required a considerable modification of the
assignment schema. Similar results were

observed in Exam 2, where students scored the
most if they could successfully identify similar
problems from instructional code walkthroughs
and assignments and transfer the schema to

solve the exam problem.

Students scored the most in Exam 3 because the
code inside the bodies of the methods repeated
and reconfigured several code schemas
previously covered in the assignments and
exams. For example, the problems in the final

exam required students to apply loop or decision
structures in the body of the methods. Students
could successfully write the body of the methods
in Exam 3 if they learned how to integrate the

method concepts with the problem-solving
schemas used to solve loops or decision structure
problems earlier in the course. A solid application

of schemas within the body of a method allowed
them to score partial points for a problem, even
if they made mistakes directly related to the
concept of a method, such as writing the method
header or providing a correct return statement.

6. CONCLUSIONS

The result of this study indicates that
programming is a cumulative skill and that as the

semester progresses, students learn to write
conceptually complex lines of code by
accumulating and integrating many concepts into
their solutions. The course starts with a high
initial number of concepts and progresses with a
relatively gradual increase of newer concepts that
must be integrated with previously learned

concepts. Integrating newer concepts to solve
application problems also provides means to
reconfigure code patterns and master the base
concept clusters applied earlier in the course.
Instructional code walks through, and practice
assignments support the acquisition of

programming skills by repeatedly integrating
newer concepts into a cluster of concepts that
appear in past assignments and exams.

This study confirms a positive correlation between
the error-free lines of code produced for a
solution and the number of concepts that

students need to integrate to produce a solution.
An explanation of why students can write correct
lines of code despite increasing the conceptual
complexity of the solutions is that they can learn
the problem-solving schema and apply code
patterns involving concept clusters. Students and
instructors cope with an extensive concept count

by clustering the concepts into code patterns
corresponding to a problem schema. This study's

finding has implications for designing
instructional activities to help students recognize
the instructor's problem-solving schema that
deals with clusters of concepts that could be re-

configured to meet a goal. Students may then
remember each concept in isolation due to its
meaningful association with other concepts in a
solution's code pattern.

This study primarily focused on the ability of
students to solve exam problems like those used

during the instructional process. Future studies
could investigate the complexity of exam
problems by characterizing the concept clusters
that appear in various problem-solving schemas.

In addition, studies could be conducted to learn
how students transfer problem-solving schema to
unfamiliar problems. Finally, the difficulty of

exam problems could be assessed based on not
just the concept count but also conditioned on
prior exposure to similar problems.

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 61

https://isedj.org/; https://iscap.info

7. REFERENCES

Bennedsen, J., & Caspersen, M. E. (2019). Failure

rates in introductory programming. ACM

Inroads, 10(2), 30–36.

https://doi.org/10.1145/3324888.

Berssanette, J. H., & de Francisco, A. C. (2022).

Cognitive Load Theory in the Context of
Teaching and Learning Computer
Programming: A Systematic Literature
Review. IEEE Transactions on Education,
65(3), 440–449.

https://doi.org/10.1109/te.2021.3127215.

Braarud, P. I. (2001). Subjective Task Complexity
and Subjective Workload: Criterion Validity
for Complex Team Tasks. International

Journal of Cognitive Ergonomics, 5(3), 261–

273. https://doi.org/10.1207/s15327566ijce0503_7.

Cherenkova, Y., Zingaro, D., & Petersen, A.
(2014). Identifying challenging CS1
concepts in a large problem dataset.

Technical Symposium on Computer Science
Education.

https://doi.org/10.1145/2538862.2538966.

Clancy, M. J., & Linn, M. C. (1999). Patterns and
pedagogy. The Proceedings of the Thirtieth
SIGCSE Technical Symposium on Computer
Science Education.

https://doi.org/10.1145/299649.299673.

DeFranco, J. F., & Voas, J. (2022). Revisiting

Software Metrology. Computer, 55(6), 12–

14. https://doi.org/10.1109/mc.2022.3146648.

Ericsson, K. A., & Kintsch, W. (1995). Long-term
working memory. Psychological Review,

102(2), 211–245. https://doi.org/10.1037/0033-
295x.102.2.211.

Ford, M., & Venema, S. (2010). Assessing the
Success of an Introductory Programming

Course. Journal of Information Technology
Education: Research, 9, 133–145.

https://doi.org/10.28945/1182.

Goldman, K., Gross, P., Heeren, C., Herman, G.

L., Kaczmarczyk, L., Loui, M. C., & Zilles, C.
(2010). Setting the Scope of Concept

Inventories for Introductory Computing
Subjects. ACM Transactions on Computing
Education, 10(2), 1–29.

https://doi.org/10.1145/1789934.1789935.

Harland, J., D’Souza, D., & Hamilton, M. (2013).
A Comparative Analysis of Results on
Programming Exams. Proceedings of the
Fifteenth Australasian Computing Education

Conference (ACE2013).

Kramer, M., Barkmin, M., Tobinski, D., & Brinda,

T. (2017). Understanding the Differences
Between Novice and Expert Programmers in
Memorizing Source Code. IFIP Advances in

Information and Communication
Technology, 630–639.

https://doi.org/10.1007/978-3-319-74310-3_63.

Meyer, J.H.F. & Land, R. Threshold concepts and
troublesome knowledge (2005):
Epistemological considerations and a
conceptual framework for teaching and
learning. High Educ 49, 373–388.

Medeiros, R. P., Ramalho, G. L., & Falcao, T. P.
(2019). A Systematic Literature Review on

Teaching and Learning Introductory
Programming in Higher Education. IEEE

Transactions on Education, 62(2), 77–90.

https://doi.org/10.1109/te.2018.2864133.

Muller, O., Ginat, D., & Haberman, B. (2007).
Pattern-oriented instruction and its influence
on problem decomposition and solution
construction. Proceedings of the 12th Annual
SIGCSE Conference on Innovation and
Technology in Computer Science Education.

https://doi.org/10.1145/1268784.1268830.

Petersen, A., Craig, M., & Zingaro, D. (2011).
Reviewing CS1 exam question content.
Proceedings of the 42nd ACM Technical

Symposium on Computer Science Education.

https://doi.org/10.1145/1953163.1953340.

Rist, R. S. (1989). Schema creation in

programming. Cognitive Science, 13(3),
389–414. https://doi.org/10.1016/0364-
0213(89)90018-9.

Sanders, K., & McCartney, R. (2016). Threshold
concepts in computing. Proceedings of the
16th Koli Calling International Conference on
Computing Education Research.

https://doi.org/10.1145/2999541.2999546.

Schulte, C., & Bennedsen, J. (2006). What do
teachers teach in introductory
programming? Proceedings of the Second

International Workshop on Computing
Education Research.

https://doi.org/10.1145/1151588.1151593.

Sheard, J., Simon, Carbone, A., Chinn, D.,
Laakso, M. J., Clear, T., de Raadt, M.,
D’Souza, D., Harland, J., Lister, R., Philpott,
A., & Warburton, G. (2011). Exploring
programming assessment instruments.
Proceedings of the Seventh International
Workshop on Computing Education

Research. https://doi.org/10.1145/2016911.2016920.

Sheard, J., Simon, Carbone, A., Chinn, D., Clear,

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 62

https://isedj.org/; https://iscap.info

T., Corney, M., D'Souza, D., Fenwick, J.,

Harland, J., Laakso, M-J., & Teague, D.
(2013). How difficult are exams? A
framework for assessing the complexity of

introductory programming exams. In A.
Carbone, & J. Whalley (Eds.), Proceedings of
the Fifteenth Australasian Computing
Education Conference (ACE 2013): Adelaide,
Australia, 29 January - 1 February
2013 (Vol. 136, pp. 145 - 154).
(Conferences in Research and Practice in

Information Technology (CRPIT); Vol. 136).
Australian Computer Society

Inc. http://crpit.com/confpapers/CRPITV136Sheard.p
df

Simon, D’Souza, D., Sheard, J., Harland, J.,

Carbone, A., & Laakso, M. J. (2012). Can
computing academics assess the difficulty of
programming examination questions?
Proceedings of the 12th Koli Calling

International Conference on Computing
Education Research - Koli Calling ’12.

https://doi.org/10.1145/2401796.2401822.

Tew, A. E., & Guzdial, M. (2010). Developing a
validated assessment of fundamental CS1
concepts. Proceedings of the 41st ACM

Technical Symposium on Computer Science
Education.

https://doi.org/10.1145/1734263.1734297.

Watson, C., & Li, F. W. (2014). Failure rates in
introductory programming revisited.
Proceedings of the 2014 Conference on
Innovation &Amp; Technology in Computer
Science Education - ITiCSE ’14.

https://doi.org/10.1145/2591708.2591749.

Zur, E., & Vilner, T. (2014). Assessing the
assessment-Insights into CS1 exams. 2014

IEEE Frontiers in Education Conference (FIE)
Proceedings.

https://doi.org/10.1109/fie.2014.7044330.

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 63

https://isedj.org/; https://iscap.info

Appendix A

Exam problem Concepts

 Exam 1 Exam 2 Exam 3

Concepts
P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
1

P
2

P
3

P
4

P
5

Method Structure x x x x x

Method
Parameter x x x x x

Method Return x x x x x

Method Call x

Syntax

Data Types x

Variables x

Literals x

Boolean
Operators x x x x x x x x x x x x x x x x x x x x

Arithmetic
Operators x x x x x x x x x x x x x

Assignment
Operator x

Operator
Precedence x x x x x x x

Expression x

Statements x

Conditionals x x x x x x x x x x x

Decision
Structures x x x x x x x

Loops x x x x x x x x

Nested Loops x X x

String methods x x x

Variable Scope x x x x x x x

Print Methods x x x x x x x x x x

Input(Scanner)
Methods x x x x x x x

Concepts used in each exam problem for the three exams. The grey cells indicate the main
course concept/topic that is evaluated in the problems. Cell that are marked with an ‘x’
indicate the concept that is used in the lines of code of a correct solution.

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 64

https://isedj.org/; https://iscap.info

Appendix B

Some of the Exam Problems from Exam 1, 2 and 3

Exam

Problem

 Problem/ Question

E1P1 What will be the value of boolean var1, which is given as : var1 = (((a*b)<=5)&&(b<1)); if you substitute a = 2 and b = 1 ?

E1P3 What will be the value of boolean var1, which is given as : var1 = (a.equals("Apple")); if you substitute a = "apple"

E1P5 Given two input variables : double length and double width. Given one output variable : double perimeter.
Assume that values of length and width are already obtained. Write if statement (just the if statement(s) with the action
performed , not the entire program) for the following conditions:
Check if the dimensions are big as follows: If length is greater than 20.0 or width is greater than 20.0, give an output to

tell the user that the dimensions are too big.

Check if the dimensions are small as follows: if the length is less than 5.0 or width is less than 5.0, give an output to tell the

user that the dimensions are too small.

If the dimensions are neither too big or too small, based on the above two checks - tell the user that the dimensions are

within the proper range of values . Then, calculate the area = length * width and print the value of that perimeter.

E1P8 Write a program that obtains from the user the age of a child in months. The program will determine the required next
vaccinations based on the given age. Write a complete program that will look at the given age in months and determine the next
vaccination required. You may skip commenting your code for this exam to save time. You program should compile and be
logically and syntactically correct.

E2P2 In this problem you will write a loop in which you ask users to enter the price of an item and add that price to the total price. In

your loop, you will ask the user to enter a 1 to “Scan” and a 2 to “quit”. Loop until the user types 2 - to quit.
For as many times, as the user enters a 1- to "Scan an item' : ask the user for the price of the items , and add this price to a
variable called totalPrice.
The variables price and totalPrice are both doubles .Assume that the Scanner object is already declared and named as input.
Declare any extra variables that you have used in your loop - other than price, totalPrice or input.

E2P6 The for loop shown below loops several times and produces a final value of i that is used to calculate the value of j. However,
there is an error : int j = i % 5 ; //This statement shows an error : "cannot find symbol i"

Errored code:
for(int i = 1; i<100; i=i*5){

System.out.println (i);

}

Rewrite the code above so that it fixes the error given in the error statement
E3P3 Define/Write a method called codeThePlayer that takes two argument – an integer called playerID and a String called

playerName . This method has a void return. If the playerID value is equal to 100, the method prints out the following : "Admin
ID ". Else, if the playerID is not a 1, the method prints out the playerName, followed by the statement: "Not Admin".

E3P5 Menu driven program
Write a program called pointsCalculator that calculates the total points earned by using a credit card for travel and hotel stays.
The program provides the user with the following menu :
“ Enter 1 to select mileage points”
“Enter 2 to select a hotel points”
“Enter 99 to quit”
If the user enters a 1 , ask the user to enter the mileage (which will be a double type). Scan the mileage and call a method called
calculateMileage that takes in as mileage as a parameter. This method returns a double value to be stored in a variable called
mileagePoints. Print out the value of mileagePoints.
If the user enters a 2, ask the user to enter the number of hotel stays(which will be an integer type). Scan the hotel stays and pass
this variable as a parameter to the method calculateHotelPrice . This method returns a double variable called hotelPoints. Print
out the values of hotelPoints.
 Assume the methods are already defined - you just need to call them in the code. You also don't need to implement a while loop.

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 65

https://isedj.org/; https://iscap.info

Appendix C

Problem-Solving Steps/Schema Breakdown Used for Instructional Code Walk Through

For a given
problem:

Identify goal
and sub-goals.

For each given
sub-goal:

Identify concept
clusters.

For a given concept
cluster: Write program

expression/statements.

Create a program
segment: By
Combining

statements.

Develop a solution:
By combining

program segments.

Test the solution:
if it meets all the

sub-goals.

Information Systems Education Journal (ISEDJ) 21 (1)
ISSN: 1545-679X March 2023

©2023 ISCAP (Information Systems and Computing Academic Professionals) Page 66

https://isedj.org/; https://iscap.info

APPENDIX D

Assignment Problems Categorized by Problem Types and Concept Clusters

Calculators - Data types, Arithmetic Expressions, Input/Output, Strings

Shipping Cost

Taco Price

TypeCasting Inputs

Flooring Cost

HealthData

Make Change

Checkers: Data types, Boolean expressions, Input/Output, Strings, IF/ELSE

Find Special Values : filtering out special values from a series of input data

Range Checker - identifying the range of a given input value

Age Checker - identifying the age group that a person falls under

PIN validation - validating user PIN value (without retries)

Checkers +Calculators: Data types, Boolean/Arithmetic Expressions, Input/Output,

IF/ELSE (mutliple ifs, else if)

Score Difference - figuring out game winners based on score differences

Age Checker - Binning for creating Histograms

Age & ZipCode checker - Demographic categorization problem

Year To Century Converter

Ticket Price Based on age /product type / discount code

Electrice Power Consumption Calculator for multiple home appliance types.

Decisions&Policies: Boolean/ Arithmetic Expressions, Input/Output, nested IF/ELSE, Strings

Rock Paper Scissor Game

Labor Charge Calulator for Lawn Service

Counters: Data types Boolean/Arithmetic Expression, Input/Outputs, Strings, Loops (while and for)

Shopping Data Input till user wants to quit using sentinel value

PIN Validation with retries

Interest Calculator

DivideByTwo series generator

ABCounter ForLoop Implementation

ABCounter WhileLoop Implementation

FutureTuition Calculator with inflation rates

InsectGrowth - series generator with varying parameters

Loops with Decisions - Data types,Boolean and Arithmetic expression, Input/Output, Strings, IF/ELSE ,

Loops
Validating Inputs - with infinite retries.

Menu Driven Application with multiple rounds of entry

Password, Username validation with re-tries and lockout

Methods - Return types, parameters, Data types,Boolean, Arithmetic expressions,

 Input/Output, Strings, IF/ELSE, Loops,

Print Shapes : Methods to print different shapes without parameters

Customaisable Face Printer with parameters - Methods to print different types of faces, with parameters

Dinner Price Calculator1 - Methods for user input, entrée price, discount calculator

eBayFee: Methods for identifying user types, fee calculation, output

Length Convertors : Methods for multiple types of conversions

Ticketing Application 1: Methods for user input, calculation

Ticketing Application 2 - Methods for user input, decision making, calculation

Dinner Price Calculator2 - Menu driven app, methods for user input, entrée price , drink price, receipt

TaxApplication - Methods for: user inputs, output display, calculator and category checkers

M
o

d
u

le
 3

-
M

e
th

o
d

s

List of Application Problem Patterns in Assignments

M
o

d
u

le
 0

-
V

a
ri

ab
le

,

D
at

a
ty

p
e

s,

Sc
an

n
e

r
m

e
th

o
d

s

M
o

d
u

le
 1

 -
 D

e
ci

si
o

n
 S

tr
u

ct
u

re
s

M
o

d
u

le
 2

 -
 L

o
o

p
s

